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Pose estimation in robotics is often achieved using images from known and

purposefully applied markers or fiducials taken by a monocular camera. This

low-cost system architecture can provide accurate and precise pose estimation

measurements. However, to prevent the restriction of robotic movement and

occlusions of features, the fiducial markers are often planar. While numerous

planar fiducials exist, the performance of these markers suffers from pose

ambiguities and loss of precision under frontal observations. These issues are

most prevalent in systems with less-than-ideal specifications such as low-

resolution detectors, low field of view optics, far-range measurements etc. To

mitigate these issues, encoding markers have been proposed in literature.

These markers encode an extra dimension of information in the signal

between marker and sensor, thus increasing the robustness of the pose

solution. In this work, we provide a survey of these encoding markers and

show that existing solutions are complex, require optical elements and are not

scalable. Therefore, we present a novel encoding element based on the

compound eye of insects such as the Mantis. The encoding element

encodes a virtual point in space in its signal without the use of optical

elements. The features provided by the encoding element are

mathematically equivalent to those of a protrusion. Where existing encoding

fiducials require custom software, the projected virtual point can be used with

standard pose solving algorithms. The encoding element is simple, can be

produced using a consumer 3D printer and is fully scalable. The end-to-end

implementation of the encoding element proposed in this work significantly

increases the pose estimation performance of existing planar fiducials, enabling

robust pose estimation for robotic systems.
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1 Introduction

Pose estimation is an essential capability for many robotics systems (Zhou and

Roumeliotis, 2008; Janabi-Sharifi and Marey, 2010; Romero-Ramire et al., 2019; Hietanen

et al., 2021). For the purpose of this paper, pose estimation is defined as the six degree of

freedom (DOF) transformation (i.e., position and orientation) between a sensor and a
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certain reference frame. To determine the 6 DOF pose in a

robotic system, methods such as Simultaneous Localization and

Mapping (SLAM) may be used. In scenarios where additional

robustness is required or these methods are not feasible, a

monocular camera is often used in combination with fiducial

markers (Romero-Ramirez et al., 2018). Fiducial markers provide

known feature correspondences that can be used as input to a

Perspective-n-Point (PnP) solving algorithm. It can be shown

that four co-planar and not co-linear points are sufficient to

provide a unique solution to the PnP problem (Fischler and

Bolles (1981)), thus most fiducial markers provide at least four

distinct features.

In many applications fiducial markers are required to be

planar. This can be due to volume constraints, the need for the

prevention of occlusions or blocking of robotic movement, etc.

Numerous planar markers exist for robotic systems (Kato and

Billinghurst, 1999; Fiala, 2005; Olson, 2011; Garrido-Jurado et al.,

2014). These markers are easy to produce, provide scalability and

have low complexity. However, their performance suffers from

pose ambiguities and loss of precision or jitter under frontal

observations. While some attempts have been made to mitigate

these issues in planar fiducials by providing better localisation of

features, these markers still suffer from pose ambiguities

(Benligiray et al., 2019). Both pose ambiguity and loss of

precision under frontal observations affect the end-to-end

performance of the pose estimation system and can cause

failure of the pose solution. Both these issues are more severe

under the influence of noise on the feature point locations.

A geometric representation of pose ambiguity is shown in

Figure 1. When only the depicted co-planar features are provided

as input to the PnP algorithm, both the pose depicted in green as

well as the pose depicted in red is mathematically a valid solution.

However, only one of the two poses can be correct in a physical

sense. Pose ambiguities exist in many use cases, even including

systems utilising cameras with large field of view (FOV) at close

range (Schweighofer and Pinz, 2006). If the pose solution is

found by minimising some error function, this ambiguity

expresses itself in the existence of up to two local minima in

the error function. With increasing noise on the system input

(e.g., due to increasing distance between camera and target) the

mathematical difference between the correct pose and its

ambiguous counterpart decreases, thus increasing the severity

of the pose ambiguity problem (Jin et al., 2017). Algorithms have

been proposed that iteratively find both minima and use an error

function to estimate which of the solutions corresponds to the

global minimum (Schweighofer and Pinz, 2006; Oberkampf et al.,

1996). However, this approach can still cause problems if the

absolute values of the minima are closely together due to weak

perspective projection effects or noisy measurements.

In addition to pose ambiguity, the pose solution under frontal

observations of planar markers is subject to performance loss due

to the lack of perspective projective effects (Abawi et al., 2004;

Uematsu and Saito, 2007; Kalaitzakis et al., 2021). Since the

perspective projections of two distinct but both frontal poses of

planar features are similar and measurements are non-ideal

(i.e., include positional noise of feature points on the image

plane), the found pose solution is likely to be the same. Due to the

lack of a distinct signal from the fiducial marker, this cannot be

mitigated by algorithmic improvements.

To solve these issues, encoding markers have been proposed.

As defined by Bruckstein et al. (2000), these markers directly

encode pose information in terms of grayscale, color or temporal

signals. This definition is extended here to include markers that

encode pose information using a “spatial” signal e.g., a feature

that has a variable position on the image plane of the chaser

sensor dependant on relative pose. Thus, the definition of an

encoding fiducial is: Fiducial markers whose appearance changes

beyond perspective effects with the relative pose of the viewer with

respect to the marker.

Research into encoding fiducials has been limited. In a

1979 patent by Bergkvist. (1979), a device was proposed that

provides relative navigation information usingMoiré patterns. In

a 1984 patent by (Kunkel, 1987), a fiducial that utilises the

shadow caused by an illuminating element on the viewer was

proposed. A set of reference points on the base of the extended

element allowed for pose determination by the viewer by the

looking at the extension of the shadow, similar to a sundial. A

number of unpowered encoding elements were proposed by

Bruckstein et al. (2000). The proposed fiducials include a

fiducial with serrated surfaces that appear to change

“grayness” based on the viewing angle, a sundial inspired

fiducial and a fiducial based on the compound eye of insects

such as the Mantis.

A range of different versions of encoding elements utilising

lenticular lenses were proposed since 2012 in Tanaka et al.

(2012a); Tanaka et al. (2014); Tanaka et al. (2017). These

encoding elements utilise an array of lenses on a stripe

FIGURE 1
Pose ambiguity in planar feature points.
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pattern, producing the effect of a travelling stripe with respect to

relative pose of the viewer. The encoding elements solve the

problem of pose ambiguity as well as the problem of planar

fiducials with respect to the loss of precision in frontal

observation. However, these elements only enable retroactive

pose correction after the application of a PnP algorithm,

increasing the pose estimation algorithmic complexity.

In addition, Tanaka et al. (2012b, 2013) published a fiducial

design based on an array of microlenses. This encoding element

has a moving cross in two dimensions. Similar to the lenticular

lens fiducial, the encoding elements of this fiducial only enable

retroactive pose correction.

A coloured pattern in conjunction with lenticular lenses to

create a fiducial element that changes colour based on the relative

pose of the viewer was proposed (Schillebeeckx et al., 2015;

Schillebeeckx and Pless, 2015). A similar design was patented

by Larsen (2014). Due to the encoding of the relative pose in

colour instead of a moving element the required surface area for

the encoding element is relatively small. However, the authors

report a slightly lower performance with respect to the Tanaka

et al. lenticular lens based marker. In addition, the use of colour

as encoding element can be challenging in many illumination

conditions. Furthermore, Schillebeeckx and Pless (2016)

proposed an encoding element that hashes the relative pose of

the viewer using an array of microlenses and a bit pattern

underneath the lenses. The authors claim similar performance

to existing encoding markers.

While the performance of pose estimation systems using

planar fiducial markers can be greatly improved by encoding

additional information in the fiducial signal, current encoding

fiducials are complex and make use of optical elements such as

lenses. To the knowledge of the authors of this paper, no work has

been published on an encoding planar fiducial without such

optical elements. Furthermore, current encoding fiducials require

custom pose estimation software beyond PnP algorithms to

correct the found pose solution with the encoded information.

Considering these observations, we present a passive, planar

encoding element that requires no optical elements and encodes

virtual points behind the plane of the fiducial in its signal. We

define a virtual point as a point in space for which a fiducial

provides features to the viewer, without physically extending to

that point. Rather than post-processing the found relative pose

with the encoded information, our system is able to directly

utilise the encoded additional information in a PnP solver.

Furthermore, our encoding element solves both the issue of

pose ambiguity and loss of precision under frontal

observations. We verify the performance increase our

encoding element provides to existing planar fiducials using

virtually generated data and qualitatively validate our system

using experimentally acquired data. While we test our encoding

element in combination with an ArUco marker, our encoding

element works in principle with any planar fiducial. Therefore,

the contribution of the work presented here is not an end-to-end

fiducial, but rather an encoding element that aims to improve the

performance existing planar fiducials.

2 Materials and methods

In this section, we present our encoding element design and

end-to-end fiducial marker system design. In addition, we

present our software pipeline for pose estimation using our

encoding element. We also show the experimental setups of

both the virtual and physical experiment used to evaluate the

performance of our fiducial marker and qualitatively validate our

system.

2.1 Novel encoding element

As stated above, Bruckstein et al. (2000) proposed a fiducial

based on the compound eye of a praying Mantis. A schematic of

the compound eye is shown in Figure 2. A Mantis eye has an

apparently moving black spot which follows the viewer, called a

pseudopupil. While the pupil moves with relation to the relative

pose of the viewer, there is no physical movement of a pupil in the

eye of the insect. The apparent movement is caused by the

geometry of the eye, which consists of long cylinders called

ommatidia. Only in the ommatidia that are viewed in line

with the line of sight of the viewer, the bottom of the

ommatidia can be seen. Since this bottom absorbs light, no

light is reflected to the viewer direction causing the black spot

(Zeil and Al-Mutairi, 1996).

The idea of using a similar principle is interesting for pose

estimation fiducials: the Mantis eye encodes relative pose

information in a small form factor. However, the concept as

proposed by Bruckstein et al. is complex and non-passive. The

authors propose the use of a light source at the centre of the

fiducial and optical elements that allow only certain wavelengths

of light to pass, making the fiducial change colour when

perceived from different relative angles. Apart from

complexity, this proposal does not allow for scaleability. In

addition, the use of colour as encoding medium is not feasible

in many applications.

Thus, a different approach is chosen. Instead of using colour

as the encoding medium, it is for many applications more

beneficial to use a spatial signal to encode pose information

(especially applications with adverse or unpredictable

illumination conditions). Realising this, it is also necessary to

flatten and elongate the “eye”. Since the information will be

encoded in a spatial signal, there needs to be enough resolution

on the image plane to do so which causes the need for an

elongated marker. Furthermore, the design of the Mantis eye

as it appears in nature is inverted: the encoding element has a

reflective element at the bottom of an ommatidium and

absorbing elements around the edges. This produces a
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reflective pseudopupil that appears on a black background. As an

added benefit, it removes the need for any optical or active

components on the encoding element. However, an additional

requirement is imposed on the viewer: an illumination source

parallel to the viewing direction should be applied to ensure

proper illumination of the reflective ommatidium bottom.

The design of the encoding element is shown in Figure 3.

Based on the eye of a praying Mantis, it is a flat and one-

dimensional interpretation of the insect eye. The encoding

element does not use any optical element such as lenses, is

scalable and can be made as a single part. When viewed with

appropriate illumination from the viewing direction, a

“pseudopupil” or blob encodes pose information by its

centroid position on the encoding element.

Since the element encodes an actual point in space, the

projection of this point on the element’s plane and subsequent

projection on the image plane is equivalent to the projection of

an actual point at the physical location of the virtual point.

This is shown in Figure 4. In other words, our encoding

element is equivalent to using a protrusion. The virtual

point can directly be used as a point in space in the PnP

algorithm. This is opposed to current encoding fiducials,

which retroactively correct the calculated pose by using an

approximation function of the encoding signal with respect to

the relative pose.

2.2 Encoding element design parameters

The FOV of the encoding element is dependant on several

tuneable design parameters. To highlight some of the tradeoffs

that are present in choosing the appropriate dimensions of the

encoding element, some geometric parameters are developed

into equations for the marker FOV here.

In general, with a larger distance between the virtual point

and the plane of the encoding element (denoted by Vd in

Figure 5), the “resolution” of the encoding element increases.

In other words, the distance travelled by the blob on the image

plane per degree is increased with an increased Vd. However,

increasing this distance comes at a penalty of a lower FOV of the

encoding element.

The FOV can be expressed as a function of the width w of the

encoding element and the depth of the virtual point Vd. This can

be expressed as follows:

FIGURE 2
Schematic representation of the compound eye of a Mantis. The black pupil is only visible through the ommatidia that are aligned with the
viewer. Based on Bruckstein et al. (2000).

FIGURE 3
Design drawing showing the virtual point projected by the encoding element. The virtual point is placed off-centre, to increase the FOV of the
fiducial marker implementation.
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FOV � tan−1
w

Vd
( ) (1)

Note that in the equation above, a margin should be taken

from the FOV in order to account for some distance from the

edge of the marker where blob cutoff occurs. In the encoding

elements presented here, the virtual point has been moved

from the centre of the marker. This has been done to make

the FOV asymmetrical, which allows overlap between the

FOV of the two parallel encoding elements. This increases

the overall FOV of the entire encoding marker system. Now

the equation for the FOV of a single encoding element

becomes:

FOV � tan−1
d

Vd
( ) + tan−1

w − d

Vd
( ) (2)

For the current configuration, d = 0.25w and Vd = 2d. This

gives the entire encoding element a FOV of 82.9°. It is estimated

that the lateral FOV is around 100° in the current configuration.

Combining these rotations gives an expression of the FOV of

an encoding element as a function of pitch and yaw:

1 � ψ2

FOV2
lat

+ θ2

FOV2
long

(3)

Where ψ is the yaw defined in the lateral direction of the

encoding element and θ is the pitch defined in the longitudinal

direction of the encoding element. In this case. FOVlong is the

longitudinal FOV of the particular side of the encoding element

where the FOV is calculated.

2.3 End-to-end encoding fiducial marker

Since additional feature points are required to provide a

6 degree of freedom pose estimate, the encoding element

requires additional features. Furthermore, a fiducial for

monocular pose estimation should be uniquely identifiable.

To this end, existing fiducials use bit patterns to encode an

unique identity for each marker. For our current

implementation, we add an ArUco marker (Garrido-Jurado

et al., 2014) to provide the bit pattern and the additional feature

points required, as shown in Figure 6A. The ArUco marker was

chosen since it is a representative and widely used marker. It

should be noted that our marker design is not limited to the

ArUco, any bit pattern with at least 4 co-planar feature points

could be applied. Our end-to-end fiducial prototype is

appropriately named the Mantis Marker.

Each Mantis Marker consists of four encoding elements

in addition to the ArUco marker. Two encoding elements

make up a virtual point in three-dimensional space. By

FIGURE 4
Working principle of the virtual point. The encoding element projects a physical location in space at depth on the image plane without requiring
an actual protrusion to that location.

FIGURE 5
Schematic representation for the FOV calculation of an
encoding element.
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placing the virtual points of the encoding markers off-centre

(as shown in Figure 3) and using 4 markers, the overall FOV

of the marker is increased due to overlapping angular reach.

With this design, a total of four virtual points (equal to the

number of possible combinations of the two horizontal and

vertical elements) are added to the four features of the ArUco

marker.

The encoding elements of the Mantis Marker prototype

were produced using a consumer grade 3D printer. A set of

elements produced using such a printer is shown in

Figure 6B. The dimensions of the prototype are driven by

the resolution of the 3D printer. Alternatively, the simple

geometry of the encoding element allows for other

production techniques such as milling which could allow

smaller dimensions.

2.4 Software

A fiducial marker system requires a feature extraction

function and a pose estimation function to convert the input

of the system (the fiducial image) to the output (the relative

pose). The algorithmic steps of the fiducial marker system can be

summarised as follows:

1. Find square fiducial and utilise bit pattern to identify fiducial

2. Extract co-planar features (corners)

3. Utilise relative location of corners and perspective projection

to generate mask for each encoding element

4. Attempt blob detection for each encoding elements

5. Verify found blobs inertia, area and relative location to

element edge

6. Calculate virtual point coordinates

7. Pass found feature locations (co-planar corners and virtual

point) in image frame and world frame to PnP solver

8. Find relative pose

Since our prototype utilises the ArUco marker, its features

are readily extracted from the input image. The ArUco corners

for both the standalone marker as well as the Mantis Marker are

refined using the Apriltag 2 approach detailed in Wang and

Olson (2016). This increases the performance of the planar

fiducial as well as the Mantis Marker and is therefore a more

accurate representation of the state of the art pose estimation

performance. Once the ArUco features are extracted by the

fiducial’s feature extraction software, the blobs produced by

the encoding elements need to be extracted. These blobs

encode the location of the virtual point on the image plane.

Using the relative location and perspective projection of the

ArUco marker with respect to the encoding elements, a mask is

generated for each encoding element starting with the top

element and moving clockwise. For each encoding element, a

Gaussian blur is applied to the mask to smooth out noise and a

blob detection algorithm is applied. The detected blobs are

verified to comply with the expected area and inertia. Next,

the blob centroids are verified to be located far enough from the

edge of the encoding element, to prevent blob cutoff and

FIGURE 6
End-to-end implementation of the proposed encoding element in a fiducial marker. (A) Render of ArUco with additional proposed encoding
elements. (B) 3D printed encoding elements (C) Output of feature extraction. Note that the bottom blob fails our verification step due to close
proximity to the edge of the marker, thus both virtual points on the left are not passed to the pose estimation block.

FIGURE 7
Sample of test images at ranges of 1.3, 2.3 and 3.3 m.
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subsequent loss of precision (LeCroy et al., 2007). If a blob fails

verification, a zero is passed to the pose estimation algorithm. If a

blob is verified successfully, the horizontal and vertical

coordinates of the blob on the image plane are passed.

The location of the blobs on the image plane is found directly

from the blob detection algorithm. However, since each encoding

element encodes one-dimensional information (each blob can

only move in a straight line), the coordinates of a blob on the

image plane are only sufficient to encode a single coordinate of a

virtual point. Hence, the blob coordinates from two

perpendicular encoding elements encode a virtual point.

In order to calculate the coordinates of a virtual point on the

image plane, first the slope of the ArUco sides is calculated. Next,

the following equations are applied for the virtual points for

which the respective blobs were found:

vi � avpui + bj (4)

vj � ahpuj + bj (5)
bi � vi − avpui( ) (6)
bj � vj − ahpuj( ) (7)

uv
k �

bi − bj
ah − av

(8)
vvk � avpu

v
k + bi (9)

where i � 1, 3 and j � 2, 4 and k � 1, 2, 3, 4 (10)
Where un and vn are the horizontal and vertical coordinates of

the nth blob in the image frame in pixels, av and ah are calculated

vertical and horizontal slopes of the ArUco, bn is the y axis

intercept of the line parallel to the relevant ArUco slope and

crossing the blob centroid and uvk and vvk are the horizontal and

vertical coordinates of the kth virtual point. The output of this

calculation are the virtual point coordinates on the image plane.

The output of the feature extraction software is shown in

Figure 6C.

The pose estimation software takes as input the found points

in the image frame (both virtual points and fiducial corner

points), the dimensions of the ArUco as well as the location

of the virtual points in the world frame (which are a function of

the encoding element dimensions). Finally, the camera intrinsics

of the calibrated camera are passed as input. The intrinsics can be

found in a calibration procedure using an approach proposed by

Zhang (2000). This approach can be summarised as taking a

range of images at different relative poses using a “chessboard”

i.e., a plane with a number of alternating black and white squares.

Using an initial guess of the intrinsic parameters found by finding

the homography between the chessboard and its image, the

intrinsics are found by iterating until the reprojection error

reaches a certain threshold.

FIGURE 8
Test setup for the validation experiment. To the left, the
robotic arm with the attached camera and illumination system is
shown. In the centre, the mockup of a spacecraft with the applied
Mantis Marker is visible. On the right the spotlight is visible.
Note that during testing the illumination environment is
controlled, not shown here.

FIGURE 9
LED mount as applied to the camera.

TABLE 1 Prosilica GT4096 NIR specifications [Allied Vision (2021)].

Parameter Value Unit

Resolution 4,096 × 4,096 Pixels

Sensor type CMOS —

Sensor size Type APS-H —

Pixel size 4.5 × 4.5 μm

Temporal dark noise 28.2 electrons

Max. frame rate at full resolution 7.18 fps
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Any non-planar PnP solver can be used in combination with

the proposed fiducial. For the experiments performed, a solver is

used which initialises a pose solution using homography and a

subsequently optimises the pose using a Levenberg-Marquardt

optimisation.

2.5 Performance benchmarking and
system validation

To benchmark the performance of the Mantis Marker and its

software, a dataset was generated using 3D modelling software.

Where historical encoding fiducials are difficult to model due to

the use of optical elements, the ommatidia of the Mantis Marker

can be modelled accurately. In addition, a physical experiment

was performed. The goal of the performed physical experiment is

to validate the marker system in a real-life scenario and to

validate the created virtual dataset.

2.5.1 Virtual experimental setup
The Mantis Marker with ArUco implementation and an

ArUco fiducial with identical dimensions (2.5 × 2.5 cm) were

tested at a distance of 1.3, 2.3 and 3.3 m. The virtual points

were located at a distance of 6.25 mm from the fiducial plane.

A sample of the generated images is shown in Figure 7. For

each distance and for both markers, 900 images were

generated at a rotational range around the pitch axis,

from −45 to 45°, stepwise incremented by 0.1° per image.

i.e., we generated a total of 5,400 virtual images for our

experiments.

For the virtual experiments, a Blender model was used.

Blender is a free and open-source “3D creation software

suite” (The Blender software can be found at: https://www.

blender.org/). It allows for the rendering of images using ray

tracing, thus enabling the testing of fiducials to a degree of

realism.

The virtual dataset is generated using a detector with a

resolution of 720 × 480 pixels. The camera has an FOV of

7.4° horizontal and the simulated detector dimensions are

4.512 × 4.988 mm. For each dataset generation, the CAD

design of the encoding element was loaded into a mock-up of

the complete fiducial (including an ArUco marker). Due to the

required viewer-centred illumination, a virtual spotlight was

programmed to coincide with the camera principal point and

imaging direction.

Blender is scriptable in the Python programming language,

and a script was implemented that automatically takes a range of

images for set fiducial orientations and relative positions. For

each image in the test dataset, the ground truth for the relative

pose was saved.

2.5.2 Validation experimental setup
The Mantis Marker was additionally tested in a relative

navigation scenario for spacecraft at the Orbital Robotics and

GNC Lab (ORGL) at ESA ESTEC. Zwick et al. (2018)

extensively describe the capabilities of the lab. A ceiling

mounted robotic arm was used to precisely control the

relative movement of the camera with respect to the Mantis

Marker. This experiment was intended for the qualitative

validation of the system in a challenging relative navigation

environment.

The test setup (shown in Figure 8) consists of a camera

attached to the end effector of the ceiling-mounted robotic arm,

configured in an open-loop system integration. To this camera is

an illumination system attached which illuminates the target. A

20 × 20 cm prototype of the Mantis Marker was manufactured

using 3D printing. A mock-up of Envisat was used to mimic

typical shapes and reflections present around a fiducial target on

a spacecraft. All results were recorded using Simulink.

A camera trajectory was used that consisted of three 180°

passes of the fiducial marker at different heights to simulate a

range of combined pitch and yaw rotations. Each pass is

FIGURE 10
Image scaling to enable Blender model validation.
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performed two-way, in total six one-way passes are made for a

single run.

The detector that was used for the experiments is the

Prosilica GT4096 NIR from Allied Vision. (2021). This is a

monochrome detector that is able to capture a spectrum of

light including near-infrared. Its key specifications are listed in

Table 1. Attached to this detector is the Canon EF 24–70 mm f/4L

IS USM lens. This is a zoom lens with variable focal length and

adaptable focus. For the used focal length of f = 24 mm, the FOV

is 42.01 deg.

A custom illumination system was made to illuminate the

target (shown in Figure 9). This illumination system consists of

3 clusters of LEDs with a half angle of 12°. The LEDs are powered

by a current limited power supply and mounted using a custom-

designed and 3D printed camera mount. To this mount, active

cooling is applied using fans.

Since the camera records data at very high resolution and the

distance between camera and marker is small, the internal planar

fiducial causes no failure of the pose solution for the taken data.

In order to provide a comparison of data to the virtual dataset,

the image needs to be scaled down to be representative of the

virtual data.

To do so the image is scaled down and padding is added by

repeating the outer pixel values to have the fiducial be of

comparable size relative to the images generated by the Blender

model. Next, the resolution is strongly reduced to match the

resolution of the virtual dataset. Finally, the camera intrinsics

are scaled according to the new image resolution and virtual pixel

size. An example of the generated data is shown in Figure 10.

3 Results

The experimental results for the virtual experiments are

shown in Figure 11. At a range of 3.3 m the Mantis Marker

greatly outperforms the ArUco marker in terms of pose stability

as well as accuracy under frontal observations. The ArUco

marker system is unable to distinguish any pose

between −10 and 10° pitch due to lacking perspective effects.

Furthermore, the ArUco marker system suffers from many pitch

solution flips due to pose ambiguity. This behaviour is not

observed in the Mantis Marker.

A lack of pose solutions for the Mantis Marker for

measurements above a positive yaw of 38° is observed.

Notably, the ArUco solutions for this pitch range also oscillate

severely. It appears that the ArUco marker used in this particular

setup has a asymmetry in the detectability of the encoding bit

pattern. At the very limit of the experimental domain in terms of

range and attitude the reduced size of the internal ArUco of the

Mantis Marker with respect to the benchmark ArUco, causes the

feature extraction software to be unable to find the marker.

At 2.3 m, the ArUco marker also suffers from pose ambiguity

as well as reduced precision in frontal observations and no

FIGURE 11
Performance evaluation results of virtual experiment. Shown
are the pitch measurement vs. pitch ground truth at 3.3, 2.3 and
1.3 m, respectively. For these measurements, the fiducial was only
rotated along the pitch axis. In the bottom graph, range error
vs. pitch ground truth at 3.3 m is shown.
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significant change is measured with respect to the 3.3 m range.

The Mantis Marker has a small number of pose jumps, where the

error is equivalent to the error of the ArUco marker in terms of

pitch while the range error is large. In these rare cases, the

pipeline is unable to find any blobs.

The ArUco solution at 1.3 m is much improved in stability

with respect to the measurement distance of 2.3 m. However, the

Mantis Marker still shows more stability for pitch measurements.

Especially under frontal observations, the ArUco relative pose

solution remains with inaccurate.

Notably, the range estimation error of the ArUco marker

with respect to the Mantis Marker is significantly lower and

more stable, also shown in Figure 11. This is due to the design

of our Mantis Marker prototype: the internal ArUco marker in

our design provides smaller planar features with respect to the

reference ArUco marker due to its reduced size. This can be

solved by a design improvement, namely using the corners of

the complete marker as feature points in the PnP, therefore

effectively increasing the Mantis Marker feature points to the

same dimensions as those of the ArUco. This would limit the

amount of available bit patterns for marker identification,

which is not an issue for applications where an encoding

element is required to improve pose estimation performance.

In these applications, the number of available markers is

inherently limited. As an added benefit of this design

improvement, the relative pose estimation performance of

the Mantis Marker with respect to the benchmark ArUco

would increase.

The internal ArUco marker performance was compared to

the performance of the same marker including the virtual points

provided by the encoding elements in the validation experiment.

This result is shown in Figure 12. The ArUco without virtual

points shows a loss of precision under frontal observations as well

as pose ambiguities while the pose solution found using the

virtual points is stable. This result validates the virtual model, as

well as the application of the Mantis Marker in a real-world

scenario.

In both the virtual performance measurements as well as the

validation experiments, a failure mode of the Mantis Marker as

observed caused by the wrongful detection of the ArUco corners.

This failure mode was observed to be most prevalent at close

range and frontal observations. In Figure 13A, the failure mode is

shown. The green border around the ArUco marker should be

located around the inner corner of the marker, not at the outside

corners. The cause for this failure mode was identified to be an

ambiguous corner refinement.

Ambiguous corner refinement occurs when the feature

extraction method comes across an ambiguous corner

detection. This can be caused by two distinct factors:

illumination conditions and marker design. In our

experimental setup, faulty corner detection was most

prevalent in frontal observation where strong illumination

causes the correct corner candidates to be less pronounced.

Secondly, in the tested prototype a small gap was present

between the border around the ArUco marker and the border

around the Mantis Marker. At close range, this can cause

FIGURE 12
Result of validation experimental run using a robotic arm. The ArUco marker without encoding element shows both loss of precision in frontal
observations and pose ambiguity, similar to the created virtual dataset.
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ambiguous corner detection due to the search window of the

corner detection algorithm including two corners, as depicted

in Figure 13B. This effect was also described in Deom et al.

(2019). Normally, this becomes more prevalent at larger range

where the search window is proportionally larger than the

edges of the marker. However, in the case of the used test

setup, the gap was too small to be distinguished by the feature

extraction pipeline at the medium and long range. Ambiguous

corner detection has a consequence of a major loss of accuracy

of the pose estimation. Both range and orientation can become

distorted and the failure mode causes the Mantis Marker to be

undetectable in nearly all cases since the relative location is

faulty. The mitigation of this failure mode is straightforward:

if an ArUco is used as primary marker in future work, this

marker should include a wider border around its edges. In

addition, the white border around the encoding elements can

be removed if only the relative location of the encoding

element with respect to the ArUco corners is used in the

feature extraction pipeline.

The deficiencies in the end-to-end prototype implementation

of our encoding element presented here aim to inform the reader

on implementation considerations for our encoding element.

When adding our encoding element to existing planar fiducials,

the design improvements proposed here should be taken into

account. We have rendered the proposed design improvements

in Figure 14.

FIGURE 13
(A) Faulty corner detection of ArUcomarker in validation and virtual experimental data. A green border can be seen around the outside edges of
the white border around the ArUco marker. This border should be present at the inner edges. (B) Corner ambiguity in the corner detection of the
ArUco marker. The central pixel is the first estimation of the detected corner, with the red window being the search area. In the left image, no
ambiguity is present since only one corner is in the search window. In the right image, the search window includes two corners and is thus
ambiguous. Illustration based on Deom et al. (2019).
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4 Discussion

With the combination of these results, it can be concluded

that the proposed encoding element greatly improves the attitude

estimation of planar fiducials. The element prevents pose

ambiguity as well as precision loss under frontal observations.

Furthermore, the end-to-end implementation of our encoding

element with an ArUco marker outperforms a standard ArUco

marker in attitude estimation. At larger ranges, the relative

performance increase of the Mantis Marker with respect to

the ArUco is larger due to the increased likelihood of pose

ambiguity.

The contribution of this work is not the Mantis Marker itself,

but the demonstration of encoding virtual points in a fiducial

signal. By keeping the relative marker dimensions between the

planar ArUco and the ArUco with encoding elements constant

and comparing the relative performance, the principle and

benefits of virtual point encoding were proven. We claim that

these encoding elements could be used with any currently

existing planar fiducial, thus providing a low-cost and simple

method for increasing the pose estimation performance of

systems that use these markers.

Since the magnitude of the increase in performance is

dependant on many factors (such as fiducial size, viewing

range, illumination conditions, camera parameters, etc.) the

investigation of the performance increase was limited to the

ArUco marker in this paper. We believe that this investigation

should be performed on a system by system basis, taking into

account the specific application environment of a particular end-

to-end system. Such an investigation would not only concern the

fiducial itself, but also e.g., the camera and illumination

conditions.

In application areas where pose ambiguity or lack of

precision in frontal observation is likely to occur due to a lack

of perspective effects, the addition of our encoding element to an

existing planar fiducial provides a significant performance

increase. The application area is systems with e.g., low FOV,

small marker size, low resolution detector, large range, limited

available surface area etc. The encoding of virtual points in a

fiducial signal is not a one-size-fits-all solution but will provide

significant benefit to a range of fiducial-based relative navigation

systems that are applied in constrained environments.

The end-to-end fiducial in the presented configuration has an

applicable angle of view of around 45° under rotation around a

single axis (pitch or yaw). Under combined rotation of pitch and

yaw, this angle of view is reduced to around 32°. Depending on

the application, this can be adapted by changing the depth of the

virtual point with respect to the fiducial plane. Furthermore,

under increased rotations the perspective effects of the ArUco are

increased reducing the necessity for an encoding element.

Two design considerations that should be taken into

account when including the proposed encoding element in

an end-to-end fiducial system were identified. Firstly, the

corner features of the end-to-end fiducial should be used in

the PnP solution instead of the embedded ArUco corners. This

increases the range performance of the fiducial. Furthermore,

the white border around the inner ArUco marker should be

increased to prevent faulty corner detection. A custom bit

pattern and planar feature extraction may solve these issues by

removing the ArUco from the end-to-end implementation. In

addition, while the encoding element is 3D printable, on

consumer printers this yields relatively large encoding

elements due to limited printer resolution. In future work,

additional manufacturing methods should be investigated to

reduce the fiducial size. Alternatively, the number of

ommatidia may be reduced to shrink the printable

encoding element size.

To conclude, the encoding element presented in this work

encodes additional pose information by a moving blob that

represents a projection on the fiducial plane of a virtual point

behind the fiducial plane. To the best knowledge of the authors,

our encoding element is the only encoding fiducial from which

the signal can directly be used in a classical PnP solving

algorithm. Furthermore, the proposed encoding element is

scalable and can be adapted to be used with any planar

fiducial. The element provides a low-cost, scalable solution for

systems requiring planar but high performance fiducial markers

in constrained environments.

FIGURE 14
Proposed design improvements for implementation of our
encoding element. The white borders of the encoding elements
are removed. In addition, the corners of the end-to-end fiducial
should be used as features for input to the PnP (indicated by
the green markers), instead of the internal ArUco corners
(indicated by the red markers) as is the case in the current
implementation. This will increase the range performance of a
marker that utilises our encoding elements.
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