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In recent decades, unmanned aerial vehicles (UAVs) have gained considerable

popularity in the agricultural sector, in which UAV-based actuation is used to

spray pesticides and release biological control agents. A key challenge in such

UAV-based actuation is to account for wind speed and UAV flight parameters to

maximize precision-delivery of pesticides and biological control agents. This

paper describes a data-driven framework to predict density distribution patterns of

vermiculite dispensed fromahoveringUAV as a function of UAV’smovement state,

wind condition, and dispenser setting. The model, derived by our proposed

learning algorithm, is able to accurately predict the vermiculite distribution

pattern evaluated in terms of both training and test data. Our framework and

algorithm can be easily translated to other precision pest management problems

with different UAVs and dispensers and for difference pesticides and crops.

Moreover, our model, due to its simple analytical form, can be incorporated

into the design of a controller that can optimize autonomous UAV delivery of

desired amount of predatory mites to multiple target locations.
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1 Introduction

Examples of actuation with unmanned aerial vehicles (UAVs) include collection of

water and air samples (West and Kimber, 2015; Koparan et al., 2018), and in agriculture,

UAV-based actuation includes pesticide spray applications (Shim et al., 2009; Giles and

Billing, 2015; Xue et al., 2016; Xiongkui et al., 2017; Yallappa et al., 2017; Yun et al., 2017;

Ukaegbu et al., 2021) and distribution of biological control agents (Spoorthi et al., 2017;

Iost Filho et al., 2020; Zhan et al., 2021). There are two basic reasons why UAV-based

actuation solutions are being developed and commercialized for agricultural applications:

1) perceived reductions in operating costs, as UAV-based actuation may replace labor

intensive procedures, and 2) as part of promotion of precision agriculture, higher

likelihood of precision-delivery of pesticides and/or biological control agents to
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within-field hotspots with emerging pest outbreaks (see

Figure 1). Increased precision-delivery of pesticides and/or

biological control agents may lead to reductions in operating

costs and less risk of agricultural practices having adverse

environmental and health effects on surrounding non-

agricultural environments and urban areas. Several important

and multi-faceted factors appear to support the argument that

UAV-based actuation will play a major role in many aspects of

21st century agriculture: 1) UAV technology is continuing to

improve in terms of flight performance, hardware durability,

batteries and flight duration, and maximum payload, 2) there is

an increase in ways to obtain necessary training and certification,

3) legislation and permits to fly UAVs are becoming clearer and

easier to comply with, and 4) costs of UAV systems are either

stagnant or declining.

Despite the abovementioned justifications supporting

widespread acknowledgement of the promises and potential of

UAV-based actuation, it is equally important to highlight current

challenges and shortcomings. In both pesticide applications and

distributions of biological control agents, one of the main

challenges is directly linked to complex interactions between

1) UAV flight (speed, direction and altitude), 2) wind (speed and

direction relative to UAV flight path), and 3) actuated objects

(size, shape, and density of spray droplets and/or biological

control agents). In a series of studies, Qin et al. (Qin et al.,

2014, 2016) collected data on the overall distribution uniformity

of liquid droplets within crop canopies and then used wind speed,

wind direction, UAV altitude, and UAV speed as explanatory

variables of droplet distribution uniformity. Their model was

able to successfully characterize cumulative distribution of liquid

pesticides, but their model did not characterize the spatial droplet

distribution. Teske et al. (Teske et al., 2019) developed and tested

a model to characterize the one-dimensional (perpendicular to

the flight path) distribution of vermiculite as a function of wind

speed and direction, and the UAVs altitude and forward speed.

Using these explanatory variables, model validation produced an

average generalisation error of 12.8%, RMSE. Optimization of

UAV actuation may rely on existing modeling of these complex

interactions, as similar challenges are being faced when UAVs are

used to deliver and drop supplies during rescue and disaster

missions (Restas, 2015; Gupta et al., 2020) and distribution of fire

retardants to wildfires (Ausonio et al., 2021).

In this study, we investigated the hypothesis that the two-

dimensional distribution of a low-density material, vermiculite1,

FIGURE 1
Our envisioned closed-loop UAV-based precision pest management system. This system features two types of UAVs (Teske et al., 2019; Iost
Filho et al., 2020): (1) sensing UAVs to scan the field and identify infested plants (Nansen et al., 2019, 2021) and (2) actuation UAVs to precisely and
autonomously deliver persimilis to the infested plants.

1 To keep predatory mites, such as persimilis, alive, a mineral medium,
called vermiculite, is used to pack them.
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from a hovering UAV can be accurately modeled based on the

following explanatory variables: UAV altitude, wind speed, wind

direction, and the dispenser settings (aperture size and flow rate).

Vermiculite was chosen as model substance as it is a lightweight

(low-density) mineral and therefore highly susceptible to flight

parameters and environmental conditions. Additionally,

vermiculite is often used as carrier in UAV-based

distributions of biological control agents. Although the focus

in this study is on vermiculite, we believe the model framework

presented has broad relevance to other UAV-based actuation

applications involving low-density materials.

2 Materials and methods

In this section, we will describe a series of experiments we

have conducted to systematically collect data that can sufficiently

characterize the relationship between the vermiculite distribution

and a collection of independent factors/variables, e.g., UAV

altitude, wind speed and direction, and vermiculite dispenser

settings.

2.1 Experiment hardware and software

The UAV used in this study was a DJI SPREADINGWINGS

S1000 + Octocopter. It was retrofitted with a PIXHAWK2 UAV

Autopilot Flight Controller with a HERE+ Vehicle GPS rover

module and a telemetry module. A FrSky X8R ACCST Telemetry

Receiver was also mounted on the UAV so that the UAV can also

be manually controlled with a handheld Radio Control (RC)

transmitter.

A custom-designed vermiculite dispensing mechanism called

“Bugbot” was attached underneath the UAV (see Figure 2) The

“Bugbot”, designed specifically for UAVs to deliver predatory

mites (Phytoseiulus persimilis) to target locations, consists of

three major components: a vermiculite container, an internal

mixing mechanism, and a 3D printed dispensing mechanism. It

is an updated version of our previous design (Teske et al., 2019)

with the following four improvements: 1) The container was

changed from a 3.5-liter polyhedron with multiple edges and

corners to a 12-liter horizontal rotational symmetric container, 2)

The new container is made of a material that is less likely to

generate static electricity, making the vermiculite flow smoother.

3) The dispenser was changed from a motor-driven constant-

speed paddle wheel to a gear and motor-driven slide plate, which

can not only be opened at any angle through Wi-Fi control to

easily dispense different volumes, but also completely eliminated

the problem of the old design where vermiculite would be stuck

and stop the paddle wheel during the operation. 4) The mixing

mechanism was a first-time design that does not exist in the older

version, and it can mix the vermiculite with the predatory mites

for a more uniformed distribution from the dispenser. Although

the flow rate has only changed from the original 5.67 g/s to

5.95 m/s, which seems to be a small improvement, but our new

Bugbot design offers a bigger container volume, a more uniform

dispensing flow rate, and the ability to change the dispensing

volume. Figure 3 shows the Computer Aided Design (CAD)

model of our Bugbot.

Two symmetric cone-shape parts are joined together with 3D

printed parts on the circumference to form the Bugbot container

body. On top of circumference is a thick acrylic mount base that

is used to attach the Bugbot to the UAV. Vermiculite can be

refilled through a capped opening on the side of the container.

The dispensing mechanism consists of an acrylic plate that can

rotate to uncover a rectangular hole on a second acrylic plate, is

attached to the bottom of the container. The amount of covered,

ranging from fully open to fully closed, is controlled by a servo

motor and gears cut on the moving acrylic plate. The motor was

controlled by an Arduino Nano AT32 hardwired to a Raspberry

FIGURE 2
DJI S1000 + octocopter with the vermiculite dispenser
“Bugbot” attached.

FIGURE 3
Computer Aided Design (CAD) model of our “Bugbot”.
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Pi, both mounted on the UAV, by commands to rotate the acrylic

plate to predefined opening sizes for predefined opening times

sent through a local WiFi network. In this way, the vermiculite

dispensing volume can be controlled by different combinations

of opening areas with opening duration.

Once added to container as a mixture with vermiculite,

predatory mites may move and aggregate, which can lead to

non-linear correlation between dispensing of vermiculite and

predatory mites. Static electricity inside the container may

exacerbate this issue. Accordingly, constant mixing of the

vermiculite is required. Therefore, a rotational mechanism was

designed inside the container with a steel rod passes through the

center of the container horizontally, and a continuous 360-degree

servo motor of 30 kg rating at the middle of the rod which can

rotate the rod at a constant speed. Two sets of steel fins were

attached to this continuously rotating rod, one set on each side of

the container, to help mix the vermiculite. This mixing

mechanism provides two benefits: 1) a more uniform

dispensing flow-rate and 2) movement of the vermiculite to

ensure the predatory mites are evenly distributed during flight

and dispensing.

2.2 Field data collections

Field data were from September to October 2021 in Davis,

California. Wind speed and direction data were recorded using a

YOUNG Model 91,000 ResponseONE Ultrasonic Anemometer,

with a sampling frequency of 20 Hz. The anemometer was

installed on a telescopic antenna push up mast and placed

around the same height as the UAV’s flight altitudes in the

experiments. For accuracy purpose, the anemometer was placed

at a short distance away from the UAV’s flight path and its

altitude remaining unchanged during field data collection events.

Weather data included wind speed (w) data in m/s and wind

direction (α) data in deg. They can be easily converted to wind

velocity components wE and wN in East and North directions:

wE = −wsin(α) and wN = −wcos(α). The experimental design was

not aligned with North-South direction: the positive y direction

of the boards, as mentioned in Section 2.2, is λ = 157 deg to the

North. To make collected data more intuitive, wind data were

converted to two components along the x and y axes: wx =

wEcos(λ) − wNsin(λ) and wy = wEsin(λ) + wNcos(λ).

During experimental dispensing events, the UAV was kept

hovering. The hovering location was automatically controlled by

waypoints set up in a software called Mission Planner on

Windows. Since the changing wind condition affected the

stability of the UAV when it was hovering, to ensure the

accuracy of the waypoint when the UAV was dispensing the

vermiculite, the UAV’s PID controller’s parameters were tuned

with the presence of the wind before all experiments.

Furthermore, a real time kinematics (RTK) capable HERE+

Ground Station GPS was set up at a fixed location on a tripod

with sufficient sky coverage at the experiment field to obtain good

satellite signals and generate accurate position estimates in

centimeters in real time. In order to collect ground

distribution data of vermiculite dispensed from the hovering

UAV, outdoor experiments were carried out from Figure 4 shows

the experimental field site and equipment setup. During each

dispensing event, the UAV was controlled by the Mission

Planner to hover at a waypoint above with the same yaw

angle in all experimental flights. The RTK GPS was calibrated

before each flight event to ensure the accuracy of the UAV’s

hovering waypoints. AWi-Fi router was set up at the field for the

computer software VNC Viewer to communicate with the

Bugbot and send dispensing commands. Figure 5 shows our

data collection system.

Plywood boards of 0.6-m square, each with 0.15-m gap from

each other for easy placement and labeling, were placed in a 5 by

5 grid on top of 25 cinder blocks on a tarp. Elevation of boards

away from the ground was performed to minimize cross-

contamination by dirt or grass or accumulated vermiculite on

the ground. In order to make the dispensed light-weight

vermiculite stay at place on the boards and prevent them

from being blown away by the wind or by the vortex from

the UAV propellers, each board was covered with carpet

protection tape, with the adhesive side facing up, and secured

with binder clips. After each vermiculite dispensing event, a 0.6-

m square newsprint paper was placed over each of the

25 adhesive tapes to cover and protect vermiculite collected.

In each dispensing event, the UAV hovered at the center of

the five-by-five grid of boards with the same, and dispensed

vermiculite for 3 s. The independent variables of our experiments

were: 1) the UAV’s altitudes h, 2) the dispenser’s opening areas S,

and 3) the wind speedw and directions α. We tested two different

UAV altitudes: 3.5 and 4 m and two different dispenser opening

FIGURE 4
Experiment site and equipment setup.
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area: 100 and 75%. The altitudes were chosen to be these values so

that they were neither too high that the wind would blow most of

the vermiculite off the boards area, nor too close to the boards

that the collected data would be affected by the vortex created by

the UAV’s propellers. The dispenser opening areas were chosen

based on measurements of vermiculite masses dispensed with

different openings (for 3 s). The dispensed masses of 100 and

75% opening areas were 17.85 and 7.56 g, respectively, which

were suitable values for our analysis purpose. Each combination

of UAV altitude and dispenser opening area were tested multiple

times on several days with different wind conditions. A total of

22 vermiculite dispensing trials were performed. A video of the

experiment setup and data collection process is on YouTube at:

https://youtu.be/st_apuEBtJg.

2.3 Image analysis and data calibration

Field data of vermiculite distribution on adhesive paper were

analyzed based on image analysis. Moreover, each of the 0.6-m

square data papers was divided into four square quadrants and

the inner 0.2-m square in each quadrant was imaged on a

lightboard. Each quadrant was labeled with its row, column,

trial number, and orientation information in the field, which can

map to its location on the grid of boards. The lightboard can

illuminate the empty space around the vermiculite, making the

vermiculite appear in dark contrast to the background (see

Figure 6A). The images were then analyzed using a software

called ImageJ, where the image analysis process was automated to

perform the following analysis on each image: 1) convert it to a

binary image (see Figure 6B), 2) crop, and 3) count the dark

particle areas (see Figure 6C). For the particle analysis in ImageJ,

a circularity value of 0.30–1.00 was chosen to eliminate artifacts,

such as wrinkles, and contamination, such as insects or grass on a

paper. The size of particles counted was set to 0–10,000 square

pixels, which represented the size range of the medium grade

vermiculite used.

In order to relate vermiculite mass in each quadrant to the

pixel area detected by ImageJ, a calibration experiment was

carried out. Calibration samples were created using the same

carpet protector tape used in the experiments and covered with

the same newsprint paper on the adhesive sides. Three duplicate

FIGURE 5
A block diagram illustrating our data collection system.
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calibration quadrants with vermiculite in the inner 0.2-m square

area were made for each of the 10 different vermiculite masses: 0,

0.010, 0.020, 0.040, 0.080, 0.160, 0.320, 0.640, 1.280, and 2.560 g.

These values were chosen according to the distribution of pixel

areas analyzed on all the outdoor experiment data, with the most

of papers having smaller pixel areas and fewer with larger pixel

areas. The smallest measurement taken was with no vermiculite

to account for noisy pixel areas from the non-uniformity of the

paper’s material. The largest mass was chosen so that it had a

larger total pixel area than that of the maximum value among all

outdoor experiment quadrants. A balance with 0.001 g precision

was used to measure the masses of vermiculite used in the

calibration experiment.

A linear calibration curve (slope sc was 6.3249 × 10–5 g/m2

with an R-squared value of 0.9996) showed that image analusis

could be used to accurately estimate vermiculite density in g/m2

with each image’s pixel area (see Figure 7).

3 Data-driven vermiculite distribution
modelling approach and results

Based on wind speed and direction, UAV altitude, and

dispenser opening area as explanatory variables, a 2D

distribution (i.e., the spatial density function) model of

vermiculite dispersed by a hovering UAV was developed.

Firstly, we fit the experimental field data (22 flight missions

and data from 25 boards from each event) to a Gaussian function;

secondly, standard machine learning was deployed to optimize

model parameters.

3.1 Gaussian distribution fitting

Figure 8 shows two representative vermiculite distribution

plots. One, shown in Figures 8C,D, exhibits only one peak while

the other, shown in Figures 8A,B, exhibits two peaks with one

more pronounced than the other. Out of all 22 trials, 18 have only

one peak, 4 have two peaks, and none has more than two peaks.

Moreover, the magnitudes of the second peaks, if they exist, are

always less than 30% of those corresponding first peaks. Finally,

presence of multiple peaks is likely caused by wind

characteristics, mainly changes in wind direction and speed

during a trial, as vermiculite is falling from the hovering

UAV. Therefore, for the four trials with two peaks, we only

retain and study their dominant peaks. We will call the data set

with the second peaks removed as “post-processed”.

FIGURE 6
Image analysis: (A) is an original vermiculite sample picture taken by a camera. (B) is the corresponding image edited by ImageJ for analysis. (C)
shows the vermiculite particles detected by ImageJ.

FIGURE 7
Vermiculite density calibration curve: vermiculite density
versus pixel area detected by ImageJ.
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All post-processed 22 sets of vermiculite density field data

possessed characteristics of a bi-variate Gaussian distribution,

which can be represented by the following exponential function:

d x, y( ) � scA

2πσxσy
�����
1 − ρ2

√
× exp − 1

2 1 − ρ2( ) x − μx
σx

( )2[(
− 2ρ

x − μx
σx

( ) y − μy
σy

( ) + y − μy
σy

( )2⎤⎦⎞⎠.

(1)
Here d is the density of vermiculite on the ground in g/m2. x and y

(each being a function of altitude h (m)) are the relative x and y

coordinates of boards in 5 by 5 grids. Positive y direction is λ =

157 deg to the North direction. μx and μy are the mean values of x

and y, respectively. σx and σy are the standard derivations of x and

y, respectively. ρ is the correlation between x and y. A denotes

peak value in pixel area. Finally, sc is the slope of the calibration

curve mentioned in Section 2.3.

The natural logarithms on both sides of Eq. 1 generates a

linear equation of ln d (x, y) with variables x, y, xy, x2, and y2

(Guo, 2011):

ln d x, y( ) � a0 + a1x + a2y + a3xy + a4x
2 + a5y

2. (2)

Accordingly, Gaussian distribution function parameters A, μx, μy,

σx, σy, and ρ in Eq. 1 have the following relationship with the

coefficients ai (i = 0, 1, 2, 3, 4, 5) of the polynomial function in

Eq. 2:

a0 � ln
Asc

2πσxσy
�����
1 − ρ2

√( ) − 1
2 1 − ρ2( ) μ2x

σ2x
+ μ2y
σ2y

− 2ρ
μxμy
σxσy

⎛⎝ ⎞⎠
(3)

a1 � − 1
2 1 − ρ2( ) −2μx

σ2x
+ 2ρ

μy
σxσy

( ) (4)

a2 � − 1
2 1 − ρ2( ) −2μy

σ2y
+ 2ρ

μx
σxσy

⎛⎝ ⎞⎠ (5)

a3 � ρ

1 − ρ2( )σxσy (6)

FIGURE 8
Raw vermiculite density data of two dispensing trials: (A) and (C) show the 3D plots and (B) and (D) show the corresponding contour plots.
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a4 � − 1
2 1 − ρ2( )σ2x (7)

a5 � − 1
2 1 − ρ2( )σ2y (8)

One major advantage of Eq. 2, which is linear, over Eq. 1,

which is nonlinear, is that the former allows us to apply standard

linear least square regression to determine the coefficients ai′s.
Importantly, ai values for different flight events vary, due to

different combinations of independent variables such as UAV

altitude and dispenser settings. To determine individual ai values

for each field data set, locations of each of vermiculite sample

quadrant (x, y) and the natural logarithm of vermiculite density

ln d(x, y) on each quadrant are used in the least square regression.

Moreover, bi-variate Gaussian distributions of each dispensing

trial can be determined by converting ln d(x, y) back to d(x, y).

Figure 9 shows the R-squared values of the regression results for

all trials. All R2 values are above 0.9 which suggests the ai′s,
determined by the linear regression, are sufficiently precise to

FIGURE 9
R2 values of the linear regression results for all 22 trials.

FIGURE 10
Raw vermiculite density data, (A) and (B), versus its fitted Gaussian distribution using linear regression, (C) and (D).
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represent the raw data’s maximum peak distribution. Figure 10

shows vermiculite distribution of one representative field data set

and its corresponding fitted Gaussian distribution.

3.2 Distribution coefficients learning

ai values determine shapes of bi-variate Gaussian

distributions for different field data sets. They are affected by

the following factors (independent variables): 1) UAV altitude

(h), 2) wind speeds in x and y direction (wx and wy), and 3)

Bugbot dispenser opening area (S). Given these input vectors

Xi ≔ [c, h, wx, wy, S]′ and their corresponding output vectors

Yi ≔ [a0, . . . , a5]′ (one input-output pair for one trial), a

function f to minimize a pre-defined cost function, such

as a root mean square (RMS) function C(Xi,Yi) ≔∑N
i�1(Yi − f(Xi))2 was used, in which N is the number of

trials (22 in our case).

f Xi( ) � C�Xi, (9)

where C is an unknown matrix that needs to be determined.

Prediction accuracy of this matrix may be improved by adding

third and higher order terms of h, wx, wy, and S to the feature

vector �Xi (Friedman et al., 2001). But this will make the model

more expensive to compute online.Moreover, we will demonstrate

later that a model with second order features is sufficiently

accurate for the precision pest management application.

With ai values determined in Section 3.1, linear least square

regression is used in conjunction with cross-validation for all

possible combinations of the 15 terms in �Xi (there are∑15
n�1C

n
15 �

32767 combinations in total). Leave-one-out cross validation was

performed on 20 randomly selected trials. The 2 remaining field

data sets used for testing (see Section 4.1). For each of the leave-

one-out (20-fold in our case) cross-validations, 19 field data sets

were used to train the model, and the remaining field data set was

used to select the feature combination (out of Cni
15) with the best

validation performance. The learned function, i.e., Eq. 9, is as

follows:

a0 � 8.2946wy − 0.5412h2 + 3.5169hwx

−16.4139wxS − 10.5451wyS
a1 � −2.4065h2 − 0.2156w2

y − 28.6857S2 + 17.0366hS
−0.4442wxwy + 0.9154wxS − 0.5847wyS

a2 � −0.0433w2
y − 1.1698S2 + 0.3448hwx − 1.9576wxS

+0.5137wyS
a3 � −0.0007w2

y

a4 � −1.0142 − 1.8745wx + 0.0180w2
x + 0.5352hwx

+0.0370hwy

a5 � 0.3376wy − 0.0459h2 + 0.0335w2
x + 0.0356w2

y

−0.0691hwy + 0.0669wxwy + 0.1104wxS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

FIGURE 11
Model performance with respect to the validation data: (A): the mean and standard derivation values of the experimental ai values (obtained in
Section 3.1) and (B): those of the predicted ai values using Eq. 10.
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4 Discussion

4.1 Model validation

The learned data-driven model, i.e., Eq. 10, performed well in

the validation: the RMS between the ai′s obtained from the

experiments and those predicted by the model is only 13.91%

(see Figure 11). To further evaluate robustness of our learned

model, we tested its predictive performance based on test data

(the 2 trials that are not included in the model training).

Figure 12 show the results for these two field data sets (Figures

12A,B for the first set and Figures 12C,D for the second one),

and Table 1 shows the experimental and predicted parameter

values for second set (the performance is similar for the first

set). Figure 12 shows that location and shape of the predicted

distributions aligned well with actual experimental field data.

Accordingly, the learned model provided accurate prediction

of vermiculite density distribution from a hovering UAV.

4.2 Limitations and proposed solutions

During our model training process, only maximum peak of

field data set was used. Therefore, in some of the flights (those

with two or more peaks removed), the actual dispensed volumes

were slightly different from those used in the analysis.

Furthermore, we observed that at comparatively higher wind

FIGURE 12
Model performance with respect to the test data: (A): an experimental/raw vermiculite distribution and (B): its predicted distribution based on our
learned model (Eqn. 10); (C): another experimental/raw vermiculite distribution and (D): its predicted distribution based on our learned model (Eq. 10).

TABLE 1 Experimental ai values versus predicted ai values.

Coefficients Experimental Values Predicted Values

a0 −11.8399 −11.8015

a1 −7.0722 −7.0755

a2 −2.5284 −2.5508

a3 −0.0093 −0.0007

a4 −1.8349 −1.7993

a5 −0.4390 −0.2928
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speeds, a small amount of vermiculite was blown to areas off the

boards grid (we tried to mitigate the issue by moving grids of

boards further downwind). Finally, gaps between boards were left

for simplicity to place and label boards. However, this setupmade

the vermiculite distribution data dis-continuous. A better

experiment setup for future studies might be: 1) using

continuous boards that can cover a larger area to counter

changes in the wind, 2) using shorter dispenser operating

period to decrease the effect of the changes in wind

conditions on vermiculite distribution, 3) dividing the

collected samples into more pieces, rather than the current

quadrant, to provide more data points, which may lead to

smoother contours and better models (with more data).

This study focused exclusively on effects of wind speed and

direction. However, vermiculite dispensing may be, at least

partially, influenced by temperature and ambient humidity.

Thus in future studies, modeling and parameterisation of these

abiotic variables should be added to the experimental design.

This study was based on experimental data collected with a

hovering UAV. Future experimental studies are needed, in which

flight speed and direction in relation to wind direction are taken

into account.

4.3 Future controller design and relevant
applications

Our learned model, due to its predictive power and simple

analytical form, can be easily adapted to other UAV actuation

purposes. That is, precision-delivery of materials fromUAVs is not

only important and restricted to agricultural pest management.

Moreover, prototypes for UAV-based package delivery systems are

being developed and tested (Romero et al., 2016). In support of

rescue emergency operations and disaster management (Restas,

2015), UAVs are used to deliver blood, medications, and other

healthcare products to locations inaccessible by roads or water

ways. Similarly, innovative skyports can deploy UAVs to deliver to

expected locations (Gupta et al., 2020). Another popular use of

delivery UAVs is to drop fire retardants or spread extinguishing

liquid to fire front, which requires modeling of the wind speed and

direction, the payload carried by UAVs, and the time for UAVs to

reach the fire front, in order for the materials released to reach the

part of the fire front that is best to address the fire extinguishing

goal with UAVs (Ausonio et al., 2021). In other situations like

nuclear accidents, hazardous material leakages, floods, and

earthquakes (Restas, 2015), it is hard and dangerous for

humans to get actively involved, UAVs can not only be used to

monitor dynamic situations, they can also deliver useful materials

to suppress and mitigate risks. To further improve these and

similar UAV-based actuation applications, precision delivery is

among the most important challenges to be solved, and accurate

modeling of wind speed and direction is a cornerstone in such

research efforts.

5 Conclusion

Dispensing of lightweight materials, such as vermiculite,

from a flying or hovering UAV is invariably influenced by UAV

flight settings (i.e., speed and altitude) and by wind parameters (i.e.

speed and direction in relation to UAV fliht path direction).

Without accurate modeling of material distribution as afunction

of these explanatory variables, the possibility of precision-delivery is

markedly impaired. Based on experimental field data, a data-driven

vermiculite distribution model with machine learning techniques

was developed and optimized. Results confirmed that 2D

vermiculite distribution could accurately predicted from a

hovering UAV. The model can be used to optimize the control

of UAVpestmanagement, where the vermiculite distribution can be

predicted with the proposed model in real time, and the UAV

controller can use this information to autonomously deliver desired

amount of pesticide to targeted locations.
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