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While exploring complex unmapped spaces is a persistent challenge for robots, plants are
able to reliably accomplish this task. In this work we develop branching robots that deploy
through an eversion process that mimics key features of plant growth (i.e., apical
extension, branching). We show that by optimizing the design of these robots, we can
successfully traverse complex terrain even in unseen instances of an environment. By
simulating robot growth through a set of known training maps and evaluating performance
with a reward heuristic specific to the intended application (i.e., exploration, anchoring), we
optimized robot designs with a particle swarm algorithm. We show these optimization
efforts transfer from training on known maps to performance on unseen maps in the same
type of environment, and that the resulting designs are specialized to the environment used
in training. Furthermore, we fabricated several optimized branching everting robot designs
and demonstrated key aspects of their performance in hardware. Our branching designs
replicated three properties found in nature: anchoring, coverage, and reachability. The
branching designs were able to reach 25% more of a given space than non-branching
robots, improved anchoring forces by 12.55×, and were able to hold greater than 100×
their own mass (i.e., a device weighing 5 g held 575 g). We also demonstrated anchoring
with a robot that held a load of over 66.7 N at an internal pressure of 50 kPa. These results
show the promise of using branching vine robots for traversing complex and unmapped
terrain.
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1 INTRODUCTION

Robotic exploration of unfamiliar environments is a fundamental problemmade more difficult when
the terrain impedes the use of traditional wheeled, legged, or flying robots. Relevant examples include
collapsed buildings for search-and-rescue applications (Davids, 2002), coral reef cavities for
ecological monitoring (Luong et al., 2019), cave networks for mining or rescue tasks (Parcheta
et al., 2016; Ebadi et al., 2020), shipwrecks for archaeological surveys (Ballard et al., 2002), and the
human body during medical interventions (Berthet-Rayne et al., 2021; Li et al., 2021). Many of these
environments are characterized by tight spaces, further complicating the task of exploration by
precluding the use of onboard energy storage and motivating tethered designs. Challenges of data
transmission over long distances and through certain media further push systems towards the use of
tethers (Otsu et al., 2020). However, tethers limit mobility and can generate significant friction due to
the capstan effect (Blumenschein et al., 2017). Tethers can significantly limit the exploration of
confined spaces since the force from this friction grows exponentially with the total change in angle
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along the tether (which, in general, is a function of the geometric
complexity of the environment). Another challenge of navigating
these environments is the non-planar nature of many of the
spaces. Wheeled or legged robots that are constrained by gravity
may face impassable obstacles (Krotkov et al., 2017). Flight offers
a potential solution, but is energy intensive and generally only
works in relatively large spaces (Sabet et al., 2019). Finally, the
exploration of these constrained and unmapped environments
often leads to physical interactions between the robot and the
environment that can result in damage to the robot, the
environment, or both.

Recently, there has been great interest in soft growing robots
that address many of the challenges that complicate the
exploration of these environments (Coad et al., 2019). Robotic
systems capable of growth have been realized most notably
through the pressure driven eversion of flexible tubes (called
vine robots or eversion robots) (Hawkes et al., 2017), extension of
concentric tubes (Morimoto and Okamura, 2016), or the additive
extrusion of a thermoplastic (Sadeghi et al., 2017). By growing the
robot at the distal tip, these growth processes remove the relative
motion between the robot body and environment, which can
greatly reduce friction (Hawkes et al., 2017). In particular, vine
robots are able to leverage their compliance to conform to
complex pathways without active steering. With reduced
friction, vine robots can penetrate further into confined spaces
enabling the ability to deploy to long lengths (1–10 m) without

concerns regarding power and data transmission (Hawkes et al.,
2017). Another key advantage of growing robots is the self-
supporting nature of their deployed structures (Wang et al.,
2020; Blumenschein et al., 2021). Since the grown structure
supports new material deployed at the tip of the robot, the
new growth can be directed freely in 3-D space within limits
defined by steering and payload capabilities (Greer et al., 2019).
This 3-D mobility gives growing robots the ability to follow
complex pathways and avoid obstacles. Finally, soft growing
robots are not hindered and are even aided by rich
interactions with the environment (Greer et al., 2020).
Structural compliance seen in soft robots allows for adaptation
to irregular features that would otherwise hinder rigid systems.
Due to their compliance, both the robot and environment are
unlikely to be harmed by interaction (Polygerinos et al., 2017;
Haggerty et al., 2019). Furthermore, these environmental
interactions are helpful for soft growing robots, aiding with
navigation (Greer et al., 2020), and helping to support the
deployed structure and increase payload capacity (Luong et al.,
2019). By contrast, most mobile robots must conduct path
planning to carefully avoid obstacles (Greer et al., 2020). A
direct analog can be found in nature with root and vine
structures that would not be self-supporting without external
reinforcement (Wooten and Walker, 2018) (see Figure 1). For
these reasons, pressure-driven soft growing robots hold great
promise for the exploration of narrow and complex passageways.
However, this promise is not yet fully realized for passageways
that have not previously been mapped.

Due to the challenge of supporting a large payload with a soft
growing structure, approaches for steering eversion robots have
bifurcated into: active steering (Sadeghi et al., 2017; Greer et al.,
2019; Satake et al., 2020) and obstacle-aided navigation (Luong
et al., 2019; Greer et al., 2020; Selvaggio et al., 2020). Active
steering approaches face challenges in unexplored spaces due to
the spatial constraints of the environment and the difficulty
associated with carrying mass at the tip of the robot for
sensors or actuators. Vine robots may be gentle enough to
adapt to their environment without risk of damage, but the
trade-off for this compliance is a limited ability to support
payloads. The maximum payload that these robots can
support depends on the length deployed, getting smaller as the
robot grows (Luong et al., 2019). Additionally, in small spaces, a
bulky payload at the tip can limit mobility and restrict the robot to
only growing through orifices larger than the payload diameter
(Jeong et al., 2020). For these reasons, everting robots are most
capable when unencumbered by payloads at the tip (Hawkes
et al., 2017).

This behavior drives designs towards smaller and simpler
payloads which conflicts with the sensing and actuation
hardware required to map and navigate unknown
environments. A solution may be found through open-loop
growth, reliant on a rich use of obstacle-interactions to help
guide the robot. Instead of active steering, designers can leverage
the compliance of vine robots to conform to preexisting paths in
the environment. The promise of this approach is compelling,
allowing the robot to deploy without much mass its tip. For
environments that have been mapped in advance, this obstacle-

FIGURE 1 | We developed branching vine robots for navigating and
anchoring in unexplored spaces. (A) Distributing branches across a larger
space allows for greater simultaneous coverage for water collection in nature
(left) or sensor placement for robotics. Additionally, using many different
routes for growth improves the reachability of the system in case one path
becomes stuck in an obstacle such as a rock or wall (right). (B) Plants are able
to anchor to their surroundings for structural reinforcement (left). We
demonstrated anchoring with a single branch growing through a confined
space, then supporting a payload of 66.7 N (15 lbs) at an internal pressure of
50 kPa (right).
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aided navigation can be used to reach a desired location reliably
and easily without any active control (Greer et al., 2020).
However, in the absence of prior knowledge of the
environment, a straight robot body is limited by the
condensation of many robot paths into a single vertex of an
obstacle, as explained by Greer et al. (2020). This phenomenon of
trajectory condensation means that open-loop growth requires
some predefined bends or structure in the robot to improve the
reachability in the workspace. Yet specific placement of these
bends requires prior knowledge, precluding the use of this
approach in unmapped spaces. Researchers are developing
planning and control algorithms using a hybrid of both
obstacle-interactions and active steering (Ataka et al., 2020),
but this does not address the fundamental limitations of each
in a confined and unexplored space.

To realize the potential of vine robots for unmapped spaces,
we propose the use of branching vine robots. We investigate the
question of how to optimize these structures for operation in
unmapped spaces. To test this, we developed a customizable
framework for optimizing the design of branching structures by
leveraging a set of known maps from a target environment. We
simulated the deployment of branching structures on those
known maps. We paired application-specific reward heuristics
with population-based optimization methods to find high-
performing designs to evaluate on unseen maps from the same
training environment. We used both anchoring and sensor-
coverage as two different example tasks for our optimization
process, and tested some of the optimized branching designs in
hardware. We also fabricate branching vine robots capable of
repeated deployment. Finally, we demonstrate a self-deploying
anchor for heavy payloads.

2 MATERIALS AND METHODS

Vine robots are soft structures capable of growth driven by
internal pressure. Their intrinsic compliance allows for
obstacle aided navigation in cluttered spaces (Greer et al.,
2020). Branching vine robots, a type of growing robot that are
characterized by having several apices each of which is capable of
deploying new material, include a hierarchical growth pattern
that significantly expands the design space. We studied the
optimization of branching designs in response to this
expansion of the design space.

2.1 Optimization
To optimize the design of these structures we used heuristic
rewards calculated from simulation. (Figure 2A). To provide a
reward estimate for the optimization process, we developed a
simulator that predicted the final position that an eversion robot
reaches through open-loop growth given 1) a known map, 2) an
initial state (position and angle), and 3) a parameterized design
morphology. The reward was based on an application-specific
heuristic calculated from the final state of the robot. Tuning this
reward prioritized different spatial properties such as exploration
and area-coverage or kinematic properties such as anchoring
forces. We considered two different categories of spaces for the

optimization, environments (e.g., coral reefs, caves) and maps
(i.e., an individual instance of a particular environment with a
single set of obstacle shapes and locations). Since this process still
required knownmaps to calculate expected rewards, we leveraged
a set of known archetypal maps from the same environment as
the unmapped target application location. Through this process
we were able to optimize for an environment rather than for any
one specific map, allowing us to design for and test performance
on unseen maps. A necessary property for results to transfer from
the known to unknown instances of a specific environment is that
there should be some overlapping similarities within the
environment. While further work is needed to validate this for
any particular real-world environment, we enforce this property
through the use of computer generated environments generated
through a randomized but controlled process. We detail this
optimization framework in the following section.

2.2 Simulation Framework
To predict the growth process of a branching eversion robot in
open loop, we simulated the deployment of branches recursively,
letting us adapt a set of well-established algorithms. Kinematics
and buckling in inflatable beams are well studied (Hammond
et al., 2017; Haggerty et al., 2019). Greer et al. consolidated these
into a set of algorithms that predict the final position of an
eversion robot given the initial state, map, and body-length of the
robot (Greer et al., 2020). This work has since been refined and
the simulation of soft growing robots has been developing rapidly
(Selvaggio et al., 2020; Jitosho et al., 2021). These algorithms
predict how a vine robot will deflect as it comes into contact with
obstacles, relying on the contact mechanics of inflatable beams
(Blumenschein et al., 2017) and assuming the robot will always
buckle about a distal environmental contact (Hammond et al.,
2017). The specific contact point fromwhich the robot will deflect
is determined by the relative orientation of the robot and the
obstacle. The robot is assumed to grow tangentially along an
obstacle while in contact (Greer et al., 2020). These algorithms
were validated experimentally and can be adapted to include
analysis of confidence or the use of pre-formed bending designs
(Greer et al., 2020; Jitosho et al., 2021).

We built on this prior work to include branching by treating
branched growth as a recursive problem (Figure 2D). Branching
has been previously introduced for reconfigurable antennas
(Hawkes et al., 2017; Blumenschein et al., 2018) and has also
been seen in continuum robots (Lastinger et al., 2019), but has not
yet been considered for mobility or obstacle interaction in
growing vine robots. We assumed that each hierarchical level
of branching deployed sequentially and that the forces resulting
from object interactions in one branch did not impact the
position of the remaining structure. This assumption relies on
having enough external interactions with the environment to
constrain any deployed material. To allow for morphological
changes during optimization, we parameterized the design space.
The number of design variables depended on the morphological
complexity of the design. The design parameterization included
the number of levels in the branching hierarchy, n. The other
parameters were the lengths of the branches in a level, BLi,
starting angle of new branches in a level, θi, number of new
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branches in a level, SPLi, and a length growth scalar that added
variation to the lengths of branches within a level, LGFi
(Figure 2B). These included a separate instance for each level
of the hierarchy, denoted by i. The parameters along with their
respective optimization limits are presented in Table 1. Along
with a parameterized design approach and the algorithms to
predict growth, optimization also required a set of maps and a
heuristic reward function. Since each fitness evaluation depended
on the specific map and starting orientation, each evaluation only
represented an approximation of the true fitness for a particular
design across a type of environment. Therefore, we evaluated
fitness for each design on several map instances using task-
specific heuristics. We then weighted these fitness scores into a
single composite fitness for each design. This weighting allowed

the user to tune the optimization process given the variability in a
particular environment. This weighting was chosen to prioritize
average performance, a “greedier” peak performance, or the
minimization of variability.

2.2.1 Example Applications
To realize desirable optimization results, the maps and reward
function used to guide the design search were tailored to the
intended application. We wrote our simulator to accept 2D maps
containing a randomized number and shape of obstacles.
Obstacles in the map were closed polygons defined by a set of
ordered x and y coordinate pairs. To optimize for exploration of
unmapped spaces in a known target environment, we used a set of
known maps from the same environment in the optimization. To
control the randomness between map instances within an
environment, we created map-generating algorithms which
each produced randomized polygons following a set of
environment-specific rules (see Supplementary Information
S.I.-A). This is inspired by real-world environments where
even if each instance is unique, the same geological or
biological processes drive the creation of an environment. We
controlled properties such as obstacle shape, density, and
convexity. Such properties are not guaranteed to transfer
across real world environments, but controlling these
parameters allowed us to generate randomized environments

FIGURE 2 |Optimization of branching vine robots through simulation. (A)Weused a particle swarm algorithm to guide the optimization of the robot design. Within a
generation, each design was evaluated on several maps by simulating open-loop growth. We assigned a fitness score for each evaluation using a task-specific heuristic.
These fitness scores were then combined using weighted averages into a single composite fitness score, and the designs were then repopulated based on the
composite fitness scores. (B) Representative parameterized robot design. Each level of the hierarchy is represented with a different color. Within a level, branch
lengths, angles, and a growth scalar determine the morphology. (C) Examples of simulated maps from the simulated Grid and Cave environments. Each obstacle is
represented by a distinct color. (D) Visualization of a representative output from the simulator, where the final position of the branching robot is predicted based on initial
orientation, the map, and the design of the robot. The simulator simulates the deployment of each level of the branching structure using a recursive open-loop growth
algorithm. After simulating growth, we assigned the fitness score based on the chosen task (in this case sensor coverage). Inset: buckling about a distal obstacle during
collision. (E) Comparison of optimization results for designs trained in different environments. The performance of optimized designs transferred well from training
environments to unseen test maps (dashed lines). Additionally, each design specialized to its training environment.

TABLE 1 | Parameters and their respective bounds for the optimization.

Parameter Lower
and upper bounds

n 2 to 5
BL 10 to 205
θ 20 to 160
SPL 2 to 4
LGF 10 to 160
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with inherent similarities. In our experiments we used two
computer-generated types of environments—referred to as a
Grid environment and a Cave environment (Figure 2C). The
gridmaps consisted of a high number of convex polygons, and the
cave maps contained a series of interconnected closed pathways.
Details on how we generated these environments are presented in
the Supplementary Information S.I.-A. While map sets were
selected from one of these environment types, we defined the
fitness functions as an application-specific user-defined heuristic.
Since the simulation and model predict the final state given input
parameters, a fitness function was required to define what
constituted a successful design. The following subsections
detail example tasks and the fitness metrics used to evaluate
designs. We used two different biologically inspired applications
as examples in this work. The fitness functions used below can be
found in Supplementary Information S.I.-C.

2.3 Sensor Coverage
In this example task, the objective was to distribute sensors
throughout a cluttered space to maximize coverage with the
simplest branching robot design. To calculate a reward, we
added a post-processing step to the simulator. At the end of
growth, each unique branch deployed a sensor with fixed circular
area of coverage at its tip. Since the goal was to maximize area
coverage, we only considered unique area as productive.
Therefore, we calculated the reward as the union of the area
covered by sensors. To balance design simplicity with area
coverage we added a cost that depended on several variables.
The first consideration for the cost was the efficiency of the sensor
coverage. In other words, if the covered areas were not
overlapping, each sensor was providing productive
information. We penalized both the number of total sensors
and the total length of the robot design, where each was scaled by
the efficiency of the covered area (how much of the sensed area
overlapped). Additionally, we added a small penalty based purely
on the total length of the design to minimize the design in the case
that two designs had similar efficiency. This is because a simpler
(i.e., shorter total length) design requires less mass and also would
use energy to deploy. Finally, we normalized each of these four
values (union of the sensor area, number of branches scaled by
efficiency, length of design scaled by efficiency, and raw length) to
fall in the range [0,1] and then weighted them to balance coverage
and simplicity (equations in Supplementary
Information S.I.-C).

2.4 Anchoring
Analogous to root growth in plants, the goal in this task was to
distribute forces across the branched structure to anchor into the
environment. Even with low internal pressures, we assumed
anchoring forces would become appreciable due to two
synergistic effects: First, we assumed each branch would act as
an inflatable anchor, capable of jamming in narrow or
constrained spaces (Eq. 1) where Ftip, P, Ac, and μ represent
the anchoring force of the pouch, internal pressure, area in
contact, and coefficient of friction respectively (Glick et al.,
2020). Second, we assumed that as the robot wrapped around
or grew past obstacles, the capstan effect produced an exponential

increase in anchoring force (Eq. 2) with Fanchor as the anchoring
force of the branch and gamma as the total change in angle along
the path of the branch (Blumenschein et al., 2017; Luong et al.,
2019). We assumed that this capstan effect would amplify the
frictional increase from jamming in narrow spaces.

Ftip � 2 · P · Ac · μ (1)
Fanchor � Ftip · eγ·μ (2)

For our fitness score, we used a nondimensional scaling of the
anchoring force. The anchoring force for each branch was
measured based on the interaction with obstacles which
determines the jamming force and capstan friction. We
assumed branches were narrow and did not provide any
jamming on their own, and instead relied on a pouch anchor,
larger inflatable section to provide known contact area, at the tip
of each branch to provide the base anchoring force for that
branch (Glick et al., 2020). This allowed us to calculate anchoring
forces for the branched robot based on the total angle change of
each branch, where the total anchoring force is the sum of the
anchoring force of each branch. This modelling and design
approach allowed us to model, predict, and verify anchoring
forces easily. In reality, if branches are not narrow and are at the
same scale as the space between obstacles, anchoring forces would
be distributed across the entire length of the contact area. This
would likely increase total anchoring forces and improve
resilience in the case of any slipping, but presents a much
more difficult case to model and verify. While in practice, that
magnitude of the anchoring force (measured in N) would depend
on the internal pressure of the robot, the size of the pouch at the
tip, and the friction of the material of the anchors, we assumed
that these properties would scale the magnitude of the anchoring
force equally for all branching morphologies, thus we ignored
them during optimization. Therefore, for optimization and
hardware validation we treated anchoring as a non-
dimensional scalar, measured as the anchoring force of the
entire deployed branching robot divided by the anchoring
force of single pouch without any capstan effect. For this task,
we used a simplified design space to improve accuracy of the
model predictions, so we did not add a penalty to the fitness
function for the complexity of the design.

2.4.1 Search Methods
We tested multiple gradient-free optimization techniques that
enabled the optimization of branching eversion robots for
operation in unmapped environments. In Supplementary
Information S.I.-C, we show both a customized evolutionary
algorithm and a commercially available particle swarm algorithm
(Matlab particleswarm Solver) that both yielded similar
performance (Panda and Padhy, 2008). For the results in this
paper, we used the particle swarm algorithm since it was slightly
faster. The lack of an explicit and differentiable objective function
motivated our use of gradient-free search methods. The challenge
of selecting a search method was complicated by the fact that the
fitness landscape was heavily dependent on the task-specific
fitness function and the set of maps used in the training
phase. Furthermore, since there was symmetry and

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 9 | Article 8389135

Glick et al. Branching Vine Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


redundancy in the design space, some dissimilar designs
performed equivalently. Though there is no guarantee that a
single global optimum existed, we did not test local search
methods such as hill climbing algorithms due to the high
number of local optima present in many of the fitness
landscapes (Mitchell, 1998). Finally, to avoid over-fitting we
introduced randomness in the start position and orientation
for each fitness evaluation which added noise to the fitness
evaluation. These complicating factors led us to choose a
search method that was sufficient, rather than hunting for an
optimal search method. A comparison of the two methods we
tested and our sufficiency criteria are included in the
Supplementary Information S.I.-B.

2.4.2 Fabrication of Branching Vine Robots
We fabricated the branching robot designs using a thermoplastic
polyurethane (TPU) laser-welding technique. To adapt
simulation results into manufacturable hardware, we imported
the branch joint locations and angles into computer aided design
(CAD) software (Solidworks) and added thickness to each line
(Figure 5). With the full design outline, we exported as the file to
a digitally controlled CO2 laser cutter. We used a laser welding
approach to precisely join two sheets of TPU (Fibre Glast
Stretchlon 200) along the outer seam only. Laser welding is a
repeatable fabrication method for fabricating customizable
pouches with a long lifespan that has previously been used to
manufacture soft bending inflatable actuators (AmiriMoghadam
et al., 2018). This fabrication method allowed us to
simultaneously cut and seal the TPU to remove excess
material from the exterior of the robot which aided the
eversion process. This material was thin (which helped
deployment) and elastic (which prevented creasing). The laser
welded seams supported up to 70 kPa [as documented by
AmiriMoghadam et al. (2018)]. Laser welding the TPU
required fine tuning of the settings of the laser cutter and
preparation of the TPU film with a heat-press to eliminate
bubbles or wrinkles. The laser settings and TPU properties are
included in Supplementary Information S.I.-D. We designed a
single open end to the robot body, so mounting the robot to the
rigid base only required inverting the last ~20 cm of material and
clamping that inverted part to the base. The rigid base was air-
tight and contained ports for a pressure regulator. We stored the
undeployed material in the base by crumpling it up instead of
using a spool. This kept branches from overlapping and jamming
during deployment, but meant that material is packed more
inefficiently. Additionally, we observed that for successful
deployment, each level of branching should be much wider
than the subsequent levels. This effect may limit the total
number of branches that is practical to fabricate and deploy.

3 RESULTS

3.1 Transferability and Specialization
We expected the optimization process to generate a design that is
transferable to unseen instances of a particular environment and
result in specialization to the environment used during training.

To test this hypothesis, we compared the performance of the
designs that were each trained in different environments.
Training followed the procedure described in Section 2.3 for
the sensor coverage task, and was run five times with different
seeds for the random number generator. The top performing
designs from each environment were selected for evaluation. First
both designs were evaluated on unseen instances from their own
training set (i.e., the design trained on the Grid Environment was
tested on its own Grid Environment training set to provide a
baseline of performance). The results from these training sets
show that for the same task with the same reward heuristics, the
Cave Environment led to lower fitness. The two optimized
designs were then each tested on unseen evaluation map sets
for both environments (Figure 2E). The design trained on the
Grid Environment maintained its performance on the Grid
Environment evaluation set compared to the training set
(within 2% fitness), and similarly the design trained on Cave
Environment maintained its performance on the Cave
Environment evaluation map set (within 1.5% fitness). These
results show the transferability of designs trained on knownmaps
to unseen new maps in the same environment. We also evaluated
each design on the other environment (i.e., the design trained on
the Grid Environment was evaluated on the Cave Environment).
As seen in Figure 2E, the most-fit design for each environment
was the one that was trained natively in that particular
environment. This experiment showed that the optimized
designs specialized to the training environment, and that the
designs transferred well from training to evaluation on unseen
maps in the same environment.

3.2 Impact of Diversity in Training Data
3.2.1 Number of Known Maps
To quantify the impact of this optimization approach and to
measure how much training data is required to generate high
quality designs, we compared a set of designs that were
optimized with different training data sets. These
optimizations were run on the Grid Environment and with
the sensor-coverage task. The baseline unoptimized design was
manually selected using the authors’ best intuition with no
further training or optimization. The optimized designs were
trained on a set of known maps, and we ran different
optimizations in which we varied the number of unique
maps in the training set. We also tested the effect of
adjusting the initial conditions (position and orientation) of
the robot during optimization: the initial conditions were either
constant or variable, and randomly selected- within a predefined
range- from generation to generation. For the optimizations
with more than one map in the training data, we measured
fitness once per design per generation to make sure each design
had the same number of fitness evaluations. To evaluate the
performance of the designs on new maps (unseen during
training), we ran the optimization five times with different
random seeds with and from these five runs selected the best
performing design (measured on the training set). We also
measured fitness over generational time on ten runs showing
the training process was repeatable (Figure 3A). To evaluate the
true fitness of an optimized design, we tested the design on 25
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unique, unseen instances of the Grid Environment with three
different initial conditions for a total of 75 fitness evaluations.

Performance in the unseen evaluation maps was significantly
improved by the optimization process when compared to the

unoptimized design (Figure 3B). The unoptimized design
performed poorly and resulted in high variance of fitness
across different evaluation maps. The next simplest
optimization, training on one map with constant initial
conditions, improved performance relative to the unoptimized
design but resulted in over-fitting to the single situation presented
during training. Injecting noise in the training by using variable
initial conditions and using additional maps both increased
performance above this baseline. Adding additional maps
further improved the transferability of designs, but within
statistical error.

3.2.2 Tuning Performance Through Weighting
The choice of weighting method had an impact on the
distribution of performance of optimized designs on unseen
evaluation sets (Figure 3C). During optimization, we
evaluated each design on several different maps in the
training set since each instance with a given initial
orientation only provided an approximation of true fitness.
Evaluating a design on several training maps during
optimization provided more information which could lead
to a better approximation of true fitness. However, the
choice of how these multiple approximations were weighted
and combined into a single fitness score affected the
performance of the final designs. These weighting methods
were a powerful design tool because they provided selection
pressure and shaped the probability of different outcomes in
the transfer to unseen instances. Though there were many
possible weighting approaches, we selected three for
evaluation: averaging, selecting the best fitness, and
minimizing deviation. In the optimization that minimized
deviation, 25% of the composite score was based on the
average fitness to ensure there was some pressure to
improve performance. We optimized each design on the
Grid Environment for the sensor coverage task, varying
only the weighting method used. We also compared the
results to an optimization run with no weighting (with only
one fitness evaluation per design). We then tested these designs
on unseen evaluation maps from the same Grid Environment
and compared the distribution of the resulting fitness scores.
Figure 3C shows the probability distribution for the scores of
each design in the evaluation set. Selecting the highest score
resulted in “greedy” performance, with the best possible
outcomes during evaluation but with a higher spread in the
distribution including some poor scores. Averaging scores
surprisingly had a lower average and also a wider deviation
of performance than the multi-objective weighting that also
minimized the standard deviation. A weighting that only
considered the deviation would not necessarily select for
high performance but combining the mean and standard
deviation into a single score resulted in a design that
showed both high performance and consistency across the
set of evaluation maps. The weighting method selected had a
noticeable impact on the distribution of performance on
unseen maps, but came at the cost of increased
computational effort through additional fitness evaluations
in each generation.

FIGURE 3 | Evaluating the impact of diversity in the training data. (A) Plot
of fitness improvement on the training maps over generational time from a
sample of 10 runs. The lines represent the mean fitness and the shaded
regions represent one unit of standard error. (B) Optimized fitness,
evaluated based on unseen evaluation maps, as a function of the number and
variety of test maps and robot initial conditions (IC). The baseline version of the
robot that was designed heuristically (denoted “Not Optimized”) exhibited the
worst performance. Using different starting positions and orientations
(Variable IC’s) reduced over-fitting in the case of training based on only one
known map. (C) Distribution of fitness scores during evaluation based on
different weighting methods. Selecting the highest fitness improved
performance but with a trade-off of poor performance in some cases.
Minimizing deviation resulted in a consistent performance. All methods show
some improvement compared to only using one fitness evaluation.
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3.3 Unique Capabilities of Branching Vine
Structures
3.3.1 Reachability and Coverage
To compare branched and single-path designs, we studied the
reachability of each in both of the previously mentioned types of
simulated environments. As previously reported, eversion robots
running open-loop are limited by trajectory condensation
through interaction with obstacles (Greer et al., 2020).
Branched designs were able to recover non-redundant mobility
through a space by deploying new material that was independent
of prior obstacle interactions (Figure 4). To compare these two
classes of designs and explore the issue of trajectory condensation,
we used a set of simulations to compare the reachability of these
design classes. For the single-path robots, we ran 50 sequential
deployments, each with a different initial orientation. In an
example from the Grid Environment, these 50 unique initial
configurations were reduced into six final configurations.
Similarly, in the Cave Environment, the 50 unique initial
configurations only resulted in five final configurations once
growth was complete. For each of these instances we
considered a buffer around the path of the robot to be a part
of it is reachability, then took the union of this area across each of
the 50 deployments. For the branched systems, we optimized the
design for each environment with the reward heuristic that
measured a buffered reachable area surrounding the path of
the robot. The reachability of the branched design was only

calculated from a single deployment. On the Grid
Environment, the branched design reached 93.0% of the space
with a single deployment compared to the multiple deployments
of the non-branched design which covered 68.3% of the space. In
the Cave Environment, the branched design also outperformed,
covering 94.3% of the space compared to the non-branched
which reached 61.6% of the space (Figure 4).

3.3.2 Demonstration of Deployment for Sensor
Coverage
We demonstrated the fabrication and deployment of a design
based on the output of the optimization to explore how these
results may be translated into hardware. We created a
manufacturable design from the output of the optimization by
adding thickness to each branch and fillets to each joint, where size
was scaled by the level of branching hierarchy (Figure 5). We
evaluated the branching robot on an example map fabricated with
3D printed obstacles.We used a laser welding fabrication approach
to ensure precision and repeatability in the manufacturing process.
This approach simultaneously cut and sealed layers of TPU and
was previously used to make soft bending actuators
(AmiriMoghadam et al., 2018). To deploy the system, we took
the cut TPU and placed it inside a pressure vessel, inverting and
attaching the non-branching end. Our approach was repeatable
and allowed for redeployment after manually resetting the system.
Through hardware validation we observed several properties.
Though the device was scalable in overall size, deployment was
easier at lager sizes since there was less internal friction to
overcome while transporting new material to the tip of each
branch. The device was reusable, but required manually
resetting the robot between trials, and over time the TPU seal
developed leaks. Furthermore, head-on collisions with obstacles,

FIGURE 4 | Comparison of the reachability of the space. Reachability of
a single branched deployment in the Grid and Cave environments (Left). Union
of the reachability of a straight tube robot over many redeployments in both
Grid and Cave Environments (Right). Even allowing many
redeployments, a vine robot without branching and without active steering
cannot access large areas of the space. In contrast an optimized branching
robot can cover much more of the space once deployed, also without active
steering. Branching successfully mitigates the issue of trajectory condensation
and provides other interesting properties such as covering multiple locations
simultaneously and distributing forces.

FIGURE 5 |Demonstration of fabrication and deployment of a branching
vine robot. To manufacture the designs we added thickness to the line-output
from the optimization process, and cut the robot out of TPU using a laser-weld
process (see Supplementary Information S.I.-D). Decreasing the
diameter of the robot at each hierarchical branch-level improved deployment.
We also tested deploying the branching vine robot both in free space and the
grid environment.
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especially at branching vertices, sometimes prevented growth
[though it may be possible to overcome this effect with
nutation (Wooten and Walker, 2018; Taylor et al., 2021)].
Though the path taken by the robot was highly sensitive to its
initial position and orientation, the optimized design was often able
to navigate through the environment due to its branching structure
and high degree of compliance.

3.3.3 High Strength Anchor Demo
To hold the payload seen in Figure 1, we adjusted our materials
and fabrication methods to support greater force. We used a

thicker TPU (0.05 mm compared to 0.0375mm) (Stretchlon 800,
Fiberglast) which prevented the body of the robot from
significantly deforming or tearing under load. This thicker TPU
prevented a quality laser-weld seam which was our method for
creating a branching design. To accommodate this change we used
an impulse sealer to create a straight tube without branching. With
the non-branching design, we positioned the robot below a target
passageway, deployed the robot through the passageway, and then
suspended a payload to the base of the robot. The robot held 66.7 N
(15 lbs) at an internal pressure of 100 kPa, the same pressure used
to deploy the robot through the passageway (Figure 6). This
approach shows an interesting approach to supporting high
forces with soft materials, but relying on growth instead of
grasps (Glick et al., 2018). The maximum payload was
determined by the mechanical connection of the robot to the
base, preventing comparing model predictions to payload capacity.

3.3.4 Optimized Anchoring ForcesWith Hardware Test
Branching provided a significant opportunity to grip inside of an
environment due to capstan friction and the pouch-anchoring
effect. We optimized two designs in simulation according to the
task described in section 2.2.2 on the Grid and Cave
environments (Figure 7). We simplified the design space and
added a pouch to the end of each branch to improve the accuracy
of our anchoring force prediction by controlling the contact
location with the wall. The similar force capacity and
optimized design between the designs optimized in the cave
and grid environments show this problem has a simpler
solution compared to other tasks, especially since we do not
penalize for length or design complexity in this task. We also
fabricated an example Cave Environment using 3D printed
obstacles to validate the force capacity. We measured the
anchoring force by manually deploying the robot in the
environment then measuring peak pull-out force with a digital
force gauge (Mark 10). The robot was manually deployed to
ensure consistent placement between trials and to accommodate
for challenges with growth at this small aspect ratio. For this
experiment we tried to enforce anchoring only at the tip so
shrunk the branch width. This prevented repeatable growth. A

FIGURE 6 | Self-deployment with anchoring. We manually placed the robot at the entrance of a clear pipe (0 s) and subsequently applied 100 kPa of pressure to
deploy the system. Once fully deployed (7 s), we added 66.7 N while maintaining the pressure. The robot held its position until pressure was released.

FIGURE 7 | Optimization and hardware validation of anchoring. (A)
Anchoring amplification effect of an optimized branching vine robot compared
to a single pouch anchor in both cave and grid environments. (B)Optimization
output of similar designs from different training environments. (C)
Simulated final position of optimized design in cave environment. (D)Manually
deployed robot to ensure alignment with simulation, used to compare to the
anchoring force predicted by simulation.
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single pouch with no capstan effect held 0.65 N, and the
optimized design held 4.25 N when manually deployed. The
measured anchoring magnification was 6.54, compared to the
model prediction of 6.86. This difference comes from the
assumption in the model that each branch makes good contact
and evenly shares the load. In the experiment, we found that out
of the six branches, one did not make contact with the sidewalls
and another had slack preventing it from sharing the load. This
method of anchoring does not rely on a branching design, indeed,
the capstan effect grows exponentially along the length of a single
branch with respect to the total change in angle. However, each
added branch adds to the total anchoring force and more
importantly, adds redundancy in case any single branch
cannot make good contact with the cave walls. The approach
of deploying into an environment and subsequently loading the
robot is an interesting alternative to traditional robotic gripping
and manipulation. Furthermore, this test showed the adaptability
of the optimization approach to scale to a variety of tasks.

4 DISCUSSION

In this work we showed that the combination of branching vine
robots and task-specific optimization enable a new approach to
navigating unmapped environments. This optimization
framework supports specialization of designs to a range of
tasks and environments. Furthermore, we found that
branching improved reachability within a cluttered space,
promoted simultaneous coverage of a large area, and enabled
anchoring—mirroring the properties found in biological growth.
We used a versatile and precise fabrication approach for the
manufacture of the optimized designs. Though capstan friction
has been studied as a limiting factor for vine robots, we show that
it can be harnessed to amplify the pouch anchoring effect. This
effect has the potential to enable new kinds of grippers and
anchors in cluttered environments. Though deployment and
manufacturability were limited by practical constraints such as
internal friction, the pressure-rating of the TPU seam, and head-
on collisions, it may be possible to mitigate these limitations by
including appropriate fitness penalties during optimization.
Additionally, though this work only considered two-

dimensional designs, future work could explore the application
of these concepts to three-dimensional space. However, the
benefits of branching vine robots do come at the cost of
increased complexity. Both the fabrication and deployment of
branching designs require further study for large (i.e., > 2 m) and
small (i.e., < 0.25 m) scales. Additionally, approaches to adding
sensors along the hierarchical body and communicating within
the structure are open challenges. Finally, for deployment in a
known environment, an optimized open-loop or a closed-loop
growing robot will likely be able to match performance for most
tasks with less design effort.
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