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Liquid crystal elastomers (LCEs) are a rubbery network of polymers with ordered liquid
crystal mesogens. The combination of rubber elasticity and the anisotropic liquid crystalline
order gives exceptional mechanical properties, like soft elasticity, where near-constant
stress accompanies large elastic deformation in the material. However, the soft elasticity in
LCEs is often bounded by the intrinsic molecular interactions and structures, limiting the
range of programmable mechanical properties and functionalities. Here, we demonstrate
that the semi-soft elasticity of LCEs can be integrated into the framework of metamaterials
to realize markedly programmabilities. Under uniaxial deformation, each state of the
building blocks in metamaterials and the molecular composition of the nematic LCEs is
associated with a distinctly different stress-strain relation that is fully elastic. Taking
advantage of the tunable bending and stretching deformation enabled by the geometry
of the building blocks and the semi-soft elasticity of the nematic LCE in the metamaterials,
we can engineer the local stretch and stress at an unmet level of their counterpart
composed by elastomers. Numerical simulations and analytical models are developed
to relate the metamaterial geometries and the LCE soft elasticity to the mechanical
responses. In addition, an elastic region with near-zero stiffness up to a stretch of 1.4
can be designed by connecting the compliant responses due to bending deformation and
the soft elasticity in the LCE. We expect that the specialized mechanical tunability enabled
by the LCE metamaterials can facilitate the development of advanced forms of mechanical
metamaterials and impact the design of robotic systems.

Keywords: metamaterials, liquid crystal elastomer, soft elasticity, programmable materials, strain softening and
stiffening

1 INTRODUCTION

Programming mechanical properties and functionalities are one of the most fundamental goals in
material science, owing to its central role in applications (Surjadi et al., 2019). To design a material
with a targeted set of properties and mechanical responses, people have endeavored to discover new
materials, modify the material compositions, and optimize the material manufacturing process
(Meyers and Chawla, 2008; Fleck et al., 2010). Great progress has been made in developing materials
with the desired properties over the past centuries. However, intrinsic mechanical properties and the
basic physical mechanisms often limit the capacity to design materials with desired responses
(Surjadi et al., 2019). For example, the positive stiffness is required for stability of an unconstrained
block of material in deformation based on thermodynamics (Wang and Lakes, 2005; Coulais et al.,
2015); the stiffness-toughness conflict exists in regular polymer networks where the crosslinks stiffen
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the polymers but embrittle them (Lake and Thomas, 1967; Kim
et al., 2021); the intimate coupling between strength and density is
observed in most materials where high strength normally means
large density (Schaedler et al., 2011; Yu et al., 2018).

Nature has provided numerous examples of well-defined
architectures to bypass the general limitations in material
design, achieving mechanical properties and functionalities
differing from and surpassing constituent materials (Meyers
et al., 2008; Launey et al., 2010). For example, the carps are
known to have superior toughness against the penetration from
predator’s tooth by developing the “Bouligand structure” in their
scales, where fibrils of collagen are aligned in layers, with the fibril
in each layer rotating by roughly 36° (Quan et al., 2020). Soft
biological tissues composed of semiflexible filamentous proteins
can undergo strain-stiffening, with a tenfold increase in shear
moduli under strains as small as 20% (Gardel et al., 2004; Storm
et al., 2005).

Inspired by the architectures in biological materials, recent
advancements in manufacturing techniques have enabled
material design via geometric arrangements of the underlying
structures (Bertoldi et al., 2017; Kadic et al., 2019). Built upon the
periodically arranged building blocks, mechanical metamaterial
has been fabricated to mediate mechanical deformation, stress,
and energy (Kochmann and Bertoldi, 2017). It also boasts the
discoveries of functionalities not available in natural materials,
such as auxeticity (Lakes, 1987), negative stiffness (Coulais et al.,
2015), and non-monotonic energy dissipations (Liang and
Crosby, 2020a). Traditionally, the design for properties
exhibited in metamaterials relies on the structural responses in
the periodic building blocks, where a linear elastic or a
hyperelastic constitutive relation of the materials are adopted
(Bertoldi et al., 2017; Pishvar and Harne, 2020). Recently, new
characteristics have been realized in metamaterials by combining
additional fields beyond elasticity. For example, the ability to alter
mechanical memories with stable memories (Chen et al., 2021),
or to generate reversible solid-solid phase transitions (Liang et al.,
2022) is achieved by incorporating magnetic domains in
metamaterials. However, these functionalities are still
programmed through the building blocks’ geometries, focusing
on the spatial heterogeneity in the structures.

The control of the structural responses of the building blocks
has motivated the design of sophisticated layouts in the
metamaterials while avoiding selecting materials with complex
constitutive responses in previous studies. Although effective,
such a paradigm might constrain the tunability of the mechanical
properties and functionalities, leaving an ample design space
unexplored for the material-based programmability.
Synergetically combining the material-level constitutive
behaviors and structural-level building block mechanical
responses can open new avenues for programmable
metamaterials. A recent study has demonstrated that coupling
the constitutive materials’ viscoelasticity with the elastic snap-
through instability in metamaterials can exhibit a programmable
hysteric response with optimal dissipations at different loading
rates (Dykstra et al., 2019).

In this paper, we integrate the soft elasticity in the liquid
crystal elastomer (LCE) into the framework of metamaterials. By

engraving the orthogonally aligned elliptical pores into an LCE
sheet, we can create a metamaterial with networks of “plates”
connected by thin “ligaments” that undergo programmable
strain-softening to strain-stiffening responses (Liang and
Crosby, 2020b). The nematic LCE in the metamaterials can
enter the state of soft elasticity as the material is stretched
vertically to the liquid crystal ordering direction, where the
deformation is accommodated with near-constant stress as
liquid crystal mesogens rotate (Küupfer and Finkelmann, 1994;
Warner and Terentjev, 2007; Biggins et al., 2008). As a result, the
nematic LCEs have a “stress-strain plateau” during liquid crystal
mesogens’ rotation and stiffen as the molecules align to the
stretching direction. Although the constitutive responses in
LCEs rely on the molecular structures, the critical stretch to
trigger the compliant and stiffening effect is controlled by the
local deformation in the building blocks (Liang and Crosby,
2020b). By tuning the structural geometry and the molecular
compositions of the metamaterials, we can design the structural
responses in the building blocks and the soft elasticity of the LCEs
in a coupled and controllable manner. This framework can
extend the design space in the material-based tunability
unavailable by controlling the geometry in the building
blocks alone.

This paper studies the mechanical responses of metamaterials
composed of liquid crystal elastomers with soft elasticity. The
paper is structured as follows. We first describe the semi-soft
elasticity constitutive model of the nematic LCEs stretched
perpendicularly to the molecule’s ordering direction in Section
2. Finite element simulations that incorporate the semi-soft
elasticity constitutive model into metamaterials with different
geometries in the building blocks are presented in Section 3. The
simulated mechanical responses reflect how the soft elasticity in
LCEs and the pore shapes in the building block synergetically
program the mechanical responses, particularly the strain-
softening and strain-stiffening behaviors. In Section 4, we
derive a reduced analytical model to understand the coupling
between the material and the structural properties. The
metamaterial is modeled as rigid rotating plates connected by
elastic springs, in which the soft elasticity governs the material
constitutive responses. We conclude with a few remarks on
material-based tunability based on the metamaterial geometry
and the soft elasticity, with a new strategy for programming
material properties and functionalities.

2 NEO-CLASSICAL THEORY FOR LCES

Liquid crystal elastomers are rubbery polymer networks
composed of molecules with liquid-like mobility and are
capable of withstanding large deformation. By incorporating
the spontaneous liquid-crystalline ordering into networks of
the polymers, the nematic LCEs can reach a delicate balance
between the stiffness of the liquid crystal molecules and the
entropically driven elasticity of polymer chains (Warner and
Terentjev, 2007). Compared to elastomers described by the
classical rubber elasticity, the aligned liquid crystal mesogens
in the nematic LCE induce the molecular shape anisotropy,
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modifying the elastic function in deformation (Bladon et al., 1993;
Verwey and Warner, 1997a). Previous efforts have been made to
extend the classical rubber elasticity to account for the nuances
with liquid crystal orderings, known as the “neo-classical” theory
for rubber elasticity (Warner and Terentjev, 2007; Biggins et al.,
2008; Biggins et al., 2012; Sonnet and Virga, 2012). Here, we
briefly introduce the “neo-classical” theory of nematic LCEs for
the completeness of the current study. More systematic
considerations can be found in Warner and Terentjev (2007).
In addition, the viscoelasticity of the polymer network and the
rate dependence of the mesogen director rotation can
substantially affect the constitutive responses of the nematic
LCE (Warner and Terentjev, 2007; Zhang et al., 2019). Here,
we focus on the quasi-static responses of the LCE metamaterial
and model the nematic LCE with the “neo-classical” theory.

The liquid crystal mesogens are aligned along the x-axis in
fabrications, as indicated by the director n0 with the green arrows
in Figure 1A. The presence of liquid crystal mesogens in the
polymer networks leads to an anisotropic Gaussian distribution
of the end-to-end vector of the polymer chain between the two
crosslinks,R. Themean square end-to-end vector for the polymer
chain follows,

<RiRj > � 1
3
lijL, i, j � 1,/, 3 (1)

where l = lij is the effective step length tensor for the nematic
LCE; L is the arclength of the polymer chain, where L = Nb,
with N being the number of monomers between two
crosslinks and b being the step length of the monomer. The
bracket <..> represents the averaging for N monomers in
the polymer chain. In the undeformed nematic LCEs, the
director n0 is along the x-axis, and the mean square sizes in
the plane perpendicular to the n0 are identical. Therefore,
the step length tensor at the undeformed state can be
written as,

l0 � ⎛⎜⎜⎝ ln 0 0
0 lp 0
0 0 lp

⎞⎟⎟⎠, (2)

where ln and lp are the effective step lengths in the directions
parallel and perpendicular, respectively, to the liquid crystal
director n0. The anisotropic step lengths in Eq. 2 turn the
spheroid formed by the polymer chain in elastomers into an
ellipsoid in the LCEs (Herbert et al., 2021), as shown in
Figure 1B. The ratio between the two effective step lengths,
r = ln/lp, representing the anisotropy for the nematic LCE, can be
further expressed with the nematic order of the liquid crystal
ordering, Q,

r � 1 + 2Q
1 − Q

, (3)

where Q = 1 represents the perfect nematic ordering with the
liquid crystal mesogens directed in one direction, and Q = 0
corresponds to randomly oriented mesogens (Warner and
Terentjev, 2007; Sonnet and Virga, 2012).

As the nematic LCEs aligned along the horizontal direction are
stretched along the y-axis, the liquid crystal mesogens anchoring
to the bulk rotate along the z-axis with an angle θ (Figure 1B).
The step length tensor in the deformed state is now written as,

l � ⎛⎜⎜⎜⎜⎜⎝ ln + (lp − ln)sin2θ (lp − ln)sinθcosθ 0(lp − ln)sinθcosθ lp − (lp − ln)sin2θ 0
0 0 lp

⎞⎟⎟⎟⎟⎟⎠. (4)

Considering the entropy changes of crosslinked polymer
chains with liquid crystal mesogens in deformation, the free
energy density of the nematic LCEs is (Bladon et al., 1993;
Warner and Terentjev, 2007),

Wel � 1
2
μTr(l0 · FT · l−1 · F), (5)

FIGURE 1 | Schematics of the LCE metamaterials. (A) The metamaterials composed of the nematic LCE aligned along the x-axis, with engraved pores. The
metamaterial is stretched along the y-axis, orthogonal to the liquid crystal ordering. The nematic LCE is a network of crosslinked polymer chains with aligned liquid crystal
mesogens (indicated by the director n0). (B) The ellipsoid formed between the crosslinks in the LCE polymer chains due to the liquid crystalline ordering. With the vertical
extension, the ellipsoid and the liquid crystal director rotate with an angle θ along the z-axis. The rotation is completed as the liquid crystal mesogens are aligned
along the y-axis, with θ=π/2.
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where F is the deformation gradient for the LCE and µ is the
small-strain shear modulus of the nematic LCE. To account for
variations in the anisotropy r due to compositional fluctuations in
the liquid crystal ordering, an additional energy term that leads to
“semi-softness” in rotation (Verwey and Warner, 1997b; Popov
and Semenov, 1998) is introduced,

Wss � 1
2
αμTr((I − n0n0) · FT · nn · F), (6)

where α=<1/r > −1/<r> is the anisotropy fluctuation of the
anisotropy of the nematic LCE, α > 0; n = cosθex + sinθey is
the liquid crystal director at the deformed state, and I is the
identity tensor. Therefore, the free energy density for LCEs is
W=Wel + Wss (Verwey and Warner, 1997a; Warner and
Terentjev, 2007).

Considering the metamaterials with an extension imposed
along the y-axis (Figure 1A), we follow the model of stretching
strips of nematic LCEs perpendicular to the director (Verwey
et al., 1996; Verwey and Warner, 1997a; Warner and Terentjev,
2007) by integrating the step length tensor in Eq. 4 into the free
energy density functions in Eqs 5, 6. The director of the liquid
crystal n rotates to the optimal value that minimizes the free
energy densityW in stretching, and the nematic LCE is relaxed on
the plane normal to the x-axis, with the nominal stress
components Sxy= Sxx = 0. Therefore, the free energy density of
the LCEs is a function of the stretch in the y-axis, �λ , and the
director rotation angle, θ,

W(�λ,θ)� 1
2
μ
⎡⎢⎢⎢⎢⎢⎢⎢⎣�λ2(1− r−1

r
sin2θ)+ 2

�λ

�����������
1− r−1

r
sin2θ

√ +α�λ2sin2θ
⎤⎥⎥⎥⎥⎥⎥⎥⎦.
(7)

Here we distinguish the local stretch in the material with a bar
as �λ. Therefore, the critical conditions for the liquid crystal
mesogens’ rotation are obtained by zW/zsin2θ = 0, namely,

r − 1
r

sin2θ � 1 − 1
�λ
2 ( r − 1

r − 1 − αr
)2/3

. (8)

From Eq. 8, we can obtain the critical stretch for the onset of
rotation, �λ1 =((r−1)/(r−1−αr))1/3, by setting θ = 0, and the critical
stretch for the completion of rotation (Figure 1B, right),
�λ2 � �

r
√ �λ1, by setting θ = π/2. Before the rotation of the liquid

crystal mesogens, �λ< �λ1 (Figure 1B, left), the nematic LCEs
behave like the traditional elastomer, with θ = 0. As the
stretch is between the threshold and the end for soft elasticity,
�λ1 < �λ< �

r
√ �λ1 (Figure 1B, middle), the liquid crystal mesogens

rotate from θ = 0 to θ = π/2, where the rotational angle θ increases
with the extension. For the stretch beyond

�
r

√ �λ1 (Figure 1B,
right), the rotation of the liquid crystal mesogens is complete,
with the director n aligning along the y-axis, and the nematic
LCEs behave like the traditional elastomer again.

While sophisticated continuum constitutive models (Zhang
et al., 2019) and computational micromechanics simulations
(Zhou and Bhattacharya, 2021) for nematic LCEs have been
proposed recently, we shall proceed with the simple

phenomenological description of LCE with free energy density
function in Eq. 7. The LCE metamaterials under the imposed
uniaxial stretching deform in the thin ligament region, where the
nematic LCEs are stretched along the y-axis and relaxed in the
transverse dimension along the x-axis. Therefore, we only focus
on the stress component along the y-axis, and the corresponding
nominal stress follows, Syy � zW/z�λ. A microstructure of stripes
with the oppositely rotated nematic director may develop during
soft deformation in the ligament when the constrained
boundaries prohibit the shear strain along the y-axis (Warner
and Terentjev, 2007; Bai and Bhattacharya, 2020). However, in
our study, the thin ligament is directly connected to the plate
regions without constraining the shear strain. Therefore, the
stripe domain microstructure will not emerge in the LCE
metamaterial. The constitutive relation with respect to the
three stages of soft elasticity is expressed by

Syy �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(�λ − 1
�λ
2), �λ< �λ1

μ�λ⎛⎝1 − 1
�λ
3
1

⎞⎠, �λ1 < �λ<
�
r

√ �λ1

μ⎛⎝�λ⎛⎝1 − r − 1
�λ
3
1r

⎞⎠ −
�
r

√
�λ
2
⎞⎠, �λ> �

r
√ �λ1

. (9)

In Figure 2, we compare the scaled nominal stress of the
nematic LCEs with soft elasticity predicted by Eq. 9 with the
traditional elastomers described by the Neo-Hookean model. By
controlling the ratio for the anisotropy r and the fluctuations of
the anisotropy α, we can program the stress-strain relations in
nematic LCEs under the uniaxial extension perpendicular to the
liquid crystal alignment direction n0. In Figure 2A, we plot scaled
nominal stress with the fluctuation fixed at α = 0.1 and the
anisotropy of the nematic LCEs increasing from r = 1.5 to r = 6.
The mechanical responses in the nematic LCE are the same Neo-
Hookean elastomers for r = 1, and the liquid crystal alignment
along with the x-axis increases as r increases from 1. The neo-
classical theory captures the semi-soft elastic responses in LCEs
as the stress becomes near constant with increasing stretch. The
materials behave like the traditional elastomers as the stretch is
below �λ1 or above �λ2, reaching a semi-soft response as the liquid
crystal mesogens rotate with �λ1 < �λl < �λ2. The nematic LCE
shows a softer response than Neo-Hookean materials due to the
rotation of liquid crystal mesogens. The anisotropy of the
nematic LCEs (r), which is controlled by the liquid crystal
ordering Q (Eq. 3), can further program the stress plateau
with the critical stretches �λ1 and �λ2. As shown in Figure 2B,
the critical stretches grow infinitely at r = 1, where the Neo-
Hookean model describes the stress in the nematic LCE, as
indicated in Eq. 9. The critical stretch for the onset of the soft
response (�λ1) decreases with r rapidly, while the critical stretch
for existing the soft response (�λ2) grows with r, for r > 1.5.
Therefore, the stretch for the semi-soft responses �λ2 − �λ1
increases with the liquid crystal ordering r (solid blue line in
Figure 2B).
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We can further design the softness responses via the
fluctuation of the liquid crystal ordering in the nematic LCE.
With a fixed anisotropy r = 3, the nematic LCE shows softness
responses for different values of α (Figure 2C). As the fluctuation
parameter α increases from 0, where there are no variations in the
liquid crystal ordering, the stress in the LCE under the same local
stretch �λ increases with α. The nematic LCE’s mechanical
responses are close to the Neo-Hookean materials as α = 0.6,
where the fluctuation in the liquid crystal ordering requires
additional energy for rotation, leading to the mechanical
responses governed by the polymer chains, similar to the Neo-
Hookean materials. This phenomenon is further verified in
Figure 2D as the critical stretches approach infinity with
increasing α, where the Neo-Hookean model describes the
stress-strain relations up to a large local stretch �λ1 in the
nematic LCE (black dashed line in Figure 2D). In addition, a
“stress-strain plateau” with finite stretch is observed in
Figure 2C due to the fixed anisotropy of the nematic LCE
with the same liquid crystal ordering. The semi-softness stretch
�λ2 − �λ1 also increases with the fluctuations of the liquid crystal
ordering α, possibly caused by the higher energy barrier and the
larger resultant stress applied to the polymer network in
deformation.

FIGURE 2 |Constitutive responses of semi-soft elasticity of the nematic LCE. (A) The scaled nominal stress Syy/μ, and (B) the critical stretches for the soft elasticity
in uniaxial extension with different liquid crystalline ordering r and a fixed fluctuation α=0.1. (C) The scaled nominal stress Syy/μ, and (D) the critical stretches for the soft
elasticity in uniaxial extension with different liquid crystalline ordering fluctuations α and a fixed anisotropy r=3.

FIGURE 3 | Stress-stretch relations of uniaxial stretching nematic LCEs.
The solid lines are the predictions from the phenomenological model of soft
elasticity in Eq. 9. The solid symbols are simulation results of the
homogeneously stretched rectangular bars with the material model
defined by the Marlow strain energy potential.
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3 NUMERICAL MODELS FOR LCE
METAMATERIALS

We conduct numerical simulations using finite element (FE)
methods to fully explore the relationship between the
metamaterial building blocks’ geometry and the nematic LCE’s
constitutive responses, especially the connection between global
deformation and the local soft elasticity. Quasi-static nonlinear
analysis of the LCE metamaterials under uniaxial stretching is
performed using the commercial FE software Abaqus. The
constitutive responses of the nematic LCE are modeled with
the Marlowmodel, where the uniaxial stress-stretch relation from
Eq. 9 is used to define the strain energy potential in the
simulations. In Figure 3, we compare the stress-strain relation
defined by the Marlow model in the simulations of uniaxially
stretched rectangular bars (solid symbols) to the one from Eq. 9
(solid lines). The deformation in the uniaxial stretching is
homogeneous, ensuring that the local stretch in the nematic
LCE is the same as the applied global stretch, �λ � λ. The
Marlow strain energy potential reproduces the constitutive
responses of the nematic LCE with soft elasticity. The
dependence of the stress-stretch relation upon the liquid
crystal ordering r and its fluctuation α are correctly captured
in the simulations with the Marlow model. Therefore, we model
the inhomogeneous deformation in the LCE metamaterial with
the Marlow model defined by the uniaxial stress-stretch relation
from Eq. 9 and study the coupling between the soft elasticity in
the nematic LCE and the geometry of the metamaterials.

In the FE simulations, we study the configurations shown in
Figure 1A by varying aspect ratio of the pores (ar = a0/b0), with a
fixed width of the ligaments, w0 = 0.1L0, where L0 = a0+b0+w0 is
the length of the building blocks. We have explored the
mechanical responses of metamaterials composed of
elastomers with different geometries, including the effect of
the ligament width in previous studies (Liang and Crosby,
2020a; Liang and Crosby, 2020b). Here, we focus on the effect
of the pore aspect ratio and its potential coupling with the soft
elasticity in nematic LCEs. 2D plane-strain simulations (Abaqus

element type CPE6H) are carried out. The simulations are built
upon a single layer of three unit cells, which is selected to mirror
the mechanical response of the overall structure (inset,
Figure 4B). Symmetric boundary conditions about the y axis
are applied to the left boundary, while the right is stress-free. In
the metamaterials under uniaxial extension, the building blocks
along the x-axis remain horizontal, with the right edge free from
constraints. To mimic the uniaxial loading conditions in
experiments, the bottom boundary is prescribed with a
displacement, and the top boundary is constrained to be
horizontal. As a result, the horizontal building blocks in the
metamaterials remain horizontal, as shown with the deformed
shapes in the inset of Figure 4B. In addition, the effect of the
number of horizontal building blocks in the mechanical
responses is considered minor compared to the uniaxial
extension along the y-axis.

We measure the scaled stretching force from simulations, Fy/
µLxh, where Lx is the horizontal length and h is the thickness of
the metamaterials under uniaxial extension. We compare the
stress-strain relation for metamaterials composed of Neo-
Hookean elastomers and the nematic LCE with soft elasticity
in Figure 4. The metamaterials with elastomers show a
transition from strain-stiffening to a weakly strain-softening
as the pore aspect ratio ar increases from 0.1 to 1, as shown
Figure 4A. For metamaterials with circular pores (ar~1), the
internal deformation is governed by the ligament stretching,
leading to a stress-strain relation similar to the constituent
elastomers with a negligible softening. For metamaterials
with elliptical pores (ar~0), the ligament undergoes a bending
deformation first, inducing a compliant response with the
effective shear modulus around 0.1µ. The subsequent
ligament stretching stiffens the stress-strain curve, with a
fivefold increase of the effective shear modulus to 0.5µ. The
geometry of the pores in the building blocks of metamaterials
is shown to program the mechanical responses. However,
the design space is often limited, for example, by the finite
size of the ligament and the maximum rotation angle in
bending.

FIGURE 4 | FE simulations of the metamaterials with different geometries. (A) The scaled stretching force Fy/µLxh in metamaterials composed of Neo-Hookean
elastomers with pore aspect ratios ar ranging from 0.1 to 1. (B) The scaled stretching force Fy/µLxh in metamaterials composed of nematic LCEs (r = 3 and α = 0.1) with
pore aspect ratio ar ranging from 0.1 to 1. Inset: FE models for the metamaterials at initial and deformed states.

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 9 | Article 8495166

Liang and Li LCE Metamaterials With Soft Elasticity

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


The metamaterials can bypass the limitations in geometries
by incorporating the nematic LCEs with soft elasticity. In
Figure 4B, we simulate the metamaterials composed of
nematic LCEs (r = 3 and α = 0.1). The nematic LCE deforms
with near-constant stresses as the stretch increases from 1.05 to
1.5 (Figure 2A). Integrating the building blocks with different
pore shapes, the stiffness of the metamaterials with the
same geometry decreases due to the rotation of the liquid
crystal mesogens. However, the tunability for the mechanical
properties in metamaterials is substantially increased, with an
enlarged space in programming the strain-softening and strain-
stiffening responses. For metamaterials with circular pores
(ar~1), as the nematic LCE in the ligament is stretched to the
critical value for soft elasticity, a dramatic softening with a
tenfold reduction in the effective shear modulus (0.5µ to 0.05µ)
is observed. For metamaterials with elliptical pores (ar = 0.1),
the stretch in the bending ligament can trigger the soft elasticity
in the nematic LCE. Therefore, the metamaterial shows a
compliant response with an effective shear modulus as low as
0.03µ, up to the stretch as large as 1.2. The transition from
bending to stretching in the ligament leads to higher structural
stiffness and larger local stretch, driving the nematic LCE to exit
the soft elasticity with the stretch larger than �λ2 (Figure 2).
Therefore, the metamaterials generate a strong strain-stiffening
effect with a sixfold increase in the effective shear modulus
(0.03µ to 0.18µ).

We can design the stress-strain relations in metamaterials via
the soft elasticity of the nematic LCE. With a fixed liquid crystal
ordering fluctuation of α = 0.1, the anisotropy in LCE can increase
from r = 1, requiring a larger local stretch to rotate the liquid
crystal mesogens. As a result, the constitutive responses in the
nematic LCE depart from the Neo-Hookean elastomer, showing
the soft elasticity that lasts for a wider region in the stretch and
generates lower stress in deformation (Figure 2A). As shown in
Figures 5A,B, the molecular liquid crystal ordering in the LCE
can program the stress-strain relation in metamaterials with
different pore shapes (elliptical in Figure 5A and circular in
Figure 5B). A large range of stress-strain relations is created in
the metamaterials with different liquid crystal orderings (r). In
addition, all the stress-strain curves in the LCE metamaterials fall
beneath the one generated by the metamaterial composed of the
Neo-Hookean elastomers (dashed line), given the reduction in
the stress due to the liquid crystal mesogens’ rotation. The stress-
strain curves in the LCE metamaterials start to depart from the
elastomeric metamaterials after reaching the critical stretch for
the onset of soft elasticity (�λ1) with a softer response. The
effective shear modulus of the metamaterials decreases with
anisotropy r.

The stress-strain relation in metamaterials also can be
designed via the fluctuations of the liquid crystal ordering in
the nematic LCE. With a fixed anisotropy of the nematic LCE at
r = 3, the spread of the liquid crystal ordering distribution

FIGURE 5 | The scaled stretching force Fy/µLxh in LCE metamaterials under uniaxial extension. The nematic LCE with (A) a fixed fluctuation α = 0.1 and (C) a fixed
liquid crystal ordering r = 3 in the metamaterials with elliptical pores (b0 = 8a0). The nematic LCEwith (B) a fixed fluctuation α = 0.1 and (D) a fixed liquid crystal ordering r =
3 in the metamaterials with circular pores (b0 = a0).
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increases the energy barrier for the molecular rotation of
liquid crystals, suppressing the soft elasticity. Similar to
controlling the constitutive responses of the nematic LCE
via the liquid crystal ordering with r, the metamaterials
composed of the nematic LCE can generate highly tunable
stress-strain relations for both elliptical (Figure 5C) and
circular pores (Figure 5D). Furthermore, with the increase
of α, the stress-strain relations can recover the one generated
by the metamaterial with the Neo-Hookean elastomers
(dashed line). Different from varying the anisotropy in the
nematic LCE with r, the critical stretch for the onset of soft
elasticity (�λ1) is very sensitive to the fluctuation in the liquid
crystal ordering α (see Figures 2B,D). Therefore, the stress-
strain curves for the LCE metamaterials depart from the
metamaterials with Neo-Hookean elastomers at different
stretches with increasing α (Figure 5D).

The FE simulations demonstrated that the soft elasticity in the
nematic LCE could couple with the structural design in the
building blocks of metamaterials, programming the stress-
strain relations in uniaxial extension. As a result, the
molecular control of the constitutive responses of the materials
and the structural design of the geometry in the building blocks
are no longer independent components in the LCE
metamaterials. Instead, the two components synergetically
program the mechanical properties, leading to tunable strain-
softening and strain-stiffening behaviors at the required
deformation and the active control of the stress-strain
relations without altering the constituent materials.

4 ANALYTICAL MODELS FOR LCE
METAMATERIALS

We develop an analytical model to understand how the
metamaterial geometry and the nematic LCE soft elasticity
affect the stress-strain relation under uniaxial extension. Since
the soft elasticity in LCE is related to the local stretch in the

metamaterials, we first propose a simplified kinematics analysis to
describe the local deformation in the ligament.

As shown in Figure 6A, the maximum angle in bending is θc =
arctan ((b0−a0)/L0), where the “plates” in the building blocks are
rotated along the y-axis (Liang and Crosby, 2020a; Liang and
Crosby, 2020b). The rotation angle θc is reached with a critical
stretch λc = Lt/L0, where Lt �

������������
L20 + (b0 − a0)2

√
is the distance

between the center of the ligaments (marked by the dashed lines
in Figure 6A). Here, we designate the global stretch applied to the
metamaterial as λ without a bar. The maximum local strain in
bending is defined as w0Δκθc/2, where Δκ is the change of
curvatures at the neck of the ligaments, Δκ � 2/(a0 + b0) −
a0/b20 (Figure 6B). As λ<λc, the rotational angle θ and the
local stretch �λl increase with the global stretch λ before
reaching a maximum angle θc. Therefore, the local stretch in
ligament bending is,

�λl(λ) � 1 + w0θc(λ − 1)
(λc − 1) ( 1

a0 + b0
− a0
2b20

), λ< λc. (10)

For λ >λc, the maximum rotational angle is θc reached, and
further stretching the metamaterials leads to elongation of the
ligament with a length l0 = 0.5 (a0+b0), as shown in Figure 6C.
For the building blocks with a length L0 deform with the stretch λ,
the local stretch in the ligament is expressed as,

�λl(λ) � 1 + w0θc( 1
a0 + b0

− a0
2b20

) + 2L0(λ − λc)
a0 + b0

, λ> λc. (11)

We compare the local stretch predicted by Eqs 10, 11 with
previous experiments (Liang and Crosby, 2020a) in Figure 6D.
The ratio between the local strain �λl−1 with the global strain λ−1
reveals how the geometry of the metamaterials controls the local
deformation. For (�λl −1)/(λ−1)<1, the ligament undergoes the
bending deformation, and the local stretch in the nematic LCE is
attenuated. For (�λl −1)/(λ−1)>1, the ligament undergoes the
stretching deformation, and the local stretch in the nematic
LCE is strengthened. As shown in Figure 6D, our model

FIGURE 6 | Analytical model for the local stretch in the metamaterial. (A) Deformation kinematics of the metamaterials under uniaxial extension. The ligament
bending is reflected by the rotations in blue and red dashed lines, with a maximum bending angle θc. (B)Measurement of the local stretch in ligament bending through the
changes of the radius of curvature κ. (C)Measurement of the local stretch in the ligament stretching through the length of the deformed ligament l0. (D) The ratio between
the local and the global stretch (�λl −1)/(λ−1) against the stretch in the metamaterials λ. The solid symbols are adopted from experiments (Liang and Crosby, 2020a).
The red-dashed line separates the ligament bending and stretch deformation.
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captures the local strain in metamaterials with different pore
shapes, showing good agreements with experiments. The
ligaments in metamaterials with circular pores (ar = 1 and 0.8)
deform with a large local stretch under uniaxial extension, while
the ligaments in metamaterials with elliptical pores (ar = 0.5, 0.28,
and 0.12) can bend first, followed by stretching, leading to a
transition from low to high local stretch. Modulating the local
stretch in the ligaments can trigger the onset and exit of the
nematic LCE’s soft elasticity, enabling the mechanical properties’
synergetic programming with both material and structural
responses.

To relate the local deformation to the force applied to the
metamaterials, we substitute the local stretch predicted by Eqs 10,
11 in the constitutive model of the nematic LCE with soft
elasticity in Eq. 9. Given the crosssection area of the ligament
is proportional to its width w0, the scaled stretching force in the
metamaterials is Fy/μL0h = Syyw0/μL0. In Figure 7A, we plot the
stress-strain relation predicted by the analytical model of the
nematic LCE with r = 3 and α = 0.1, with the same pore shapes
adopted in the FE simulations in Figure 2B. Albeit simple, our
analytical model qualitatively captures the mechanical responses
in the metamaterial, especially the coupling between local stretch
in the ligament and the soft elasticity in the nematic LCE. The
predicted stresses are larger than the FE simulations, as the
inhomogeneous stress distribution in the ligament’s
crosssection is neglected in the model.

The strain-softening response for the metamaterials with
circular pores is predicted by considering the soft elasticity in
the nematic LCE. As the pores become elliptical, the bending
deformation in the ligament induces a local stretch smaller
than the one for the onset of soft elasticity (�λ1) in the nematic
LCE (Figure 7B), leading to the elastic responses in the
nematic LCE without liquid crystal rotations. The nematic
LCE behaves as the Neo-Hookean elastomers for the local
stretch �λl < �λ1. The compliant responses (represented by μ1
in Figure 7A) in the metamaterials are caused by the
bending deformation in the ligament. As the ligament
stretches after rotation, the local stretch quickly increases

with the uniaxial extension applied to the metamaterials,
leading to stiffening responses (represented by μ2 in
Figure 7A). As the local stretch is larger than �λ1, the
nematic LCE in the ligament is controlled by the semi-soft
elasticity before reaching the stretch �λ2 (represented by μ3 in
Figure 7A).

The relation between the local stretch and the global stretch
determines the strain-softening and strain-stiffening responses in
the metamaterials. As the global stretch λc is applied to the
metamaterials, the maximum local stretch for rotation is
�λ
c
l � 1 + w0θc( 1

a0+b0 − a0
2b20
). The effective shear modulus is

governed by ligament bending, with μ1 = w0Syy (�λcl )/L0 (λc−1),
namely,

μ1 � μ
w0

L0(λc − 1)(λcl − ( 1
λcl
)2). (12)

Here, we consider the semi-soft elasticity with onset stretch
�λ1 > �λ

c
l and describe the nematic LCE in the ligament with the

first expression in Eq. 9. The pore shapes govern the effective
shear modulus μ1 in the compliant region of the
metamaterials, regardless of the nematic LCE’s properties.
As shown in Figure 8A, the effective shear modulus with a
fixed ligament width (w0 = 0.1L0) increases as the pores change
from ellipses to circles, with ar increasing from 0 to 1. A larger
force is required to deform the metamaterials with circular
pores as the global stretch λc to reach the maximum rotation
angle reduces to 1.

The strain-stiffening responses happen as the ligament starts
to stretch, where the local stretch in the nematic LCE changes
from �λ

c
l to �λ1 as the metamaterials stretch from λc. By setting

�λl(λ1) � �λ1 in Eq. 11, the global stretch λ1 in the metamaterials
that induces the local stretch �λ1 in the nematic LCE is,

λ1 � λc + a0 + b0
2L0

(�λ1 − 1 − w0θc( 1
a0 + b0

− a0
2b20

)). (13)

The effective shear modulus follows μ2 = w0(Syy (�λ1) −(Syy
(�λcl )/L0 (λ1−λc), namely,

FIGURE 7 | (A) The scaled stretching force Fy/µLxh predicted by the model for metamaterials with nematic LCEs (r = 3 and α = 0.1). (B) The local stretch in the
ligament �λl as the metamaterials under uniaxial extension λ. The critical stretches for the onset (�λ1) and exiting(�λ2) of the semi-soft elasticity in the materials are plotted
with dashed lines.
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μ2 � μ
w0

L0(λ1 − λc)(�λ1 − λcl + ( 1
λcl
)2

− ( 1
�λ1
)2). (14)

In Figure 8B, we plot the effect of soft elasticity in the
nematic LCE on effective shear modulus μ2 with a fixed ligament
width w0 = 0.1L0. In the metamaterials with elliptical pores
(b0 = 8a0), the aligned liquid crystals (increasing anisotropy r) in
the nematic LCE lead to a larger μ2, resulting in a stronger
stiffening effect in the metamaterials. The fluctuation of the
liquid crystal ordering (increasing α) reduces μ2, as it increases
the critical stretch �λ1 for the onset of soft elasticity, leading
to weaker stiffening behavior. The geometry of the pores in the
metamaterial also programs the stiffening response. For
example, the metamaterials with the circular pore (b0 = a0)
can generate larger effective shear moduli than the elliptical
pores (dashed lines in Figure 8B) with higher structural
stiffness.

As the nematic LCE reaches the local stretch for soft elasticity,
the metamaterials deform until the ligament reaches the critical
local stretch �λ2, where the global stretch λ2 is applied. By adopting
the constitutive relation for the semi-soft elasticity in Eq. 9, the
effective shear modulus defined as μ3 = w0(Syy (�λ2) −(Syy (�λ1)/L0
(λ2−λ1) can be expressed,

μ3 � μ
2w0

a0 + b0
⎛⎝1 − 1

�λ
3
1

⎞⎠. (15)

As shown in Eq. 15, the effective shear modulus is
independent of the pore shapes, where 2w0/(a0+b0) = 2w0/(L0-
w0). The effective shear modulus μ3 is only controlled by the
ligament width and critical stretch �λ1 for the onset of soft
elasticity. In Figure 8C, we plot the effective shear moduli μ3
by varying the nematic LCE properties with r and α, with a fixed
ligament width (w0 = 0.1L0). The metamaterials with different
pore shapes follow the same master curve for μ3 (also found in the
FE simulations in Figure 4B for stretch larger than 1.4), which
increases with �λ1 as indicated by Eq. 15. Therefore, reducing the
liquid crystal ordering with smaller r (Figure 2B) or increasing
the fluctuation of the ordering with larger α (Figure 2D) leads to a
larger μ3. With the analytical developed above, we can design the

strain-softening and stiffening responses by controlling the liquid
crystal ordering at the molecular level and the building blocks’
geometry at the structural level.

Finally, we can join the deformation induced by the ligament
bending and the LCE soft elasticity with �λ

c
l = �λ1 to design the

compliant responses in LCE metamaterials. As demonstrated in
Figure 9A, by designing the geometry of the building blocks and
the molecular structures of the LCE, the macroscale ligament
bending and the microscale mesogen rotation can be tuned
synergetically. The nematic LCE can change continuously
from a low-stretch (soft) bending deformation to the soft
elasticity in the materials without causing the stiffening effect
in μ2. The critical conditions can be reached by controlling the
molecular compositions in the LCE and the geometry of the
building blocks via,

[(1 + w0θc( 1
a0 + b0

− a0
2b20

))3

− 1](r − 1) − α(1 + w0θc( 1
a0 + b0

− a0
2b20

))3

r � 0.

(16)

In Figure 9B, we plot the critical geometric conditions (ar and
w0/L0) based on Eq. 16 for different nematic LCE properties (r
and α). Since the ligament bending deformation tends to
attenuate the local stretch, a low fluctuation (small α) or a
high anisotropy (large r) can reduce the critical stretch for the
onset of soft elasticity that enables the continuous transition of
the compliant responses between the ligament bending and soft
elasticity. We compare the stress-strain curves for the LCE
metamaterials with the anisotropy r = 3 with the continuous
transition (marked by stars in Figure 9B) to the discontinuous
one adopted from Figure 7A. As shown in Figure 9C, the LCE
metamaterials with the continuous transition generate the
compliant responses up to a stretch of 1.4 (solid lines), much
larger than the discontinuous one (1.2 in the dashed line). In
addition, the effective shear modulus (slope of the compliant
region) is greatly reduced for the similar ligament width due to
the soft elasticity in the nematic LCE. Particularly, for the nematic
LCE with r = 3 and α = 0.01, the metamaterials with the geometric
conditions ar = 0.423 and w0/L0 = 0.1 can generate an elastic
response with near-zero stiffness. The subsequent stiffening
responses in the metamaterials also strengthen as the nematic

FIGURE 8 | The effective shear moduli in the LCE metamaterials. (A) For the local stretch �λl < �λ
c
l , the effective shear modulus μ1 is governed by ligament bending,

independent of the nematic LCEmaterial properties (r and α). (B) For the local stretch �λ
c
l < �λl < �λ1, the effective shear modulus μ2 is controlled by the pore geometries and

the nematic LCE material properties. (C) For the local stretch �λ1 < �λl , the effective shear modulus μ3 is only controlled by the nematic LCE material properties,
independent of the pore shapes (ar).
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LCE exits the soft elasticity and generates large stress in the
ligament with the local stretch concentration. The analytical
model proposed here connects the deformation of the building
blocks and the soft elasticity of the nematic LCE via the local
stretch, guiding the program of the stress-strain relations in the
metamaterials.

5 CONCLUSION

In conclusion, we demonstrate the material-based
programmability enabled by metamaterials composed of
nematic LCEs, especially the stress-strain relations with
tunable strain-softening and strain-stiffening effects. Taking
advantage of the tunable bending and stretching deformation
enabled by the geometry of the building blocks and the semi-soft
elasticity of the nematic LCE, we engineer the local stretch in the
ligament of the metamaterials to program the stress-strain
relation in the metamaterial under uniaxial extension. Starting
from the molecular description of the soft elasticity, we relate the
liquid crystal ordering to the constitutive model of the nematic
LCE and integrate the semi-soft elasticity of LCE into the
metamaterials. Numerical simulations have revealed that the
attenuated local stretch due to the ligament bending and the
soft elasticity in the nematic LCE induce a compliant response in
the metamaterials, where the effective shear modulus is much
lower than the constituent materials. The subsequent stretching
deformation in the ligament and the exiting of the soft elasticity in
the nematic LCE leads to the surge of the stress, leading to a
stiffening response. To relate the softening and stiffening
responses to the geometric and material parameters in the
LCE metamaterials, we develop an analytical model that
predicts the local stretch in the ligament and calculates the
force in the LCE metamaterials. The metamaterials undergo a
transition between strain-softening and strain-stiffening with
different effective shear moduli, depending on the maximum
local stretch in bending and the critical stretch for the onset of the
soft elasticity. By designing a continuous transition from the
ligament bending to the semi-soft elasticity in the LCE, we can
program an elastic region with near-zero stiffness up to the

stretch of 1.4. The highly programmable softening and
stiffening behaviors offer a material-based control of the
mechanical properties in the LCE metamaterials, inducing the
stress-strain relations within the space prescribed by the Neo-
Hookean elastomers with the same shear modulus. The LCE
metamaterials provide a platform for material-based
programmability, facilitating the development of advanced
forms of mechanical metamaterials and impacting the design
of robotic systems.
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FIGURE 9 | (A) Schematic of macroscale ligament bending and the microscale mesogen rotation. (B) The geometries of the metamaterials required for the
continuous transition from the ligament bending to the soft elasticity in the nematic LCE, with different material properties. (C) The scaled stretching force Fy/µLxh in LCE
metamaterials with the continuous transition of �λ

c
l = �λ1. The red dashed line represents the LCE metamaterial without the continuous transition.
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