
Visual Rewards From Observation for
Sequential Tasks: Autonomous Pile
Loading
Nataliya Strokina1*, Wenyan Yang1, Joni Pajarinen2, Nikolay Serbenyuk3, Joni Kämäräinen1

and Reza Ghabcheloo3

1Computing Sciences, Tampere University, Tampere, Finland, 2Department of Electrical Engineering and Automation, Aalto
University, Espoo, Finland, 3Automation Technology and Mechanical Engineering, Tampere University, Tampere, Finland

One of the key challenges in implementing reinforcement learning methods for real-world
robotic applications is the design of a suitable reward function. In field robotics, the
absence of abundant datasets, limited training time, and high variation of environmental
conditions complicate the task further. In this paper, we review reward learning techniques
together with visual representations commonly used in current state-of-the-art works in
robotics. We investigate a practical approach proposed in prior work to associate the
reward with the stage of the progress in task completion based on visual observation. This
approach was demonstrated in controlled laboratory conditions. We study its potential for
a real-scale field application, autonomous pile loading, tested outdoors in three seasons:
summer, autumn, and winter. In our framework, the cumulative reward combines the
predictions about the process stage and the task completion (terminal stage). We use
supervised classification methods to train prediction models and investigate the most
common state-of-the-art visual representations. We use task-specific contrastive features
for terminal stage prediction.

Keywords: visual rewards, learning from demonstration, reinforcement learning, field robotics, earth moving, visual
representations

1 INTRODUCTION

In classical Reinforcement Learning (RL) architecture (Sutton and Barto 2018), an agent acts upon an
environment, receives feedback in form of reward, and observes the state of the environment (see
Figure 1A). The collected experience is used to update the agent’s policy. The process repeats until
the agent converges to the desired behavior. Reward encodes the task objective. For example, the
closer the robot is to task completion the higher the reward is. RL has demonstrated impressive
results in simulated environments (Kaiser et al., 2020; Yu and Rosendo 2021) and for robotic tasks in
controlled laboratory conditions (Zhu et al., 2020); Koert et al., 2020; Veiga et al., 2020). In real-world
large-scale applications, such as those found in field robotics, the full state of the environment cannot
be received. Instead, the robot only obtains an observation of the environment state through the
sensors (see Figure 1B). Moreover, the tasks usually require long-horizon decision-making and the
reward function is difficult to engineer. In literature, reward learning is referred to as an inverse RL
problem Osa et al. (2018). Learning the reward function online from interactions with the
environment is challenging when the amount of training samples is limited and training time
for the RL algorithm is restricted. The desirable solution would be to estimate the reward from
environment observation using the prior collected experience, i.e., as learning from demonstration.
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In this paper, we address the problem of visual reward estimation
for multi-stage robotic applications and study its reliability in
significantly varying conditions. Our test case is the autonomous
pile-loading task implemented on a real-scale robotic wheel-
loader in changing outdoor weather conditions.

Pile loading is one of the most challenging tasks in earth
moving automation for heavy-duty mobile machines. This is
partly caused by the difficulty of modelling the interaction
between the tool and the material (Dadhich et al., 2016) and
partly because of high variation in worksites and weather
conditions throughout the year. Weather conditions affect the
material properties, the hydraulics properties of the machine, and
the ground surface properties. Themajority of the state-of-the-art
works on pile loading or excavation automation are either model-
based or use heuristics (Sotiropoulos and Asada 2020), and
experimented in simulators or with toy setups. Therefore it is
unclear how well these methods perform in real worksites.
Recently several works implemented reinforcement learning
based autonomous pile-loading (Azulay and Shapiro 2021;
Backman et al., 2021), which were also demonstrated either on
a toy or simulated set-up. Existing progress and our own
experience (Yang et al., 2020; Yang et al., 2021) indicate
complexity of this real-world problem. G. Dulac-Arnold and
Mankowitz, (2019) reports nine challenges of real-world RL,
among which sample efficiency, safety constraints, large or
unknown delays in the system actuators, high-dimensional
state and action spaces, etc. In this work, we focus on one of
the challenges - reward learning. Specifically, we investigate
vision-based reward estimation for a real-world set-up learned
from demonstrations.

Our experimental set-up is illustrated in Figure 2 where a
robotic wheel-loader performs the task of loading a pile of
material and lifting the boom up. The wheel loader is
equipped with a stereo camera providing an egocentric view.
This is a long-horizon task where a suitable reward function is
hard to engineer even using expert knowledge. Several previous
works suggest learning a reward together with the policy online
(Ho and Ermon 2016; Fu et al., 2017; Ghasemipour et al., 2020).
To the best of our knowledge, there is no demonstration of this
method for the long-horizon task in highly varying real-world
conditions. Moreover, having an initial approximation of the
reward function is desirable in the long-horizon tasks. Sermanet
et al. (2017b) proposed a stage-based visual reward estimation
approach and demonstrated it on a door opening task in

laboratory conditions. This approach is attractive for field
robotics applications since it requires only minimum
information from an expert about the stages of the task and
initially can be learned offline. Figure 3 shows an example of such
rewards for the pile-loading task. At each time step, a reward is
associated with the stage of the task. Additionally, we study the
sparse reward prediction based on the outcome of the task using
task-specific visual features that previously demonstrated good
performance in training a behavior cloning controller Yang et al.
(2020). In our work, unlike in Sermanet et al. (2017b), we report
results for several visual representations, including, time-
contrastive representations, depth, and selected deep features.
We propose that the intermediate stage and the sparse terminal
stage rewards can be combined into cumulative reward.

To summarize, our work provides the following contributions:

• we review the methods of reward estimation and visual
representations used in learning-based approaches for
robotics applications; additionally, we overview the
progress of learning-based methods in autonomous earth
moving;

• we propose a framework where the cumulative reward
combines two predictions from visual observation: the
current stage of the progress and whether the task has
been completed (terminal stage). We formulate the
prediction as a supervised classification task and
investigate the most common state-of-the-art visual
representations. For the terminal stage prediction, we test
task-specific visual features.

• the framework has been implemented and tested on an
actual scale autonomous wheel-loader during three seasons
(summer, autumn, and winter).

2 RELATED WORK

Reward learning–Several methods propose learning the reward
function by iteratively optimizing the reward and agent behavior
while interacting with the environment, e.g., Ho and Ermon
(2016); Fu et al. (2017); Ghasemipour et al. (2020). They are based
on an adversarial paradigm as in Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014). The generator
learns the policy and the discriminator learns to differentiate
expert transitions from a non-expert. The reward is associated

FIGURE 1 | RL architecture: (A) classical online RL where state and reward are returned by the environment; (B) a real-world scenario where instead of full state
only its observation is obtained and reward is predicted from the observation. Our contribution lies in the reward prediction block marked in green.
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with a confusion of a discriminator. These methods minimize
f-divergence between the expert and the learning agent state-
action distributions Ghasemipour et al. (2019). With the
generator trying to maximize the reward provided by the
discriminator, the problem becomes a min-max optimization
problem, which can lead to training instabilities and poor sample
efficiency. While demonstrating state-of-the-art performance in
simulated environments, this approach was demonstrated only
for short-horizon small-scale tasks in real environments.

Another group of methods recovers a reward function based
on the set of pre-recorded expert demonstrations. This approach
is attractive for real-world robotics applications since it allows to
learn the reward function offline without a need to interact with
the environment. In literature, two approaches are investigated
for offline reward prediction: 1) reward as a measure of
discrepancy between the expert and agent behavior, and 2)
reward associated with a stage of progress in task completion.
In the first approach, expert demonstrations are considered to be
finite distributions. The reward is based on a distance measure
between the expert and agent distributions. Dadashi et al. (2021)
use the Wasserstein distance as a measure between the state-
action distributions of the expert and the agent. Unlike
f-divergences, the Wasserstein distance Rubner et al. (2000) is
based on the geometry of the metric space it operates on. To avoid
excess computation the authors suggest minimizing the upper

bound of Wasserstein distance. Upper bound means that greedy
coupling of state-action pairs is used instead of optimal coupling.

Sermanet et al. (2017b) associate the reward with a stage of
progress in task completion. This could be implemented by
explicit goal discovery as by Schmeckpeper et al. (2020).
Sermanet et al. (2017b) uses unsupervised clustering of image
sequence based on the similarity measure between the frames,
thus discovering the task stages. At deployment, image
classification provides prediction about the stage of the
process. The reward is assigned as a difference between the
features of the test sample and the mean features of the stage
cluster. The difference is then multiplied by two to the power of
the stage number. This method was demonstrated on door
opening and water pouring tasks in controlled laboratory
conditions with almost no variation in visual conditions.

Many research works in RL for real-world applications use
sparse reward indicating whether the task was accomplished
successfully or not (Vecerík et al., 2019; Lee et al., 2020). We
refer to it as a terminal reward. Several works train a reward
function as a classifier of the final observation, predicting whether
it was successful or not.While the terminal reward is sufficient for
short-horizon tasks, it does not help in long-horizon large-scale
tasks. Singh et al. (2019) teach the robot manipulation skills while
interacting with a human and asking for a manual reward label of
the observed states. Baseline reward is provided as a classification

FIGURE 2 | Example of the typical stages in the pile loading task.

FIGURE 3 | Demonstration examples and the predicted stages: visual observation (top), corresponding to them gas commands and joint angles (middle),
predicted stages of progress (bottom).
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of the current state to be the final successful state. During the
training, the robot queries the human to provide a label for
previously-unlabeled states with the highest probability of success
according to the classifier. Although the robot succeeds in
learning, it is unclear how this approach would scale to the
applications with a much larger state-space.

We focus on offline reward estimation from visual
observations and stage-based reward, similar to Sermanet et al.
(2017b). We made this choice since in our application we are
dealing with the long-horizon task with a large state space.

Visual representations–in this work, we are interested in
reward estimation from vision. Some robotics applications use
pre-trained deep Convolutional Neural Network (CNN) features.
For example, Sermanet et al. (2017b) uses the Inception network
Szegedy et al. (2016) pre-trained for ImageNet classification Deng
et al. (2009). In a number of works, generative modeling is used
where a latent variable model is trained to model a latent
distribution (Finn et al., 2015; Higgins et al., 2017; Lee et al.,
2020). The latent variables are utilized as representations. The
latent models are usually trained together with policy or other
goal optimization while interacting with the environment which
is impractical in real-world applications. These representations
try to capture the variations related to all the underlying factors in
task learning.

The representations can be trained while optimizing a
contrastive loss (Schroff et al., 2015; van den Oord et al., 2018;
Belghazi et al., 2018) with user-defined information. This means
that a developer has to identify the factors for which the variation
is modeled. For example, Sermanet et al. (2017a) proposes an
approach to robotic behaviors training from unlabeled videos
recorded from multiple viewpoints using time-contrastive
representations. The contrastive loss tries to minimize the
distance between the frames belonging to the same time
window and maximize the distance to the frames outside the
time window. In our previous work Yang et al. (2020), contrastive
representations are used to train a vision-based imitation learning
controller for autonomous pile loading. We train the
representations in a Siamese neural network classifying the
successful and unsuccessful pile-loading outcomes. We
minimize the distance between the inner-class representations
and maximize the distance between the outer-class
representations. A similar approach was used in representation
learning for the peg-in-hole task in Vecerík et al. (2019)1.

Recently, actionable representations have been proposed to
capture the variations that are important for decision making
(Ghosh et al., 2019). This is implemented by comparing the
actions taken by a goal-conditioned policy for two different goal
states. If two goal states require different actions, then they are
functionally different and vice-versa. The representations are
learned such that Euclidean distance between states in
representation space corresponds to actionable distances
between them. The actionable distances capture the differences
between the actions required to reach the different states based on

Kullback–Leibler (KL) divergence. In Dwibedi et al. (2018) the
actionable visual representations are learned based on the
contrastive loss.

We will investigate the time-contrastive, pre-trained deep
CNN features, and depth as well as Histogram of Oriented
Gradients (HOG) representation, as a representative of
classical edge-based features. These representations seem
practical in real-world applications since they do not require
training of policy together with the representations.

Autonomous pile-loading state-of-the-art–most of the
autonomous pile loading works adopt heuristics (Fernando
et al., 2018) or are model-based (Sotiropoulos and Asada
2019), and are experimented only in a simulator (Fernando
et al., 2018) or toy-scale setups (D. Jud et al., 2017;
Sotiropoulos and Asada 2020), which cannot capture the
complicated phenomena of the real-world problem. Model-
based approaches succeed in many robotics applications.
However, in pile loading, the interaction between the bucket
and the material is hard to model accurately. Several works
attempt to learn this interaction using learning from
demonstrations. Dadhich et al. (2016) fit linear regression
models to the lift and tilt bucket commands recorded with a
joystick. R. Fukui et al. (2015) use a neural network model that
selects a pre-programmed excavation motion from a dataset of
motions. Dadhich et al. (2019); Halbach et al. (2019); Yang et al.
(2020) report real experiments of autonomous scooping with a
real-scale Heavy Duty Machine (HDM). Dadhich et al. (2019)
propose a shallow time-delay neural network controller. The
controller uses the joint angles and velocities as inputs. After
outdoor experiments, the authors conclude that for different
conditions the network controller needs to be retrained.
Halbach et al. (2019) train a shallow neural network controller
(NNet) for bucket loading based on the joint angles and hydraulic
drive transmission pressure. Two of our recent works by Yang
et al. (2020) and Yang et al. (2021) present the state-of-the-art
data-driven controller learning demonstrated on real-world pile-
loader. Despite demonstrated successful performance in tested
conditions and robustness against slight variations in weather
conditions, the imitation learning-based, i.e., behavior cloning
methods, by construction are not able to provide online
adaptability to the variable conditions.

Several recent works started investigating the applicability and
limitations of the reinforcement learning framework in
autonomous excavation and pile-loading. Since the heavy-duty
machine job mainly involves interaction with the material, RL
seems a promising solution if only its limitations are addressed to
make the system practically feasible. Egli and Hutter (2021) train
in simulator an RL controller for the end-effector trajectory
tracking of a real excavator. The training utilizes pre-recorded
task demonstrations and was applied for motions generation in
the air and with soil interaction in a grading task. Backman et al.
(2021) present an approach to learn bucket-filling behavior for an
underground loader in a simulated environment. As a reward, the
authors use the bucket filling rate and energy consumption of the
machine. Kurinov et al. (2020) train an agent for earthmoving in a
simulated environment with sophisticated multi-body dynamics
modeling. The reward function depends on the amount of

1https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.
html

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8380594

Strokina et al. Visual Rewards From Observation

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


simulated soil loaded and unloaded from the bucket. Azulay and
Shapiro (2021) train an RL-based controller without pre-
recorded demonstrations for bucket-filling first in a simulator
and then test it on a toy set-up. The training in the simulator takes
3 hours and the reward depends on whether the wheel-loader
followed the necessary stages of the task and the amount of
loaded soil.

Current state-of-the-art works on RL for learning excavation
or pile-loading are mainly in simulated or toy environments. The
real-world scenarios differ from simulation by a much larger state
space with high stochasticity, the longer horizon of the tasks,
difficulty in defining a reward function. To make a transfer to the
real-world machines, progress should be made in 1) Rl algorithms
to guarantee the sample efficiency of the methods, 2) in learning
of appropriate state representations from multi-modal sensors to
capture the most relevant environmental conditions, and 3)
proper approaches to reward estimation that would be both
sample-efficient and robust to varying conditions. In the
discussed works, the reward is mainly defined using the
progress of the machine through the stages of the task and the
amount of the material in the bucket. In the real world, one way to
follow the machine’s progress is to identify the stages
automatically, for example, by observing the environment. In
this paper, we address the problem of reward estimation from
vision by studying the available visual representations for stage-
based reward estimation both for sparse terminal reward and
intermediate stage reward.

3 TEST-STUDY: AUTONOMOUS PILE
LOADING

3.1 Problem Statement
In this paper, we adopt the finite Markov Decision Process
(MDP) as an abstraction for the problem of goal-directed
episodic learning (Sutton and Barto (2018)). This is a standard
abstraction in reinforcement learning literature. An autonomous
agent learns through interaction with an environment. At each
time step t = 0, 1, . . . T the agent receives the state of the
environment st ∈ S, selects an action to perform at ∈ A(s), and
receives a feedback from the environment which is called a
reward Rt+1 ∈ R. The reward received at each time step is
called an immediate reward and the goal of the agent is to
maximize the cumulative reward, which is defined as the sum
of rewards obtained within the time horizon T. A discount factor
can be applied to each immediate reward which regularizes how
much the agent values immediate reward versus future rewards.
The cumulative reward received by the agent can be expressed as

r � ∑T
1

γ t−1( )Rt st−1( ), (1)

In this work, a set of consecutive visual observations D �
{on, ln}Nn�1 contains pairs of on visual observations and labels ln. N
is the total number of observation-label pairs available. The visual
observation is an RGB left-frame image of a stereo camera
providing an ego-centric view. To avoid introducing new

notation, we use Rt (.) to define the mapping from state or
observation to reward. We thus learn an approximator
function ~r � Rt(ot−1) - a predictor learnt from visual input. In
long-horizon tasks, especially in real-world problems, it is
beneficial to link the reward to the progress in task
completion. In our framework, the visual representations are
learned from the intermediate and terminal stage classifiers. The
intent is to study what visual representations are useful in highly
varying conditions of field robotics applications. Additionally, a
recent study by Stooke et al. (2021) showed that learning of visual
representations and policy separately is more beneficial in an
imitation learning task.

More specifically, beside the state observations ot and
transition dynamics that governs environment dynamics, we
assume subgoals for our long horizon task together with a
final goal-we call these stages. We also assume these sub-goals
or intermediate stages are sequential, that is, one needs to be
performed before the other for the system to succeed. We denote
them by S0, S1, S2, ST, where ST is the terminal stage. We use
supervised methods, and therefore the stages define classes which
are labeled manually. The reward r is associated with the stage of
the work process the machine is performing. Each time step the
system associates the visual observation ot of the machine with
the stage of the process using classification model. We have two
tasks: prediciting the work process stage and whether the task has
completed (terminal stage). Thus, we have two training sets: for
stage prediction D = {(f (ot), ct): ct ∈ C = {0, 1, 2}} and terminal
stage prediction G = {(f (ot), ct): ct ∈ C = { − 1, 1}}. We refer to the
prediction about the stage as stage-based reward RS

t(ot−1) and the
prediction about completion as terminal stage reward RE

t (ot−1).
Following Eq. (1), the cumulative reward is computed as follows:

r � ∑T
1

γ t−1( ) RS
t ot−1( ) + RE

t ot−1( )( ), (2)

3.2 Choice of Visual Representations
In this section, we describe the visual features that we have
investigated for training a classification model for sub-stage
and final state prediction. The first step of our classification
pipeline is to compute an embedding f(ot) ∈ X , which will
be passed to the classification stage. In this, X denotes the
space of features. Next, we will present methods that we have
investigated for learning of the embeddings for the
intermediate stage reward, followed by those for the
terminal stage reward. In this work, we will use the terms
embedding and feature interchangeably since the embedding
f (ot) acts as a feature input in our system.

3.2.1 Intermediate Stage-Based Reward
In this section, we will introduce several state-of-the-art
embeddings used for intermediate stage reward. We investigate
the pretrained deep CNN features, time-contrastive
representations, depth, and Histogram of Oriented Gradients
(HOG) descriptors. We use the same class labels as described
above for feature learning. These labels contain manually
specified stages.
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Selected deep visual features (VGG) - to extract deep feature
embedding f(ot) ∈ X in our experiments, we used a pretrained
VGG model (Simonyan and Zisserman (2015)). Following the
same approach, we applied a separate selection procedure to
identify the most discriminative features for the classification
task. For this, we computed the mean and standard deviation for
each feature i for each class on the training set

zi � α|μ+i − μ−i | − σ+
i + σ−

i( ), (3)
where μ+i and σ+i are the mean and standard deviation of the
features within the same class and μ−i and σ−i those of the rest of
the classes. The labels of the classes are known from the ground
truth data. We selected 200 features with a top zi score in each
class. This led to 29 deep features with top scores in all classes.
The value 200 was selected empirically such that there are enough
features with high score in all classes. One drawback of this
approach is that the selection procedure might suffer from the
drift of feature space when the environment changes.

Time-constrastive representations (TCR) - TCR has shown to
provide robust embedding maps for imitation learning tasks, as
well as object, face, action recognition and alignment Sermanet
et al. (2017a); Schroff et al. (2015). Here we describe our
experiments with TCR. To capture the dynamic nature of the
task, an input to the classification system at time t is xt, a stack of d
image frames

xt � ot−d+1, . . . , ot−1, ot( ), (4)
where ot is an rgb image observations. In our experiments, the size
of a single observation image ot was reduced to 64 × 64; the
number of frames d was 5. Each step, we choose a random input
sequence It = (xt, xt+1, . . . , xt+n) in the training set and sample a
random anchor input stack xi: t ≤ i ≤ t + n. The positive input
stack x+

i is sampled from a window (xi−L.xi+L), where L is a fixed
window size. The negative sample x−

i is randomly chosen outside
this window within sequence It. The anchor, the positive, and the
negative inputs are added to the training set.

Let fθ(xi) denote the feature extraction (embedding) network
with parameters θ. With an anchor xi, a positive sample x+

i , and a
negative sample x−

i , we formulate the loss to draw positive
samples closer to the anchor in the feature space and negative
samples further away. Thus, the embedding f (xi) shall satisfy
Sermanet et al. (2017a):

‖ f xi( ) − f x+
i( )‖22 + α< ‖ f xi( ) − f x−

i( )‖22,∀ f xi( ), f x+
i( ), f x−

i( )( ) ∈ Γ,
(5)

where α is an empirical parameter and Γ is the set of all possible
triplets in the training set. We used a state-of-the-art video frame
interpolation method DAIN (Depth-Aware Video Frame
Interpolation) Bao et al. (2019) to robustify the training since
our training set is limited.

Selected HOG features - We also experimented with HOG, as a
representative of classical methods. HOG demonstrated good
performance in visual recognition tasks Lowe (2004); Dalal and
Triggs (2005). HOG stands for the Histogram of Oriented
Gradient descriptors. The HOG descriptor (embedding)

characterizes an image by the distribution of local intensity
gradients or edge directions. This information was shown to be
rather sufficient even without precise knowledge of the
corresponding gradient or edge positions. The embedding f (ot) is
computed by dividing an image into small spatial regions, for each
region accumulating a local histogram of gradient directions or edge
orientations over the pixels of the region. The combined histogram
entries form the embedding. To improve the invariance to
illumination, and other conditions, the local responses within a
fixed block are contrast-normalized using L1-regularization. Let v
be the unnormalized descriptor vector, norm v1 be its 1-norm η be a
small constant. Normalization is done by dividing each value in the
vector by its norm: vn � v

(normv1+η)Weuse sklearn1 implementation to
compute the HOG representations.

Depth features - to obtain the depth image we used MonoDepth,
the state-of-the-art depth computation pretrained on the KITTI
dataset for outdoor environments2.We then define the features to be
an array of depth values in fixed image locations.

3.2.2 Sparse Terminal Reward
We define a sparse reward signal that indicates whether the task was
completed in the current episode. Practically, at each time step, it
predicts whether the terminal stage has been reached. The approach
to predict the terminal stage is similar to the TCR. For this, we use
task-specific visual features that we previously trained and
demonstrated in behavior cloning of pile loading task Yang et al.
(2020). There we trained the features on summer data and were
testing during the summer/autumn period. The training objective
was that the network should learn to distinguish the successful
samples (the bucket is full and task accomplished) from unsuccessful
samples (the bucket is empty or task is unfinished). For the main
target, the standard cross-entropy loss worked well. However, in
addition to the cross-entropy loss for classification, a contrastive loss
Hadsell et al. (2006) was added to constrain visual feature extraction.
The features within the positive examples should be close to each
other in the feature space and far from the negative examples. The
samples were labeled manually as described in the experimental
section. The contrastive loss has been used in one-shot learning tasks
and metric learning tasks where feature distances become important
Koch et al. (2015)2.

Here, the learning process is similar to the time-contrastive
representations (TCR). The difference is that in TCR we sample a
triplet of instances and here we sample a pair. Let x1, x2 ∈ Z be the
input samples. As in TCR, we use a stack of RGB images as input.
In TCR we used only the time-contrastive loss since the sampling
of data was based on the time window approach and not based on
identified classes. Here, positive samples belong to the terminal
stage and the negative ones do not. We train the embeddings in
the Siamese classification network fθ(x) where the standard cross-
entropy loss Lce (Bishop (2006)) is combined with the contrastive
loss Lc in the following way:

L � λ1Lce fθ x( )( ) + λ2Lc, (6)
where λ1 = 0.6 and λ2 = 0.4 denote the weight of the losses.

2https://github.com/nianticlabs/monodepth2
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The contrastive loss is defined by

Lc � max 0, m −D x1, x2( )( )2, if x1 ∈ Z−, x2 ∈ Z+

D x1, x2( )2, if x1, x2 ∈ Z+{ (7)
D �‖ fθ x1( ) − fθ x2( )‖2 (8)

where x1 and x2 are input into a shared-weights siamese
network and D (x1, x2) is the Euclidean distance between
the features. By minimizing the above loss function, the
network parameters are trained in a way that features of
inputs within the positive samples come closer and those of
the inputs belonging to different sets get farther. Parameterm
(m > 0) is a margin value based on the spring model analogy
(Hadsell et al. (2006)). The margin defines a radius within
which the negative samples contribute to the loss function.
The value of m depends on the distribution of features in the
contrastive classes. We selected empirically m = 0.3. m
corresponds to α parameter in TCR. We used also the
video frame interpolation DAIN Bao et al. (2019) and
image data augmentation to generate more training
examples and robustify the training.

3.3 Choice of Classification Methods
In this section, we describe the classification methods that we
have used to learn the classification model.

K-Nearest Neighbor (KNN) - KNN is a straightforward non-
parametric method for classification where no assumption is
made on the distribution of the data (Duda et al. (2012)). The
decision about each new test sample is made based explicitly
on the training samples. Its simplicity is an advantage of the
method, whereas computational complexity at the test time is
the downside. To classify a new test observation f (oi), we use
Euclidean distance to identify a set of M nearest neighbors in
the feature space. We assign the class label of the majority of
the neighbors to the test sample.

Support Vector Machine (SVM) - we use the multi-class SVM
formulated as one-versus-one classification. The basic SVM is a
two-class classification approach which we explain further. We
will therefore formulate it first for the two-class problem of
terminal reward classification. The SVM uses a linear
discriminant function of the form

y f oi( )( ) � wTϕ f oi( )( ) + b,

where ϕ(f (oi)) denotes a fixed feature-space transformation of
our embedding (e.g. RBF or polynomial) and b is a bias term. The
new sample f (oi) is classified according to the sign of y (f (oi)).
Assumption is that there exists at least one choice of parametersw
and b such that two classes are separable in high-dimensional
space of ϕ(f (oi)): y (f (oi)) > 0 for samples having ci = 1 and y (f
(oi)) < 0 for samples having ci = −1.

To train w and b, the following objective function is used

argmax
w,b

1
‖w‖ min

n
cn wTϕ f on( )( ) + b( )[ ]{ }

It maximizes themargin between two classes, where themargin is
defined by the supporting hyperplanes separating the classes.

This can be transformed into the quadratic programming
problem and solved, for example, with the method of
Lagrangian multipliers (please, see Bishop (2006) for further
details). We used the sklearn3 multi-class implementation.

Random Forest (RF) - RF classification is more robust to the
data intrinsic ambiguities when different output values might be
associated with the same input values. (Criminisi et al. (2012)).
Each tree learns only from a partial set of features and therefore
can learn important cues about the different stages. The random
forest F rf is a collection of decision trees:

F rf � T m
θm
; , m � 1, 2, . . . ,M{ }

θm denotes the parameters of each tree T m. A decision tree is a
special graph structure consisting of a set of questions
hierarchically organized. By answering the question a decision
tree can evaluate a property of a sample or identify its class or
category. Parameters of these questions or rules are the
parameters of a decision tree. Each decision tree in the forest
classifies a sample according to its own rules and based on a sub-
set of training data. During the training, each tree is trained
separately. In our work, given the input feature f (oi), the
classification result produced by the random forest F rf is:

F rf xt( ) � 1
m

∑M
j�1

T j
θj

f oi( )( ) (9)

that is, the output of the random forest is the average of all class
probabilistic predictions produced by the trees.

The training of F rf is performed as following: 1) draw a
bootstrap data Dbs from the training set; 2) grow a classification
tree T m to the bootstrapped data Dbs, fit each tree until the
maximum depth is reached. Each tree T m is trained as following:
1) randomly select n features from the k features (n < k); 2) pick
the best variable split-point among the n; 3) split the node into
two child nodes. Each node of each tree T m in our
implementation is trained by minimizing the Gini impurity.
For any node j and class Ci, pj (Ci) is a fraction of samples at j
that belongs to class Ci. With a total number of classesM, the Gini
impurity in node j is the probability of incorrectly classifying a
randomly chosen element in the dataset:

∑N
i�1

pj Ci( ) 1 − pj Ci( )( ).

4 EXPERIMENTS

The goal of the performed experiments was to explore the
performance of the currently used representations for stage-
based reward evaluation in highly varying weather conditions.
We demonstrate the results for the outdoor pile loading task. At
the beginning of this section, we introduce the set-up details and
task description, including data collection and resulting datasets.
After that we 1) present the results of stage discovery using the
studied visual representations and classification methods; 2) test
the task-specific visual features for terminal stage prediction, and
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3) demonstrate how cumulative reward is computed using the
stage information and perform the qualitative analysis of the
results.

4.1 Set-Up
Wheel-loader - The autonomous scooping was implemented
on a robotic wheel-loader, a so-called GIMmachine. It has the
mechanics of a commercial wheel loader (Avant 635) and
power transmission and controllers are custom-made at
Tampere University. The bucket is positioned in the
vertical plane by two joints, the boom joint and the bucket
joint, and in the horizontal plane by drive (throttle/gas) and
articulated by a frame steering mechanism4. The GIM
machine is equipped with various sensors including, for
example, GNSS (Global Navigation Satellite System), wheel
odometry, IMU (Inertial Measurement Unit), and pressure
sensors.

Vision - We used a ZED stereo camera to get visual feedback.
The ZED camera images of 2560, ×, 720 resolution were captured
at the frame rate of 15fps. The left RGB image was used to
generate the embeddings that are used as features in stage
classification. The experiments were performed at the outdoor
test site (see Figure 4).

The control system - is composed of multiple layers. In the
lowest level (digital and analog I/O and CAN), industrial micro-
controllers implement power management and basic safety
functions. In the PC control level, a target PC runs Simulink
Real-time models, which run real-time tasks such as localization.
Sub-systems communicate low-level sensor data and control
commands via UDP protocol running on a Jetson AGX Xavier
(8-Core ARM v8.2 64-bit NVIDIA Carmel CPU and 512-core
NVIDIA Volta GPU with 64 Tensor Cores) on-board. All the
data collection, learning, and closed-loop control are
implemented on the Jetson PC.

Workflow of experiments - during training, we learn the
models to compute the TRC representations (Sec. 3.2.1), the
sparse terminal reward representations (Sec. 3.2.2), and
classification models (Sec. 3.3). At test time, we follow the
routine in Algorithm 1 which is performed on each sample of
the test data.

Algorithm 1. Visual rewards for sequential tasks: workflow of
experiments at test time.

Performance metric - as a performance measure, we use
classification accuracy in percent:

Accuracy � Number of correct predictions
Total number of predictions

p100% (10)

In our work, the reward is assigned based on the classification
prediction. If the predictions match the ground-truth label of the
sample, they are correct.

4.2 Data
The bucket filling task - Figure 2 demonstrates three stages of the
task: driving up to the pile, filling the bucket, and lifting the boom.
This process takes about 30–60 s for a human operator depending
on the conditions of the ground. We treat this task as an episodic,
long-horizon, sequential task. Since it is a real-world task, there
might be variations in operator performance resulting in noisy
and non-consistent demonstrations. For example, while loading
the pile (stage 2), the operator might still use gas in order to load a
larger amount of load.

Reset to initial conditions - in all our experiments, every
episode starts from the same initial conditions. The bucket is
unloaded; the wheel-loader is driven a certain distance away from
the pile (1–5 m); the boom is placed in a lower position, and the
bucket is leveled with the ground. The process of bringing the
machine to its initial state takes several minutes. In all our
experiments, we automated this procedure by pre-
programming the machine to reach certain joint values using
a state machine algorithm. The distance the machine drives away
from the pile is defined manually.

Datasets - we created three sets of data:

• Dsummer: 70 human demonstrations collected during two
summer days (See examples in Figure 5);

• Dautumn: 25 roll-outs of an RF controller trained in Yang
et al. (2020) (See examples in Figure 6);

• Dwinter: 25 human demonstrations collected during one
snowy winter day (See examples in Figure 7).

All the samples in the dataset are successfully performed
bucket filling demonstrations. The amount of load in different
demonstrations might vary. The collected data includes images
from the ZED camera, joint positions, pressure signals, and
commands. We used the commands produced by the operator
or controller to manually annotate the stages of the task and
whether the terminal condition was reached. In the stage

FIGURE 4 | Robotic set-up at test site.
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identification algorithms as well as representation learning only
visual data was used. Each image was labeled by 1) one of three
classes corresponding to the stage of the process, and 2) by a
binary label belonging to the terminal state or not (-1 or 1)3,4.

4.3 Preliminary Experiments With Manually
Assigned Rewards
In prior work, we attempted the approach by Singh et al. (2019)
where the robot can query a human about the reward for a
given visual observation. A baseline reward was given by a

classification prediction of whether the observed state is a
final successful state. In the original paper, the reward was
queried for states which were predicted to be close to
successful. In our implementation, the user assigned a
reward manually when the robot was proceeding through
the correct stages. Our task had a much longer horizon and
reward classification did not provide a sufficient accuracy rate
due to higher variations in visual observation. We used
DDPG RL algorithm (See Lillicrap et al., 2015). In our
experiment, the robot failed to converge to any solution
within several hours. This experiment motivated us to
study the topic of reward discovery separately.

4.4 Stage-Based Intermediate Reward
This section presents quantitative results of stage discovery for
the pile loading tasks. The TCR representations were trained on
the Dsummer. The HOG and VGG features were selected based on
the Dsummer. We experiment in the following scenarios: 1)

FIGURE 5 | Examples of images from Dsummer.

FIGURE 6 | Examples of images from Dautumn.

3https://scikit-learn.org/stable/modules/svm.html
4Avant 635 is a multi-purpose loader and also used for pallet loading, thus the
boom (manipulator) comes with an extra degree of freedom a telescopic
(prismatic) boom, which is not used in this study since it is not common in
earth moving.
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classificationmethods trained onDsummer and tested on the rest of
the seasons, and 2) classification methods trained on the mixture
of seasons. Scenario 1 has practical importance. In real-world
industrial applications, it is desirable to collect the data once,
develop models based on it, and re-use them. Scenario one tests
this opportunity for visual rewards. We used 2-fold cross-
validation repeated five times in our reporting of testing and
training results, i.e., 50% of data was selected for training and 50%
for testing which was repeated five times.

Scenario 1 - in Table 1 the results of stage discovery is shown
when we merged the labels for stage 2 and 3 into one class. The
results for using three classes were quite unsatisfactory. By
reducing the number of stages (basically discovering whether
the machine is driving to the pile or performing the scooping

action), a more reasonable performance was achieved. The results
suggest that depth and selected deep VGG features provide the
most reliable cues. The results show that the time-contrasting
features overfit training data and performance degrades on
test data.

Scenario 2 - Table 2 contains the results when the training and
testing was done on a mix set of all seasons. We compare the
discovery rate for two- and three-stage labeling. As expected, the
performance improved significantly when the representatives of
all seasons were present in the dataset. Another reason for the
improvement is that the summer data share is highest in the
whole set. However, both depth and selected VGG produced the
highest accuracy of more than 95%. HOG and time-contrastive
representations demonstrate slightly worse performance.
However, the accuracy does not drop significantly between the
training and test sets.

FIGURE 7 | Examples of images from Dwinter.

TABLE 1 | Stage discovery accuracy trained on Dsummer. Two stages. We used
repeated 2-fold cross-validation, i.e., 50% of data was selected for training
and 50% for testing which was repeated five times. Highest accuracy for each
season marked in bold.

Stage discovery accuracy [%]

Tested on

Feature Classifier Dsummer Dautumn Dwinter

HOG KNN 78 50 58
SVM 80 55 55
RF 79 53 59

VGG KNN 88 68 68
SVM 92 62 55
RF 90 63 63

TCR KNN 99 59 43
SVM 99 67 56
RF 99 67 56

Depth KNN 84 61 73
SVM 82 66 67
RF 89 60 60

TABLE 2 | Stage discovery accuracy trained on all seasons. We used repeated
2-fold cross-validation, i.e., 50% of data was selected for training and 50% for
testing which was repeated five times. Highest accuracy for each scenario marked
in bold.

Stage discovery accuracy [%]

Feature Classifier Two stages Three starges

HOG KNN 88 85
SVM 74 64
RF 82 75

VGG KNN 95 93
SVM 96 94
RF 94 91

TCR KNN 85 74
SVM 85 77
RF 77 69

Depth KNN 98 96
SVM 90 68
RF 97 96
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As for the classification methods, there was no significant
difference between the approaches. In most cases, the KNN
and RF classifier demonstrated better performance. Time-
contrastive features overfitted the training data in Scenario
one and demonstrated worse performance in Scenario 2. The
reason for this might be that, compared to prior work
Sermanet et al. (2017a), the view is ego-centric and the

structure of the motion is not observed. A further study
should address combining ego-centric and third-person
views complementing each other.

4.5 Terminal Reward Estimation
In this experiment, we attempted to use the task-specific visual
features previously learned and successfully demonstrated in our

TABLE 3 | Terminal state classification. We used repeated 2-fold cross-validation, i.e., 50% of data was selected for training and 50% for testing which was repeated five
times. Highest accuracy for each scenario marked in bold.

Step-wise accuracy [%]

Trained on summer, tested on Trained on autumn, tested on Trained on winter, tested on Trained
and tested
on mix

Classifier Dsummer Dautumn Dwinter Dsummer Dautumn Dwinter Dsummer Dautumn Dwinter

KNN 98 76 80 78 97 92 74 65 98 95
SVM 85 66 78 82 89 94 81 82 94 84
RF 99 75 90 79 95 92 79 78 97 94

FIGURE 8 | Examples of proposed cumulative reward based on the discovered stages: (A,B) summer, different light conditions, (C,D) winter, different locations.
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behavior cloning experiments (see Yang et al. (2020)). Each image
received a label minus one or one, where one corresponds to task
completion and minus one to the rest. Similarly to the previous
section, we test two scenarios 1) trained only on summer data
Dsummer and tested on two other datasets Dautumn and Dwinter and 2)
trained and tested on a mixed set containing representatives of all
weather conditions. A 2-fold cross-validation repeated five times was
used.Table 3 contains the results of this experiment. In Scenario one
although the performance drops while transferring between seasons,
the average best accuracy for the test seasons was about 83%.
Training and testing on the mixed set of data (Scenario 2)
allowed to improve the results significantly with top accuracy of
95%. When trained and tested on the same season (summer) the
learned feature demonstrates 99% accuracy for the RF classifier.

4.6 Combining the Stage-Based Rewards
For each visual observation oi, we obtain a label ci of the current
stage the machine is performing and a prediction cTi whether the
task has been completed. At each time step, we can sum these
predictions and compute cumulative rewards as a weighted sum
(see Eq. (2)). Figure 8 presents examples of cumulative rewards
for summer and winter scenarios. Despite the noisy stage
prediction, the cumulative reward is not much affected. The
analysis of stage classification is presented in the next
section.

4.7 Qualitative Results and Discussion
In this section, we investigate the stage prediction in detail. Every
subplot in Figures 11–13 contains the stage prediction for the

specified combination of a visual representation and a
classification method. Each subplot presents the results for
each episode in the datasets. The end of each episode
corresponds to the right-most end of the x-axis since the
duration of episodes varies.

4.7.1 Stage-Based Reward
In the following, we discuss the results according to the scenarios
introduced in Section 4.4.

Scenario 1, “training on the summer data” - Figures 9, 10
contain the stage prediction results for the two- and the three-
stage classification task. Qualitatively and quantitatively depth
features combined with KNN provide the highest accuracy
compared to other combinations. Three-stage classification
results in too noisy outputs when training on summer only.
HOG representations, which reflect the geometrical information
in the images, visually perform better than TCR and VGG
representations. TCR representations do not cope with the
task in our settings. This might be because we train them
from scratch on a small set of data. Although we use the data
augmentation technique to increase sample variation, it seems
not to help in the explored task. As for the classification method,
RF and KNN provide similar results, however, RF is more
computationally efficient than KNN.

Scenario 2, “training on the mixed data” - when training is
performed on the mixed set of data (see Figures 11, 12), the
results look significantly better, as expected. The depth and VGG
combined with KNN demonstrate the best performance. HOG
seems still better than TCR.

FIGURE 9 | Stage-based reward plotted for all seasons. Scenario 1: trained on the summer set of data Dsummer, 2 stages. The stages proceed as follows: S1 − >
S2. x-axis stands for the time step in reversed order to match the samples of varying length. Color bar encodes the stages: S1 -gray, S2 - black.
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FIGURE 10 | Stage-based reward plotted for all seasons. Scenario 1: trained on the summer set of data Dsummer, 3 stages. The stages proceed as follows: S1 − >
S2 − > S3. x-axis stands for the time step in reversed order to match the samples of varying length. Color bar encodes the stages: S1 - light gray, S2 - gray, S3 - black.

FIGURE 11 | Stage-based reward plotted for all seasons. Scenario 2: trained on the mixed set of data, 2 stages. The stages proceed as follows: S1 − > S2. x-axis
stands for the time step in reversed order to match the samples of varying length. Color bar encodes the stages: S1 -gray, S2 - black.
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Summary - in our task settings we have only a limited set of
data available. It seems that in such conditions training TCR even
with augmentation does not seem to be feasible. Another

consideration is that previous works demonstrated successful
use of time-contrastive representations in the tasks where the
whole structure of motion was visible in the collected images. And

FIGURE 12 | Stage-based reward plotted for all seasons. Scenario 2: trained on the mixed set of data, 3 stages. The stages proceed as follows: S1 − > S2 − > S3.
x-axis stands for the time step in reversed order to match the samples of varying length. Color bar encodes the stages: S1 - light gray, S2 - gray, S3 - black.

FIGURE 13 | Identification of the terminal stage plotted for all seasons. Upper row: scenario 1 - trained on the summer set of dataDsummer). Lower row: Scenario 2 -
trained on the mixed set of data. x-axis stands for the time step in reversed order to match the samples of varying length. Color bar encodes whether the machine
reached terminal stage or not: non-terminal - gray, terminal - black.
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the representations were learned on the multi-view set of data.
The applicability of such representations to more general settings
had to be investigated. In our work, we attempted also to use
HOG features. This representation demonstrated visually logical
outputs (not just random performance but noisy sequential
output). However, HOG features are rather heavy to compute
at the run time. Depth and VGG demonstrated the best results
which means that in robotics applications it is still better to rely
on physical measurements. The pretrained deep VGG features
seem to be able to capture the distance phenomenon and thus be
closer to the depth performance.

However, three aspects have to be taken into account. 1) The
ground truth labeling by a human might affect the classification
results because in reality there is no clear border between the
stages, and the expert that was marking the data had to make a
decision where to draw a line between the stages. Therefore it
makes sense to look at the qualitative results. 2) The results that
we present do not contain any output filtering or smoothening
which could have been implemented to avoid additional noise in
the output. The noisy output can be also eliminated with a higher
level logic based on, for example, the order of the stages. 3) the
reward learned on the offline set of data shall be improved in
learning online.

4.7.2 Terminal Reward
Figure 13 demonstrates the results of the terminal stage
prediction. With these experiments, we intended to verify
whether the task-specific contrast features (trained for vehicle
control) can be used to detect the terminal stage of the task. When
all seasons are mixed the results look good and provide a high
classification rate. However, when only trained on summer and
tested on the rest of the seasons, the results are not satisfactory. In
this case, the contrastive part of the loss seems to allow us to learn
the invariant part of the visible aspects of the task. The results of
terminal stage classification are more solid compared to stage
classification also because it was easier for the expert to label the
terminal stage of the task - when the task is completed.

5 CONCLUSION

We explored the stage-based reward prediction from a visual
observation implemented for a real-world long-horizon robotic
task. In our set-up, a wheel-loader performs a pile loading task.
The reward is predicted from visual observations. We
experimented with several most common visual
representations used for imitation and reinforcement learning.
In prior work, both the stage-based reward and visual

representations were tested in laboratory conditions. Here we
report the results for the outdoor pile loading task performed
during three seasons.

Our question was whether the visual features and reward
prediction models can be transferred between seasons. The
results suggest that neither of the commonly used visual
representation allows transfer from summer to other
seasons without a loss of performance. The smallest drop
of accuracy was produced with depth features. The best
performance was achieved by mixing the data from all
seasons. In this case, the most reliable results are achieved
with depth and deep pre-selected VGG features. Time-
contrastive features seem not to be efficient when trained
from scratch on a small set of data. They seem to be less
effective when the visual data does not contain a third-person
view reflecting the structure of motion. As for real-world
implementation, one should consider how the training data is
labeled and which combinations of feature/classifier are
computationally feasible to use.

In the future, we plan to investigate the problem of automatic
ground truth generation, for example, by retrospective sensory
data. This problem seems to be the bottleneck for the majority of
current industries except autonomous driving in urban
environments where an abundance of data is available. We
will also study the methods to associate the visual observation
with a map of the observed location rather than just one reward
number. We will explore what form of this cost map is most
suitable for action planning.
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