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Social touch is essential to everyday interactions, but current socially assistive robots have
limited touch-perception capabilities. Rather than build entirely new robotic systems, we
propose to augment existing rigid-bodied robots with an external touch-perception
system. This practical approach can enable researchers and caregivers to continue to
use robotic technology they have already purchased and learned about, but with a myriad
of new social-touch interactions possible. This paper presents a low-cost, easy-to-build,
soft tactile-perception system that we created for the NAO robot, as well as participants’
feedback on touching this system.We installed four of our fabric-and-foam-based resistive
sensors on the curved surfaces of a NAO’s left arm, including its hand, lower arm, upper
arm, and shoulder. Fifteen adults then performed five types of affective touch-
communication gestures (hitting, poking, squeezing, stroking, and tickling) at two force
intensities (gentle and energetic) on the four sensor locations; we share this dataset of four
time-varying resistances, our sensor patterns, and a characterization of the sensors’
physical performance. After training, a gesture-classification algorithm based on a random
forest identified the correct combined touch gesture and force intensity on windows of
held-out test data with an average accuracy of 74.1%, which is more than eight times
better than chance. Participants rated the sensor-equipped arm as pleasant to touch and
liked the robot’s presence significantly more after touch interactions. Our promising results
show that this type of tactile-perception system can detect necessary social-touch
communication cues from users, can be tailored to a variety of robot body parts, and
can provide HRI researchers with the tools needed to implement social touch in their own
systems.

Keywords: human-robot interaction, socially assistive robotics, social touch, affective touch, tactile sensors,
gesture classification

1 INTRODUCTION

Social touch is an integral aspect of our daily interactions with colleagues, friends, and family. We
touch other people to gain attention, communicate needs, and build empathy and attachment
(Cascio et al., 2012; Van Erp and Toet, 2015). Touch promotes social bonding and cognitive
development in children (Cascio et al., 2019) and is essential for emotional well-being (Harlow and
Zimmermann, 1959). Affective touch, or touch with an emotional component, is used to convey our
emotions to others through nonverbal communication, such as a hug. Simultaneously, the field of
socially assistive robotics (SAR) continues to grow, with robots serving as assistants (Kim et al., 2013;
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Fitter et al., 2020), caregivers (Bilyea et al., 2017; Ferretti et al.,
2018; Logan et al., 2019), and companions (Shibata and Wada,
2011; Jeong et al., 2015; Sefidgar et al., 2015). We believe it is
imperative that such robots increase in awareness and intelligence
by developing an understanding of social touch. Other modalities,
such as visual and auditory sensing, are useful in their own regard
but cannot replace touch perception. Physical contact and
changes in contact force are both hard to see, especially when
a robot’s camera has low resolution, poor lighting, a field of view
that does not include the contact, or a disadvantageous viewing
angle. While audio can sometimes be used to infer touch, this
approach works only in a very quiet and controlled environment,
which cannot be expected for human-robot interaction. While
present social and socially assistive robots may feature other
advanced capabilities, they are simply not equipped with
adequate touch-perception capabilities; if they have any touch
sensing, it is typically limited to detecting either on/off contact or
a simple force threshold, and only at key locations on the robot’s
body (Wada and Shibata, 2007; Robins et al., 2010). There is a
serious need in the field of human-robot interaction for a simple
yet robust social-touch sensing solution.

Endowing socially assistive robots with tactile perception has
long been a challenging task due to the complex and expensive
nature of whole-body tactile sensing (Wada and Shibata, 2007;
Dahiya et al., 2010; Schmitz et al., 2011;Wood et al., 2019). Unlike
the soft and robust skin of mammals, traditional tactile sensors
have been rigid and fragile (Argall and Billard, 2010; Dahiya et al.,
2010). Recently introduced fabric-based tactile sensor designs are
promising for social touch due to their soft texture, simple design,
and robustness (Luo et al., 2017; Day et al., 2018; Lee et al., 2019).

Even though existing social robots have limited tactile sensing,
one does not need to wait and purchase an entirely new robot
with built-in touch sensors to obtain whole-body tactile sensing
that is robust and informative. Rather, an existing robot can be
externally fitted with a tactile-perception system. This proposed
approach can enable researchers, medical staff, teachers, and
caregivers to continue to use technology they have already
purchased and learned about, while adding a whole new

channel of possible interaction methodologies alongside
existing audio and visual sensing methods. We have created a
robust tactile-perception system that is easy to manufacture, is
pleasant to touch, and can be applied to existing rigid-bodied
robots, as seen in Figure 1. It consists of fabric-based resistive
tactile sensors whose outputs are processed using a touch-gesture
classification algorithm. However, our goals go beyond providing
a practical touch-perception solution; we also wanted to inform
the creation of a whole touch-perceptive robot system and
investigate users’ reactions to such a robot. We therefore
added this tactile-perception system to a NAO robot to create
our social robot prototype, the Haptic Empathetic Robot Animal
(HERA). HERA is intended to eventually serve as a tool to help
therapists teach children with autism about safe and appropriate
touch (Burns et al., 2021b). While the NAO robot is frequently
used in robot-assisted therapy studies to help children with
autism (Tapus et al., 2012; Greczek et al., 2014; Suzuki and
Lee, 2016), we intend to introduce practical touch-perception
to add a new set of teaching opportunities. We tested the
performance of this tactile-perception system on HERA in a
user study with healthy adults.

Based on our findings, we present the following contributions:

• We created a design framework for fabric-based resistive
tactile sensors that can be mounted on the curved surfaces
of existing hard-bodied robots, with easy-to-follow step-by-
step building instructions and an open-source database of
four pre-made patterns.

• We share a labeled dataset of sensor readings and classifier
source code from a user study in which fifteen adults
touched the robot’s arm at each of the four sensor
locations using five affective touch-communication
gestures (hitting, poking, squeezing, stroking, and
tickling) at two force intensities (gentle, energetic). After
training on sensor data from the study participants, our
touch-perception system perceives combined gesture and
force intensity with an accuracy of 74.1% on held-out
test data.

FIGURE 1 | (A) Custom tactile sensors were built from fabric and foam to wrap around the four rigid segments of NAO’s arm. (B) As seen in this photo-merge, the
sensors are secured on top of the robot’s plastic exterior and are hidden underneath a soft koala suit to create the robot companion HERA.
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• We provide analysis of participant impressions of the
overall robot system, including their reported feedback,
their suggestions on how the robot should respond to the
ten tested social-touch gestures, and our observations of
their touch interactions with the system.

• We outline the physical performance characteristics of our
tactile sensor design, including a robust sensing range from
0 to 30 N, gathered from sensors mounted to the hand,
lower arm, upper arm, and shoulder of a NAO robot.

Before presenting our materials, methods, results, and
discussion, we summarize relevant prior work in tactile
perception for social-physical human-robot interaction (HRI),
including touch-perception guidelines, tactile sensing, touch
perception in previous robots, and gesture classification
methods for social touch.

1.1 Touch-Perception Guidelines for Social
Robots
While current social and socially assistive robots are generally
limited in their touch-sensing capabilities, several teams have
investigated whether touch perception is a worthwhile endeavour
to pursue. They have also established which aspects of touch are
most important for a robot to understand social touch
communication from a human user and which features are
less needed.

Tanaka et al. (2007) found that robots would benefit from
having a system that can detect touch contacts across their whole
body, and that contact locations can be grouped into general
anatomical regions without fine spatial sensing resolution within
each region. Experimenters coded videos from 45 field sessions of
children interacting with the small humanoid robot QRIO in a
classroom. The coders marked binary inputs indicating whether
touch occurred across any of eight general body regions of the
robot. By analyzing these data using a regression model, the
researchers found that touch anywhere on the robot’s body was a
strong predictor of the quality of social interaction, both between
the human and the robot and between the human and their peers.

Andreasson et al. (2018) used video annotation to observe 32
adult participants performing 23 possible social-touch gestures
on a NAO robot to convey nine different emotions. In order to
replicate a human-human interaction study by Hertenstein et al.
(2009), they visually divided the NAO robot’s body into 16
general body regions, and they recorded the gesture intensity,
duration, general location, and touch type. The highest
percentage of touches occurred on the robot’s arms and
hands. In another part of the same user study, they covered
the NAO in removable fabric garments intended to represent and
eventually contain tactile sensors (Lowe et al., 2018). Their results
showed that participants used stronger intensities, interacted for a
longer duration, and touched more locations on the robot when it
wore the garments compared to the uncovered NAO robot.

Burns et al. (2021a) recently investigated and established touch
perception guidelines for a robot companion suitable for children
with autism. The list was initially based on the literature and then
refined through analysis of interviews with 11 experienced autism

specialists. Since the guidelines were developed to fit individuals
across a spectrum from touch-averse to touch-seeking, and the
experts interviewed specialize in teaching safe and appropriate
social touch, we believe their recommendations also largely cover
the social-interaction needs of the general populace. The
specialists wanted the robot to have a large tactile-sensing
surface and did not ask for contact localization beyond general
body regions. They further elaborated that the robot should sense
both low-force and high-force contacts, and it should be inviting
and pleasant to touch (e.g., friendly appearance and soft texture).

Based on these existing touch-perception observations and
recommendations, we created a set of soft tactile sensors that are
worn externally by a commercial robot and can detect the general
body region of touch, touch type, and force intensity.

1.2 Tactile Sensing in Human-Robot
Interaction
While tactile sensors have been studied for several decades
(Dahiya et al., 2010), most development has been focused on
robot fingertip sensors, which support object manipulation by
providing high spatial resolution and accuracy across a small
surface area (Argall and Billard, 2010). On the other hand, large-
scale tactile sensors, which can provide sensing across the broad
surfaces of a robot’s whole body, have received far less attention
due to their high cost and high system complexity. For example,
one existing approach is to utilize small discrete sensors that are
spaced intermittently across the desired sensing area, such as the
force-sensing resistors (FSRs) on the original Haptic Creature
(Chang et al., 2010) or miniature capacitive force sensors like the
SingleTact (PPS UK Limited, 2021). However, due to their small
size (usually between 8 and 15 mm diameter), one must apply a
great number of these sensors to cover the surface area of a robot.
Such sensors are thus typically more costly per unit area than
other methods, such as fabric-based tactile sensing, and they
cannot sense contacts that occur in the regions between the
sensors. Furthermore, this type of thin laminated sensor often
experiences delamination, which harms the sensor’s performance
(Tan and Tong, 2008); laminated flexible sensors can also be
difficult to apply on a robot’s curved surfaces as they require a flat
surface for good adhesion. However, recent advances in sensing
materials and computation technologies have enabled the
creation of some simple and affordable alternative large-scale
sensing solutions (Luo et al., 2017; Teyssier et al., 2021).

Fabric-based tactile sensors are large-scale tactile sensors that
are typically low cost and easy to manufacture. They are also
flexible (Day et al., 2018), which makes them a better fit than rigid
tactile sensors for curved surfaces like a robot’s arm. The simplest
fabric-based design uses one layer of low-conductivity fabric
sandwiched between two layers of high-conductivity fabric.
When a user compresses the sensor, the two highly conductive
layers come closer together, causing the sensor’s electrical
resistance to decrease. However, due to the small distance
(only one piece of fabric) between the two conductive layers,
this design exhibits a low range of resistances in response to
different force inputs. In the design of Day et al. (2018), an
individual taxel demonstrates a dynamic force-sensing range
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from roughly 0.5–5.5 N. One way to increase the sensing range is
to add a middle layer of plastic mesh, which serves as a spacer
between the two conductive layers. However, an initial amount of
force is required before contact can be detected through the
plastic mesh. When indented with a 5 cm2 probe tip, the fabric
sensor of Büscher et al. (2015) does not begin changing resistance
until a threshold of roughly 2.5 kPa, or 1.25 N; gentle forces below
this level are critical for perceiving affective touch (Taneja et al.,
2019). While fabric-based sensors are cost effective and easy to
make, this field lacks a sensor design that has both a wide sensing
range and good low-force touch detection.

Our sensor design utilizes a center layer of low-conductivity foam
rather than low-conductivity fabric with or without a plastic mesh.
Using foam enables the sensor to detect gentle touches that would be
blocked out by a mesh layer, while still having a wide sensing range.
We test our sensor’s performance on a real NAO robot through both
a user study and quantitative physical experiments.

1.3 Touch Perception in Socially Assistive
Robotics
Most robots in SAR are very limited in terms of touch perception.
The humanoid robots NAO and Pepper detect binary touch inputs –
pressed or not pressed – through capacitive sensors at a small
number of discrete key body locations. The baby seal robot PARO
has touch sensors in its head and flippers, and it reacts positively to
gentle touches and negatively to forceful touches (Wada and Shibata,
2007).Whilemost of these systems are fairly simple, two examples of
the state of the art for SAR touch perception are Kaspar (Wood et al.,
2019) and the Haptic Creature (Sefidgar et al., 2015).

Kaspar is a child-like humanoid robot designed as an assistive
tool for children with autism (Wood et al., 2019). The current
iteration of Kaspar, K5, features fifteen force-sensing resistors
(FSRs) positioned at discrete points across the hands, arms, feet,
legs, chest and face of the robot. These FSRs are used to identify
whether firm or gentle force is used on the robot (separating the
levels at 0.6 N), but not what kind of gesture has been performed
(Robins et al., 2010). In contrast to our goals, Kaspar’s FSR
sensing areas are small, and its surfaces are rigid.

Envisioned as a therapeutic companion, the Haptic Creature is
a furry lap-sized robot animal that calms participants by imitating
slow breathing patterns (Chang et al., 2010; Sefidgar et al., 2015).
The initial model of the Haptic Creature detected touch through
56 FSRs distributed across its body (Chang et al., 2010). In
Sefidgar et al. (2015)’s later version, the FSRs were replaced
with a large-scale fabric-based piezoresistive sensor array. The
robot’s tactile sensing system was used to identify what gesture
had been performed, but not to try to deduce the gesture’s force
intensity. A random forest classifier with 20-fold cross validation
was used to identify six gestures performed on the robot by ten
participants with 88.6% accuracy (Cang et al., 2015); this
performance is about five times higher than random chance.
In contrast to our hardware goals, the Haptic Creature is a fully
custom robot with a simple body and few degrees of freedom.

This paper is partially inspired by and aims to improve upon the
touch-perception research conducted with Kaspar and the Haptic
Creature. We provide soft tactile sensing coverage across an existing

robot’s entire arm, rather than only at discrete points. We then use
these sensors to create a tactile-perception system that simultaneously
identifies both the force intensity and the type of gesture performed.

1.4 Gesture Classification Methods for
Social Touch
To perceive the information gathered by tactile sensors as specific
touch gestures, a robot needs a mental framework for
understanding what the possible gestures are. This skill of
tactile gesture recognition is often implemented by processing
acquired tactile data through a machine-learning classifier that
has been trained on labeled examples. These classification
algorithms typically analyze the time-series touch data using
data sampling windows with a fixed time duration (Cang
et al., 2015).

To learn more about various classifier techniques, we refer the
reader to the following papers, which detect social touch gestures
using a variety of classification models: Bayesian classifiers (Jung
et al., 2014), decision trees (Kim et al., 2010), LogitBoost (Silvera
Tawil et al., 2012), neural networks (Stiehl and Breazeal, 2005),
random forests (Altun and MacLean, 2015), and support vector
machine (SVM) variations (Cooney et al., 2010; Jung et al., 2017).
Additionally, Jung et al. (2017) provide a comprehensive list of
research on the use of tactile sensing to detect and identify social
touch, including a table identifying the surface touched (e.g., a
mannequin arm, a stationary robot), the gestures performed, the
classifier method, and the system’s classification accuracy.

The random forest classifier approach has been successfully
utilized in several works studying touch gesture recognition
(Altun and MacLean, 2015; Keshmiri et al., 2020), including the
second version of the Haptic Creature (Cang et al., 2015). In a
comparative study by Keshmiri et al. (2020), participants conducted
gentle and strong versions of three touches on a mannequin wearing
a vest with a 32 × 32 grid of pressure sensors: hitting on the chest,
hitting on the shoulder, and hugging. The random forest classifier
performed significantly better at identifying the different touches
than five other classification approaches, achieving an average
accuracy of 85% (about five times higher than the random
chance level of 16.67%).

While many systems have classified social touch gestures, very
few have sought to identify gesture and force intensity together.
Gesture type and force intensity convey two distinct and
important features of social touch (Burns et al., 2021a). By
detecting both, a robot could potentially obtain a better
understanding of the user’s intent and how to respond. The
gesture-recognition algorithm we use to evaluate our tactile
sensors is based on a random forest and classifies both gesture
and force intensity.

2 TACTILE SENSOR DESIGN AND
FABRICATION

2.1 Sensor Overview
Our fabric-based tactile sensor design consists of a layer of low-
conductivity foam sandwiched between two outer layers of high-
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conductivity fabric, which serve as electrodes. The two
conductive-fabric electrodes are connected to a microcontroller
(Uno, Arduino, Italy) via metal clothing snaps and wires. The
sensor is powered by enabling the internal pull-up resistor of an
analog input pin on the Arduino. One electrode layer is connected
to this analog input pin, and the other electrode is connected to
ground. This simple circuit creates a voltage divider formed by
the internal pull-up resistor and our sensor; we measure the
voltage drop across the fabric sensor to calculate its instantaneous
resistance.

An Arduino’s internal pull-up resistors have resistances
between 20 and 50 kΩ (Arduino, 2018). We tested the pins of
our microcontroller and found them to have internal pull-up
resistance values of approximately 37 kΩ. The chosen high-
conductivity fabric (Shieldex CombiTex, Statex, Germany) has
a sheet resistance of <1Ω/sq., meaning that a square piece of
material of any size would have an edge-to-edge resistance of 1Ω,
which is negligible. The chosen low-conductivity foam (6.0 mm
RS Pro Low Density ESD Foam, RS Components,
United Kingdom) has a sheet resistance that depends on the
force exerted upon it; when undeformed, it is approximately
100 kΩ/sq., and it can decrease down to 0.1 kΩ/sq. when heavily
compressed, giving the sensor a correspondingly wide sensing
range. The electrical layers are placed on top of a base layer of
nonconductive neoprene foam (1.5 mm, Neopren Solution
GmbH, Germany) to disperse touch across a wider surface
area and increase the softness of the robot form. Each layer is
adhered to its adjacent layers at the edges using heat-activated
tape (Thermal Bonding Film 583, 3M, United States).

Because of its uniform structure, applying the same contact at
different places on this sensor produces approximately the same
signal. Therefore, a single sensor equates to one tactile pixel
(“taxel”) and does not provide location within the sensor or have
multi-point touch discrimination. Identifying a general contact
region of the robot’s bodymeets the guidelines for detecting social
touch discussed in Section 1.1. Thus, this sensor design provides
touch data that is both physically and computationally simple yet
effective for social interaction. If an application requires more
precise location information, such as splitting the upper arm into
front and back halves, then multiple smaller sensors can be built
and mounted next to one another.

2.2 Fabrication Process for Curved Surfaces
While a fabric sensor manufactured on a flat surface has good
electrical performance on a flat surface, its performance
significantly degrades when it is bent around a curved surface.
This degradation occurs because all the layers of a flat-
manufactured sensor are cut to the same size. When the
sensor is applied to a curved surface, the outer layers of the
flat-manufactured sensor must stretch to reach around the larger
perimeter. Additionally, the innermost layers may also bunch up.
These stretching and compressing deformations cause the sensor
to perform as though it is already being touched, reducing its
sensitivity and sensing range. This practical challenge is
important to address because most rigid robot body parts are
composed of complex shapes rather than flat surfaces; curved
tactile sensors are thus required. After trying various mitigation

techniques, we discovered that one can best solve this problem by
creating a curved sensor from the beginning, using a curved
building surface that closely matches the curvature of the
sensor’s final intended location. We design the sensor’s
dimensions to increase with each layer so that the material
does not need to stretch.

We provide a full step-by-step visual guide of how curved
sensors are constructed in Figure 2. We also provide a
supplemental video showing the entire fabrication process,
which can be summarized as follows. In step 1, we identify
the shape and curvature of the sensor’s final location. We
created the base layer of each sensor using tailoring:
measuring the area by hand and drawing the resulting shape.
One could also generate the base layer using methods such as 3D
scanning or molding. In step 2, we create templates for the
sensor’s subsequent layers, which can be determined either by
sequentially placing and tracing each new layer or by using
drafting software. In step 3, we assemble all of the necessary
raw materials: high-conductivity fabric, low-conductivity foam,
neoprene foam, heat-activated tape, rubber silicone elastic bands,
and plastic clips. Step 4 and step 5 illustrate the phenomenon
explained previously; for curved surfaces, the sensor layers must
increase in size to compensate for the increased circumference
that comes with increased layer height. In step 6, the materials are
cut to the desired shape using scissors or a laser cutter. A tab-
shaped protrusion is left on the end of each conductive outer
layer. The tape is cut to 10 mm wide and lengths suitable for
placement along all edges. Step 7 shows the order of all material
layers as a reference. Additionally, step 8 indicates that the two
tabs should be placed in different locations to prevent them from
contacting, which would short the sensor. For step 9, we secure
the sensor around a cylindrical form with a radius that closely
matches that of the final sensor location on the robot. A plastic
clasp is sewn onto each rubber silicone elastic band. The silicone
bands are secured onto the Neoprene base layer using either
sewing or heat-activated tape. The silicone coating increases the
friction between the sensor and the outer surface of the robot, to
keep the sensors stationary during interactions. In step 10, heat
and pressure are applied to fuse the heat-activated tape, using
methods such as a clothing iron or a mug press. For this study,
approximately 149°C heat was applied using a clothing iron for
roughly 3 s in each area [as recommended by the tape’s bonding
guidelines (3M – Electronics Materials Solutions Division, 2015)],
using a protective cloth covering and small circular movements to
slowly work across the sensor. Each layer is added and heated
incrementally to ensure the layers adhere properly. Finally, in
step 11, the supply voltage and ground wires are connected to
their respective electrode tabs via clothing snaps, and the sensor is
ready to be mounted on the robot. The snaps also allow the sensor
to be easily removed if needed, e.g., for repair or cleaning the
setup. The final sensor is 10 mm thick.

2.3 Tailoring Sensors Across NAO’s Arm
As a proof of concept for our system, we built four sensors to
cover the left arm of a NAO robot. The arm has four rigid
segments, as seen in Figure 1 and Step 1 of Figure 2: the hand, the
lower arm (between the wrist and elbow), the upper arm (between
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the elbow and shoulder joints), and the shoulder. Each sensor was
fabricated around a glass or metal cylinder of a curvature
matching its corresponding arm segment. The cylindrical radii
for the hand, lower arm, upper arm, and shoulder were measured
at roughly 3.5, 2.5, 3.0, and 4.0 cm, respectively. Rather than being
a perfect cylinder, each arm segment has unique geometry, such
as a bulge on the upper arm representing a bicep muscle, and a
deep cavity in the hand to leave room for fingers. Therefore, each

sensor was fabricated with a custom pattern for an optimal fit. We
have publicly shared the patterns for creating these four sensors
in an online repository (Burns et al., 2022a).

2.4 Estimated Costs and Fabrication Time
We purchased the high-conductivity fabric, low-conductivity
foam, and neoprene foam in pieces that were 100 cm by 130,
100, and 55 cm wide, respectively. With these fabric quantities

FIGURE 2 | A visual guide highlighting the eleven key steps required for building our fabric-based tactile sensors.
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and the heat-activated tape, we estimate the price of the sensor’s
rawmaterials to be 1.88€/10 cm2. As the surface area of the sensor
increases, the percentage of surface area covered by tape will
decrease, and so this price ratio will also decrease. The plastic
clasps, silicone bands, and metal clothing snaps add a nominal
cost. A sensor for the NAO’s upper arm, like that in Figure 2, with
a surface area of 162 cm2 and a perimeter of 55 cm, would cost
approximately 7.78€. The Arduino Uno microcontroller we used
retails at roughly 20€.

We estimate that a novice maker using our sensor patterns
would need approximately 2 h to create a fully operational sensor
using scissors and a clothing iron. Using tools such as a laser
cutter and a mug press should streamline this process to take
closer to 45 min. Regardless of the tools used, the time needed per
sensor would decrease if the maker prepares layers for multiple
sensors in bulk, and as they gain experience with the techniques
and materials. Beneficially, using the fabrication process and
materials we propose, no waiting time is required between steps.

3 USER STUDY TESTING

After designing and constructing sensors for the NAO, we
conducted a user study to learn about the performance of our
tactile sensors as well as how users would receive a touch-sensitive
robot system of the envisioned type. During initial testing of the
sensor design, we observed that different touch gestures and force
intensities could often be distinguished through visual inspection
of the resistance data alone. We suspected that a machine-
learning algorithm could automatically capture these patterns
to perform accurate identification. Therefore, we hypothesized
that the simple yet practical time-series resistance data produced
using our tactile sensors would be sufficient to identify which
sensor was being touched, the level of force intensity a user was
exerting, and which gesture was being performed. Furthermore,
our sensor design was motivated by the touch-perception
guidelines detailed in Section 1.1. Using conductive foam not
only gives our sensors a wide sensing range but also provides a
soft and squishy feel. As Burns et al. (2021a) recommended a
robot’s exterior to have such tactile qualities in order to promote
user interaction, we also hypothesized that users would find our
fabric-based sensors pleasant to touch and the act of touching a
robot to be engaging and appealing.

To test these hypotheses, we introduced participants to HERA,
a robot companion composed of a NAO robot wearing our tactile
sensors and a koala costume (Burns et al., 2021b). We asked 15
adults to conduct five prominent social-touch communication
gestures [as identified by Burns et al. (2021a)] at two force
intensities on each of the four tactile sensors across HERA’s
arm in a full-factorial design. To evaluate the usability of our
sensors, we wrote a machine-learning-based gesture-classification
algorithm that we trained to process the sensor data over time.
The raw sensor data from our user study is publicly available
online, along with start and end indices for all gesture
performances, a MATLAB script for generating the indices,
and the source code for our gesture-classification algorithm
(Burns et al., 2022b). To evaluate the personal experiences of

the users, participants answered several questions about their
interaction with the robot through opening and closing
evaluations with sliding-scale ratings and open-ended questions.

3.1 Participants
As our country was implementing lockdown restrictions due to
the COVID-19 pandemic at the time of this study, we focused
recruitment on our own research institute, including employees
not in research positions and family and friends of employees.We
distributed an institute-wide email advertisement.

We recruited 15 participants (7 female, 8 male) who were all
adults (mean: 32, SD: 5), spoke English capably, and came from
10 different home countries, as reported in a demographic
questionnaire. We also ran one pilot subject whose data are
not included because the study setup and procedures were
slightly modified after their session; participant numbers thus
range from P2 to P16. Participants rated their familiarity with
robots on a five-point scale. Two participants had no prior
experience with robots, one had seen some commercial robots
(novice), one had interacted with some commercial robots
(beginner), seven had done some designing, building, and/or
programming of robots (intermediate), and four had frequently
designed, built, and/or programmed robots (expert).

3.2 Experimental Setup
To start, we secured the four custom-tailored tactile sensors across
the NAO’s left arm. Next, a koala suit outer layer was secured on top
of the sensors. The purpose of the koala suit is four-fold: to create a
friendly robot animal appearance in order to invite touch [as
recommended in Burns et al. (2021a)] to hide the added sensors,
to further soften contact with the robot, and to serve as an additional
electrical insulator to keep the user physically separated from the
sensor circuit. We cut a hole in the suit behind the robot’s head and
its internal cooling fan to prevent overheating. The wires that attach
to the electrode tabs of each sensor were hidden underneath each
sensor, guided up the robot’s arm, down the back, and out of the
koala suit through a small opening. The wires connected to the
Arduino, which was hidden behind a black tri-fold poster that stood
on the table and behind the robot. A webcam was placed near the
setup to record both the robot and the participants’ hands as they
interacted with the robot. This video provided a ground-truth record
of the testing to which the experimenters could later return if there
were any irregularities in the data. The robot was powered on, and its
arm motors were engaged to hold the same joint configuration with
maximum stiffness for each test.

3.3 Procedure
This user study was approved by the Ethics Council of the Max
Planck Society under the Haptic Intelligence Department’s
framework agreement as protocol number F008A. Participants
not employed by our institution were compensated at a nominal
hourly rate. Throughout the user study, the robot did not respond
to any of the performed gestures; it simply held its constant pose.
The four stages of the study proceeded as follows:

1) Demographic questionnaire and opening evaluation
(10 min) – After providing informed consent, the
participant filled out a demographic questionnaire that
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included topics such as country and familiarity with robots.
The participant then completed an opening evaluation
wherein they rated and commented on the tactile appeal of
the robot’s two arms (with and without the added sensors) and
also stated their level of agreement with seven general
statements about the robot; these statements were adapted
from a survey deployed by Fitter et al. (2020) and can be seen
in Table 1.

2) Instructions for touch interactions (5 min) – The
experimenter showed instructional slides explaining the
upcoming touch interactions. The participant was
introduced to the five gestures to perform in the study –
“hitting”, “poking”, “stroking”, “squeezing”, and “tickling.”
We also provided printed definitions for the touch gestures as
defined by Yohanan and MacLean (2012) in their touch
dictionary. Next, the participant was informed which force
intensity they should use on the robot first – “gentle” or
“energetic” – and practiced at least one sample trial of their
first force condition.

3) Touch interactions on the robot (2 × 10 min) – The
experimenter switched to an automated presentation that
indicated the force intensity, sensor location, and touch
gesture to use in each trial. Figure 3 shows sensor data

being recorded as a participant interacts with the sensor;
the automated instructions can be seen in the background
of the inset image. The participant was instructed to use the
same force intensity for all of the touch interactions in this half
of the task. Additionally, gestures were performed on one
sensor location at a time. At each sensor location, the
participant executed each of the five gestures in a randomly
assigned order. Each gesture was performed for 5 seconds,
with a 5-s break of no touching between successive gestures.
This approach is consistent with previous literature, such as
Cang et al. (2015). Within the 5 seconds for touching, the
users could do as many instances of the gesture as they
wanted. This process was repeated twice for a total of three
trials of each gesture. Once all of the gestures had been
performed three times at the sensor location, the
participant was instructed to move on to the next
randomly ordered sensor location. This process was
repeated until gesture data had been collected at all four
sensor locations using the first force intensity. Finally, this
entire step was repeated using the second force intensity. In
total, each of the 15 users performed the two force
intensities × 5 gestures × 4 sensors × 3 repetitions = 120
trials. We provide a supplemental video that shows a
sample recording of the experimenter’s interface during
this phase of the study.

4) Closing evaluation (5 min) – The participant rated their level
of agreement with the same seven statements from the
opening evaluation and provided any final comments. They
were additionally asked how they expected the robot would
react to the gestures and force intensities from the touch
interactions.

The resistance measurements from all four sensors were
recorded at a sampling rate of 40 Hz during all gesture

TABLE 1 | The seven questions in the robot acceptance survey asked in both the
opening and closing evaluations.

I like the presence of the robot
I feel threatened by the robot
I am afraid of the robot
I am afraid to break something while using the robot
I think using the robot is a good idea
I feel safe touching the robot
It could be useful to touch the robot

FIGURE 3 |Real-time sensor readings show how the four sensor resistance values change (A) as the participant interacts with the robot (B). The four × symbols on
the plot mark the experimenter’s timestamps. In this example, the participant performed an energetic tickling gesture on the robot’s hand between 90 and 96 s and
performed energetic stroking on the same body part between 101 and 107 s.
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performances. The experimenter held a manual button that was
connected to the microcontroller. For every trial, the
experimenter pressed this button just before the participant
began a gesture and again immediately after the gesture’s
completion, which created timestamps marking the boundaries
of each gesture performance.

3.4 Gesture Classification
The resulting raw data from the four tactile sensors were then
prepared for classification. As the randomized gesture order was
generated in advance, the experimenter had a ground-truth order
withwhich to pair the timestamps.We could then systematically label
gesture data for each dataset; time spans with no gesture were labeled
“none.” Every dataset was inspected in Tableau Software to ensure
there were no missing or added markers, which would cause
mislabeled data. Upon detailed inspection, we found that
momentary electrical shorts to ground had occurred in the
shoulder sensor’s resistance data during some gesture
performances. Most of these shorts occurred during participants’
interactions with the neighboring upper arm sensor. We also
discovered two trials where the hand and lower arm sensor
temporarily shifted to identical resistance values, which we assume
was caused by momentary electrical contact. We discarded all trials
that contained one or more momentary shorts to avoid providing
corrupted data to the classification algorithm; in total, 117 of the 1800
recorded gesture performances (15 participants × 120 trials per
participant) were removed, leaving 1683 labeled intervals.

Next, we developed and refined the gesture classification
algorithm. The classification was conducted using Python and
the Scikit-learn library. We segmented the time-series data using
a moving window size ofw data points and an overlap size of 0.5w
between successive windows. If a data segment had an overlap of
at least 0.75w with any of the gesture time spans, the segment was
labeled with that gesture. Otherwise, it was labeled as “none.” For
each segment, we calculated a vector of 124 features (31 from each
of the four sensors), including the entropy of each resistance
signal, and the sum, max, min, average, median, standard
deviation, variance, area under the curve, interquartile range,
and number of peaks for the signal itself, as well as all ten of these
metrics for the signal’s first and second derivatives over time.
These features were selected based on previous work on touch
gesture classification, such as Gaus et al. (2015).

We trained and tested a random forest classifier on the raw data
segments using a 70%–30% train-test scheme that was randomly
sampled across all participant data. We selected a window size of w =
80 samples (about 2 s), as it provides good test accuracy on gesture
classification and a reasonably fast reaction time for future responses
from the robot. This window size is also consistent with prior work on
touch gesture classification, such as Cang et al. (2015). The parameters
we used for the random forest model can be found in Table 2.

4 USER STUDY RESULTS

This section summarizes the results from our user study,
including the gesture classification algorithm’s performance,
the participants’ answers from both the opening and closing

evaluations, and our observations of notable unexpected
behaviors that users performed while interacting with
the robot.

4.1 Classification Results: Location, Force,
and Gesture
In all cases, the classification algorithm operated on the
simultaneous data from all four sensor channels. To
characterize the expected performance in unstructured
interactions, we also evaluated the system’s ability to
recognize the lack of contact, which was labeled “none.”
Figure 4 shows the gesture classification algorithm’s
performance as confusion matrices, classifying location,
force intensity, and gesture individually. The location of
each touch interaction was identified with 96% or greater
accuracy for all sensor locations (chance level is 1/5 = 20%).
The system correctly identified force intensity with an average
accuracy of 89.3% (chance level is 1/3 = 33.3%). In the case of
identifying only gesture, without intensity, the classification
system had an average accuracy of 74.3% (chance level is 1/6 =
16.7%). We also looked at the gesture classification accuracy
by sensor location: gestures on the hand, lower arm, upper
arm, and shoulder had an average classification accuracy of
78, 74, 77, and 68%, respectively.

4.2 Classifying Force and Gesture Together
Next, we present the case where the gesture classification system
predicted both gesture and force intensity together. The resulting
confusion matrix is presented in Figure 5. The system had an
average label accuracy of 74.1%, which is about 8.2 times higher

TABLE 2 | The parameter values that were used for the gesture-classification
algorithms. Unless otherwise specified, the same value was used for
classifying contact location, intensity, gesture, and gesture and intensity together.

Parameter Value

bootstrap True
class_weight None
criterion “gini”
max_depth Location: 40

Intensity: 20
Gesture: 40
Gesture and Intensity: 32

max_features 20
max_leaf_nodes None
min_impurity_decrease 0.0
min_impurity_split None
min_samples_leaf 1
min_samples_split 8
min_weight_fraction_leaf 0.0
n_estimators Location: 50

Intensity: 100
Gesture: 100
Gesture and Intensity: 100

n_jobs 1
oob_score False
random_state None
verbose 0
warm_start False
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than the chance of randomly guessing a gesture correctly (1/11 =
9%). Energetic squeezing had the highest recognition rate at 88%.
Gentle tickling was the hardest to identify, obtaining 64%
recognition accuracy. Gentle tickling was most commonly
confused with gentle poking (11% occurrence). Compared to
results based on identifying gesture alone, identifying both
gesture and force level improved the recognition accuracy for
poking and tickling at both force levels. For the hitting and
stroking gestures, the energetic force level had higher
identification accuracy, and the gentle force level had lower
identification accuracy. Finally, squeezing without a force level
had a 90% recognition rate, whereas gentle squeezing and
energetic squeezing had 80 and 88%, respectively.

4.3 Preference on the Feel of the Tactile
Sensors
Participants were asked to rate the feel of both the robot’s left and
right arms on a scale from 0 to 10, with 0 being “Unpleasant to

touch” and 10 being “Pleasant to touch.” While both arms were
covered with the soft koala suit, the robot’s left arm also had the
added fabric-based tactile sensors underneath. One participant
ranked both arms as equally pleasant, and all other participants
ranked the arm with the added tactile sensors as more pleasant to
touch. Anderson-Darling tests confirmed that participants’
ratings for both arms were normally distributed. A paired-
samples t-test revealed that there was a significant difference
in the pleasantness scores for the feel of the arm with the added
tactile sensors (mean: 8.0, SD: 1.3) and the feel of the arm without
the added sensors (mean: 3.5, SD: 1.7, t (14) = –6.5, p < 0.001).

Participants were also asked to elaborate on their numerical
ratings with an open-ended written response. Several participants
referred to the sensor-covered armwith positive phrases such as “soft
and squishy”, “friendly”, “warm”, and “quite pleasant.” Conversely,
the arm without added sensors was referred to with phrases such as
“stiff” and “hard and unnatural.” Another participant wrote, “It
would be even better if the whole robot was squishy.”

4.4 Perceptions Before and After Touch
Interaction
Participants rated their agreement with seven statements (Table 1)
in the opening and closing evaluations on a scale from 0 (“Strongly
disagree”) to 10 (“Strongly agree”). The results can be seen in
Figure 6, labeled by the bold keyword in each statement.

Anderson-Darling tests revealed that the assumption of
normality was violated for the results of four opening
evaluation statements (threatened, afraid, break, and safe), and
for three of the closing evaluation statements (threatened, afraid,
and safe). Therefore, we evaluated each of the seven robot
acceptance statements with a Wilcoxon signed ranks test. We
found that only one prompt underwent a statistically significant
change in rating. Participants agreed with the statement, “I like
the presence of the robot,” significantly more after the touch
interaction sessions (mean: 7.9, SD: 2.0) compared to before the
touch interactions (mean: 6.9, SD: 2.1, n = 15, Z = 2.937, p =
0.003). There were no other statistically significant changes in
ratings among the robot acceptance questions. The non-
significant results for the remaining comparisons are as
follows: threatened (n = 15, Z = 0.677, p = 0.498), afraid (n =

FIGURE 4 | Normalized confusion matrices showing the classification results for location, force intensity, and gesture.

FIGURE 5 | Normalized confusion matrices showing the classification
results for both force intensity and gesture together.
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15, Z = -0.405, p = 0.686), break (n = 15, Z = -1.099, p = 0.272),
good (n = 15, Z = 1.482, p = 0.138), safe (n = 15, Z = 1.265, p =
0.206), and useful (n = 15, Z = 1.425, p = 0.154).

4.5 Expected Robot Reactions
The participants rated how they expected the robot to react to the
various touches, on a scale from 0 (a very negative reaction) to 10 (a
very positive reaction). The resulting ratings can be seen in Figure 7
in the form of a box-and-whisker plot. Energetic poking, energetic
hitting, and energetic squeezing all had median responses below 5,
indicating that participants expected the robot to give a generally
negative response for these three actions. All other gesture and force
combinations had a median value higher than 5, signifying a
generally positive response. However, it is interesting to note that
some actions did not have a clear consensus between participant
responses. For example, while energetic squeezing and energetic
tickling received median ratings of 4.0 and 6.5, respectively, their
relatively large interquartile ranges show that participants predicted
both positive and negative responses. Some participants explained
that they felt the response from the robot should be situation- or
mood-dependent. For example, a deep squeeze could provide
comfort and support, or it could be rough and hurtful.

4.6 Notable Observations
During the course of our study, some participants exhibited two
unexpected behavioral patterns. We share these observations to
provide additional context for the gesture classification and
survey results.

First, we observed that participants appeared to have differing
perceptions of “gentle” and “energetic.” A gentle touch was
typically reflected in the data as a narrow range of resistances,
and an energetic contact tended to translate to a wide range.
Figure 8 provides box-and-whisker plots grouped by sensor

location to show the resistance ranges observed during each
gesture. The same data are presented by participant in the
supplementary materials for this manuscript. Although
energetic performances typically did have higher ranges, some
participants applied the same amount of force for both touch
interaction sessions (e.g., P3 and P9). Additionally, energetic
gestures by some participants were in the range of gentle
gestures performed by others, such as P7’s unusually strong
“gentle” gestures compared to P2’s low-range “energetic”
gestures. We believe that individual preference, inattentiveness,
and fatigue may have all played roles in generating these varying
performances. Some participants were also hesitant to touch the
robot energetically; for example, participant P4 wrote in the
closing evaluation, “I felt uncomfortable with [performing] the
energetic gestures as if it was a living creature.”

Additionally, of all the gestures we instructed participants to
perform, we observed that the hitting gesture evoked the most
vocal responses. Several participants expressed reluctance or
distress at being instructed to hit the robot. During the touch
interactions, one participant (P4) said, “I don’t like to hit the
robot.” Another participant, P5, asked, “Do you want me to
actually hit the robot?”While performing a set of energetic touch
gestures, P6 hit the robot with particularly high force and then
quickly said, “Oh, sorry!” to the robot.

5 PHYSICAL SENSOR TESTING AND
RESULTS

While conducting the user study, we noted that the shoulder
sensor appeared to have a smaller sensing range than its
counterparts. Due to all four sensors’ differences in surface

FIGURE 6 | A box-and-whisker plot comparing participants’ level of
agreement with seven questions before and after interacting with the robot.
For each distribution, the central line indicates the median, the box shows the
interquartile range (IQR), the whiskers show the range up to 1.5 times the
IQR, and + marks indicate outliers.

FIGURE 7 | A box-and-whisker plot showcasing participants’ ratings of
how they expect the robot would react in the future to the various touch
gestures. A rating of 10 indicates a very positive response, and a rating of 0
indicates a very negative response. Touches with a gentle force intensity
are shown in blue, and energetic gesture variations are colored red.
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area, shape, and curvature, we were curious to understand
whether and how their sensing performance varied.

5.1 Physical Experiment Procedure
Our physical sensor experiments utilized the same setup as the
user study experiment, except that rather than touching the robot
directly, the experimenter used a compression load cell (FC-22,
TE Connectivity, Switzerland) attached to a cylindrical indenter
tip with a diameter of 13 mm (to mimic the size of a fingertip).

We wanted to evaluate the fabrication and performance
consistency of our sensors by testing the sensitivity at several
points across each sensor’s surface area. We also wanted to
characterize the hysteresis of our sensors – the change in
sensor resistance output values based on whether the external
force on the sensor is increasing (loading force) or decreasing
(unloading force). To accomplish both of these goals, an
experimenter used the indenter tip of the load cell to press
across the surface area of each tactile sensor with a force
range of 0–30 N. To determine whether the koala suit affects
the system’s performance, this experiment was performed
both with and without the koala suit on top of the sensors.
Data collection always started from no contact. The
experimenter pressed down with the load cell until it
reached 30 N and then withdrew the indentation again
back down to no contact. Each touch indentation occurred
at intervals spaced roughly 2 cm apart across each sensor. The
experimenter simultaneously provided support to NAO’s
arm at the next closest arm segment to prevent damage to
the robot’s fully engaged motors. The experimenter was
careful not to touch the sensor currently being tested while
supporting the robot’s arm.

5.2 Physical Experiment Results
Performance markers were calculated for each of the four tactile
sensors with and without the koala suit. First, it was found that
the sensors have different initial resistances (i.e., the measured
resistance when no external force is being applied) and different
sensing ranges (i.e., the full range of resistance values a sensor

may have depending on the force exerted upon it) due to their
differing surface areas, manufacturing variations, and pre-
compression by the koala suit. For example, with the koala
suit on, the hand sensor had an average initial resistance of
11.5 kΩ, while the lower arm, upper arm, and shoulder had
resistances of 18 kΩ, 9.5 kΩ, and 4.0 kΩ, respectively.
Therefore, Figure 9 provides a normalized comparison of the
measured resistance, R, by dividing each reading by that sensor’s
initial resistance, R0, in that condition. This visualization shows
that the sensors on the hand, lower arm, and upper arm
demonstrate very similar sensing behavior relative to their
starting resistance, as does the shoulder sensor in the “without
suit” condition. The shoulder sensor shows much less response
when in the koala suit. Looking more closely, one sees that the
lower arm and upper arm sensors also become somewhat less
sensitive when covered by the suit.

Figure 9 is annotated to show each sensor’s initial sensitivity,
final sensitivity, and hysteresis, with and without the koala suit
present. The initial and final sensitivities for each sensor were
calculated with and without the suit using the slope of the
corresponding force-resistance loading curve; we calculated the
average slope from the first and last five data samples,
respectively. With the suit, the average normalized initial
sensitivity of the hand, lower arm, and upper arm sensors is
–0.181 N−1. The average final sensitivity was –0.004 N−1,
confirming that all three of these sensors reach their
saturation point at roughly 30 N. With the suit, the shoulder
sensor was found to be nearly 10 times less sensitive than the
other three sensors at initial contact and similarly sensitive at final
contact. Returning to the other three sensors, the human sense of
touch prioritizes good resolution at low force and has coarser
resolution at high force. For example, on the arm, one experiences
a pleasant mood from affective touches occurring around 0.6 N
(Taneja et al., 2019) and a maximum pain threshold at 25 N
(Melia et al., 2015). Aside from the shoulder sensor, which will be
discussed below, our sensor design emulates this nonlinear
response, making it suitable for detecting a broad range of
social-touch gestures.

FIGURE 8 | Box-and-whisker plots indicating the range of sensor resistance readings during all participants’ cumulative gesture performances. Gentle trials are
shown in a pale color directly next to the more darkly colored energetic trials of the same type.
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The hand, lower arm, and upper arm sensors all showed fairly
consistent initial sensitivities across their surface areas. We
observed that they all demonstrated a slightly diminished
initial sensitivity around the perimeter, potentially due to the
layers of non-conductive heat-activated tape that bind the layers
at the edges. The least sensitive point on any edge of these three
sensors had an initial sensitivity registered at –0.044 N−1, which is
about four times worse than the average in the center and twice as
good as the average in the center of the shoulder sensor.

The effect of hysteresis is present and consistent across
indentations; it appears as distinct loading and unloading
curves in Figure 9. We numerically quantified the average
observed hysteresis for each of these eight conditions by
calculating the ratio between the maximum vertical separation
between the loading and unloading resistances across the tested
force range divided by the total range of the minimum and
maximum resistance readings. Without the suit the four sensors
show between 12.2 and 21.5% hysteresis. When the suit is added,
the hysteresis decreases somewhat.

6 DISCUSSION

This paper has presented a soft, low-cost, easy-to-manufacture
tactile perception system that can be externally fitted onto

existing hard-bodied robots for social-physical human-robot
interaction. We sought to create a system that can work on
curved surfaces and differentiate both the contact gesture and
force intensity applied. Our system’s hardware consists of a set of
pre-curved fabric-and-foam-based tactile sensors attached to the
left arm of a NAO robot. We analyzed the outputs of these four
sensors by applying a gesture-classification algorithm to a dataset
collected during a user study and also performing select physical
experiments. Furthermore, we investigated users’ reactions to
interacting with a touch-perceiving robot through opening and
closing surveys. This section reflects on the strengths and
limitations of the scientific methods we utilized, and it
discusses the contributions of our work toward future research
in human-robot interaction.

6.1 The Shoulder Sensor
In the user study, the shoulder sensor had the lowest gesture
classification accuracy of the four sensors (68 versus 78, 74, and
77%). The physical experiments showed that the shoulder sensor
was nearly ten times less sensitive than the other three sensors.
Why did this sensor perform so poorly? While we originally
believed that the cause lay with our fabrication process,
investigation revealed that the external koala suit was the core
issue. We customized a child-size koala pajama suit that roughly
fit the robot. However, unlike children, the NAO robot has large

FIGURE 9 | Normalized comparisons of individual sensor’s resistances across the tested force range with and without the koala suit, averaged across all trials of
each physical experiment. The initial and final sensitivities are represented using semi-transparent lines oriented at the appropriate slopes. Each plot also lists the
corresponding numerical values for sensitivity and hysteresis.
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shoulder pads. Since we did not tailor the suit to provide
additional room in the shoulders, the koala outfit pre-
compressed the shoulder sensor. When we measured this
sensor’s response with the suit on, we obtained an initial
resistance that was much lower than without the suit; the
compression tests with the suit were thus measuring only the
tail-end of the force-resistance curve, after the sensor had already
been greatly compressed. When the suit was removed and the
shoulder sensor was measured separately, it performed similarly
to the other three sensors. Therefore, if the robot is fitted with an
external suit, it is important to ensure that the suit fits consistently
across the sensor system. Moving forward, we will modify our
koala suit so that it no longer exerts pressure onto the shoulder
sensor in comparison to the other sensors.

6.2 Physical Design Implications
We discovered some aspects of our sensor design that should be
addressed in future versions of similar tactile sensing systems.
First, while the top and bottom faces of the sensors are covered
with insulating material, the sides of the sensor are exposed.
When the edges of two sensors touch, they electrically connect
and interfere with each other’s signals. We had to remove 6.5% of
the recorded gesture trials from our dataset due to different
sensors experiencing momentary electrical shorts. The
electrically exposed sensor edges could be better protected by
adding an insulating layer that surrounds the entire sensor,
though care should be taken not to reduce the active sensing
area or introduce hard edges that disrupt the feel of the system
(Burns et al., 2021a).

Secondly, we observed that the sensors display a peak of high
resistance after contact and release, followed by a slow descent
back to the baseline resistance, rather than an immediate return;
an example of this behavior is visible in the hand sensor data in
Figure 3. We suspect this slow return down to baseline resistance
has mechanical origins. The sensor layers are secured together
around the perimeter with heat-activated tape, leaving the middle
of the sensor to have a small air gap between layers, which helps
the sensors detect low-force touches. However, when the sensor is
touched and released, the foam layer expands more slowly than
the outer fabric layer. As the foam fills in to its original size, the air
gap between these two layers is reduced, increasing the
conductive surface area back to its original baseline. This
phenomenon causes the sensor resistance to have somewhat
different values depending on how recently it was touched. In
the future, this variable air gap could be removed by using
conductive adhesive across the whole surface area of each
sensor, rather than just taping the edges. However, this
solution may also lower the sensor’s ability to detect low-force
touches.

Incidentally, we also found that the baseline sensor resistance
gradually increases over the course of months, presumably due to
tarnishing of the conductive fabric and foam; normalizing by the
sensor’s initial resistance in a session removes this effect. Finally,
even though we fixed the sensors in place with clasps and the
silicone-grip bands, we found that sensor locations slightly shifted
during the user study when the participant touched the robot
particularly energetically. Moving to slightly different poses on

the robot’s body changes the baseline resistance of these sensors,
as it changes their curvature; an example of this behavior is visible
in the lower arm sensor data in Figure 3 at the start of the second
gesture. We tried applying a high-pass filter at 0.5 Hz to remove
the resulting baseline shifts from our user study dataset and also
stabilize the slow return to baseline mentioned above. However,
we ultimately omitted this processing step as we found it did not
improve the classification accuracy, most likely because it also
discards useful information about the intensity of contacts that
occur. Instead, these changes can be reduced in the future by
securing the sensors more tightly in place on the robot’s body
parts, either by using higher-friction straps that can be tightened,
or by securing the sensors with another mechanism such as
double-sided tape.

6.3 Taxel Size
As each of our sensors acts as a single taxel, we identified the
general touch location based on where the sensor was fastened on
the robot’s body. It is possible that attaching several smaller
sensors to each rigid body part could improve gesture recognition
accuracy, since some gestures tend to move across the surface.
However, increasing the number of taxels would also increase the
hardware complexity and computational load of the touch-
perception system. Low system complexity is an important
design feature when one wants to add sensors to a large
portion of the robot body, as we plan to do in the future.
Furthermore, the borders between neighboring sensors might
be particularly susceptible to electrical shorting and could
diminish the system’s pleasant feel. While we showcased the
quality of gesture classification that is possible using four sensors
that each cover a relatively large surface area, future researchers
will need to consider the size and number of taxels best suited for
their intended application.

6.4 User Study Limitations
The majority of our study participants had intermediate- or
expert-level familiarity with robots (7 and 4 out of 15,
respectively). While we had hoped to gather data from more
novices, the COVID-19 pandemic limited our recruitment to
participants with some connection to our research institute.
Having participants who are less experienced with robots may
have produced different results. However, recruiting internally
enabled us to conduct this preliminary user study despite
pandemic restrictions, which was essential for evaluating our
tactile sensors and understanding participants’ perceptions of the
overall robot system. Furthermore, the users of future touch-
perception systems for robots are most likely to already be
familiar with robots. Additionally, there may have been some
self-selection bias in our recruitment, with only those positively
inclined toward touching robots answering our email.
Nonetheless, our participants were diverse in many ways, such
as home country, gender, and age, and they voiced a wide range of
opinions about the presented robotic system.

We gave our participants limited instructions during the touch
interaction sessions. By not providing specific numerical ranges
for the force intensities to exert, we encountered a wide range of
perceptions of what it meant to perform gestures gently or
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energetically. Furthermore, in the case of the “hitting” gesture,
two participants actually conducted a “poking” gesture instead,
including a participant who said they did not enjoy hitting the
robot. Such behaviors make the classification problem nearly
impossible and lead to some misclassifications. However, we
believe that using these limited instructions enabled us to
record participants contacting the robot very naturally,
creating a more general classification model that we believe
will be useful beyond this user study during everyday interaction.

6.5 Visual Appearance of the Robot
Our robot HERA has a cuddly koala exterior. Four participants
referred to it as “cute” or “adorable,” and P4 said that it was like “a
living creature.” It is possible that participants would have
performed their touch gestures differently, or answered the
evaluations differently, if the robot had a different appearance
(e.g., a humanoid, an abstract design, or a scarier animal).
Participants’ ratings on the three relevant questions of the robot
acceptance survey showed they liked the robot’s presence, they
found the robot to be non-threatening, and they were not afraid of
it. These positive ratings could explain why participants expressed
discomfort in hitting the robot. Future research could investigate
how people touch and act toward touch-sensing robots with other
appearances and form factors.

6.6 Gesture-Classification Approach
We asked participants to perform each touch gesture for a fixed
duration of 5 s per trial. Within these 5 s, the user could do the
gesture as many times as they wanted. Like the variability in exerted
force intensity, these variations in gesture frequency likely made the
gesture classification taskmore difficult. During a natural interaction
between a user and the robot, some gestures might be conducted
over time frames that are different from our data collection window,
such as a user poking or hitting only once. While windowing is a
common method for classifying time-series data, another method
would be to use thresholding on the signals themselves, or their
derivatives, to promptly identify the start and end of contact.

Nonetheless, our preliminary results suggest that the proposed
touch-perception system can accurately detect social touch
including the contacted body part, force intensity, and gesture.
With an average accuracy of 74.1% (about eight times better than
chance), our classifier performs comparably to other social-touch
setups with more complex hardware and software, such as
Keshmiri et al. (2020), even when identifying more force and
gesture combinations. These results support our hypothesis that
the rich time-series resistance data from our tactile sensors can
capture both the gesture and force level conducted. Future
researchers can further improve the presented data collection
and analysis approaches for specific use cases.

6.7 Implications for Future Research
People enjoyed touching the soft, sensor-covered robot. Their
impression of the robot was also significantly improved after
interacting with it. Furthermore, multiple participants actively
voiced displeasure when asked to hit the robot, with some opting
to touch it in gentler ways. Altogether, these results lend credence to
our hypothesis that users would find it appealing and engaging to

interact with a touch-perceptive robot. It will be interesting to study
how user impressions further evolve when a robot provides a response
to their touches. Although we received initial recommendations from
our participants, additional research will be needed to investigate the
optimal ways for a robot to react to the various touch gestures it feels.
Different responses may be more context appropriate to the input
based on the robot’s role. For example, robots serving as caretakers,
teachers, or animal companions might all need to react differently to
an “energetic poking” gesture.

For this study, we covered NAO’s left arm with tactile sensors. As
a next step, we want to extend sensor coverage across NAO’s entire
body. We are now starting to digitize the sensor fabrication process,
including designing additional sensors in drafting software, utilizing a
laser cutter to create the layers, and swapping out our clothing iron for
a mug press, as shown the supplementary fabrication video. These
steps will streamline the sensor creation process and ensure even
higher standards of reproducibility.We alsowould like to assist others
in creating similar sensors for their own hard-bodied robot systems.
Therefore, we plan to continue creating and sharing sensor patterns
for the NAO robot in our database (Burns et al., 2022a).

Our next goal is total system integration. We plan to move the
gesture classification from offline to real-time operation by
establishing direct communication between the tactile sensors
and the algorithm. This improvement will let us test how well our
classification approach generalizes to completely new sensor data,
and it will enable the robot to immediately react to detected
gestures using sounds, lights, or movements. When the robot has
the ability to move its body, we will need to account for any
mechanical stimulation of the sensors caused by the robot’s own
motion.We plan to train our system to predict self-touch artifacts
generated by robot motions so that it can quickly and accurately
identify external contacts that occur.

To date, there has been a glaring absence of social-touch
perception in the current technology for human-robot interaction
and socially assistive robotics. Conducting this study has proven to
us that it is both possible and worthwhile to add tactile perception of
both gesture and force intensities to social robots. Although the task
of fully integrating an external system into an existing robot can be
challenging, we believe that adding touch perception will enable
robots to mimic the types of social touch interactions that occur so
commonly between humans in everyday life, thereby providing users
with more engaging and meaningful teaching, assistance, and
companionship experiences.
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