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Bioacoustics monitoring has become increasingly popular for studying the behavior and
ecology of vocalizing birds. This study aims to verify the practical effectiveness of localization
technology for auditory monitoring of endangered Eurasian bittern (Botaurus stellaris) which
inhabits wetlands in remote areas with thick vegetation. Their crepuscular and highly secretive
nature, except during the breeding seasonwhen they vocalize advertisement calls, make them
difficult tomonitor. Because of the increasing rates of habitat loss, surveying accurate numbers
and their habitat needs are both important conservation tasks.We investigated the feasibility of
localizing their booming calls, at a low frequency range between 100–200Hz, using
microphone arrays and robot audition HARK (Honda Research Institute, Audition for
Robots with Kyoto University). We first simulated sound source localization of actual
bittern calls for microphone arrays of radii 10 cm, 50 cm, 1m, and 10m, under different
noise levels. Second, we monitored bitterns in an actual field environment using small
microphone arrays (height = 12 cm; width = 8 cm), in the Sarobetsu Mire, Hokkaido
Island, Japan. The simulation results showed that the spectral detectability was higher for
larger microphone arrays, whereas the temporal detectability was higher for smaller
microphone arrays. We identified that false detection in smaller microphone arrays, which
was coincidentally generated in the calculation proximate to the transfer function for the
opposite side. Despite technical limitations, we successfully localized booming calls of at least
two males in a reverberant wetland, surrounded by thick vegetation and riparian trees. This
study is the first case of localizing such rare birds using small-sized microphone arrays in the
field, thereby presenting how this technology could contribute to auditory surveys of
population numbers, behaviors, and microhabitat selection, all of which are difficult to
investigate using other observation methods. This methodology is not only useful for the
better understanding of bitterns, but it can also be extended to investigate other rare nocturnal
birds with low-frequency vocalizations, without direct ringing or tagging. Our results also
suggest a future necessity for a robust localization system to avoid reverberation and echoing
in the field, resulting in the false detection of the target birds.
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INTRODUCTION

Birds are indicators of biodiversity. Historically, bird censuses
relied on the ability of human observers to identify species of
interest based on sight and sounds at the census site (Ralph et al.,
1997). A shortcoming of direct observation is the variation of
detectability, which can be influenced by potential observer bias
(Sauer et al., 1994). Monitoring difficulties and outcome
uncertainties are multiplied for rare species because of low
detectability tied to low abundance. Effective monitoring of
rare bird species, however, is critical to ensure their
conservation. For some territorial species, reactions to
playback of species-specific sounds are often used to overcome
this constraint by triggering aggressive responses (Sutherland
et al., 2004). However, this technique using playbacks only works
for certain species, while often silencing cryptic species.
Paradoxically, these species are usually the target of
conservation, and accurate measurement of demography, such
as abundance, dispersal, and recruitment, are important for
management plans. Such demographic information has been
collected by catching, marking, and more recently by tagging
logging devices, which involve a certain range of physical
interferences. These techniques may be inappropriate for
monitoring rare endangered species or species that are
sensitive to human interference. Auditory monitoring has the
specific merit of monitoring targets without human interference.

Of these rare and sensitive species, birds that have low-
frequency vocalizations are particularly challenging to monitor.
Their low-frequency sounds are extremely difficult to locate for
human observers in the field. For example, sounds are scattered,
attenuated, and reverberated by the topography and forest
vegetation. In open wetlands, sounds can be reflected from the
surface of water. In addition to these abiotic factors, many of their
specific vocalizations occur only over a short period of time, like
during the breeding period. Monitoring in remote fields at night
or in crepuscular conditions is also a high-risk task for human
observers.

Recent advances in bioacoustics and microphone arrays,
provide a powerful tool for the auditory monitoring of birds.
The potential merit of microphone arrays lies in detecting the
position of sound occurrence, or the direction of arrival (DOA) of
sound sources. Advances in acoustic processing, particularly in
microphone arrays, have provided alternative methods to
passively monitor bird behaviors (Blumstein et al., 2011;
Mennill 2011). Microphone arrays, or a set of single
microphone arrays have been used to acoustically monitor the
territory of Mexican-ant-thrush (Formicarius moniliger)
(Kirschel et al., 2011), the duetting behavior of rufous-and-
white wrens (Thryophilus rufalbus) (Mennill and Vehrencamp
2008), the position of warblers in flight (Gayk and Mennill 2019),
and the population density of ovenbirds (Dawson and Efford
2009). However, despite their potential advantages, microphone
arrays are not widely adopted in the field of bird monitoring
because of the limited availability of the required software and
hardware.

To overcome these challenges, we developed HARKBird, a
portable recording system that monitors and analyzes birdsongs.

HARKBird consists of a standard laptop computer, an open-
source robot audition system called HARK (Honda Research
Institute, Audition for Robots with Kyoto University)
(Nakadai et al., 2010), and commercially available low-cost
microphone arrays. The software for HARKBird is entirely
composed of a series of Python scripts with modules (e.g.,
wxPython and PySide) and other standard sound processing
software (e.g., SOX, arecord, and aplay). All these software
packages can operate in the Ubuntu 12.04 Linux operating
system, where the latest HARK and HARK-Python scripts
have been installed. The algorithm for sound source
localization is based on the MUSIC method (Schmidt,
1986) and multiple spectrograms with a short-time Fourier
transformation (Nakamura et al., 2013). Localized sounds are
separated into multiple songs using the geometric high-order
decorrelation-based sound separation method in real time
(Nakajima et al., 2010). See Nakadai et al. (2010) and Suzuki
et al. (2017) for HARK and HARKBird, respectively.
Previously, we monitored great reed warblers
(Acrocephalus arundinaceus) (Matsubayashi et al., 2017),
bush warblers (Horornis diphone) (Suzuki et al., 2018), and
nocturnal species such as owls (Strix Uralensis) and
crepuscular ruddy-breasted crake (Porzana fusca)
(Matsubayashi et al., 2021) using microphone arrays and
HARKBird. A question remained regarding the frequency
range defined by the upper and lower limiting frequencies,
which were in the range of 500 and 3,000 Hz in the above
examples.

Generally, the limiting frequencies of microphone arrays are
linked to their size, compared with the wavelength of sound.
Because the wavelength is inversely proportional to the
frequency, it becomes progressively longer at lower
frequencies. In other words, a small-sized microphone array
is better suited for localizing higher-frequency sounds,
whereas large-sized microphone arrays are better suited for
localizing low-frequency sounds. The sensitivity of the
microphone is also related to its size, which also affects its
dynamic range.

Here, we report on the feasibility of using relatively small-
sized, 8-channel microphone arrays and HARKBird to
acoustically monitor nocturnal birds with extremely low
frequencies. Our recording target was the Eurasian bittern
(Botaurus stellaris). It is a rare wetland bird, nationally

FIGURE 1 | Structure of Eurasian Bittern’s call.
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protected as an endangered species in Japan; thus, accurate
monitoring, for example, counting accurate numbers and
social interactions are both important for decisions
concerning the habitat management of this species.
Eurasian bitterns are highly cryptic and difficult to
observe. Males characteristically loud, monotonous, emit
advertisement vocalizations called booming, at low
frequency. An example of their boom, mostly in the
frequency range of 100–150 Hz, is shown in Figure 1.
Because of their secretive nature and inhabiting remote
wetlands covered with thick vegetation, their booming
calls are often the only sign of the presence of these birds
for a human observer.

Previously, McGregor and Byle (1992) surveyed bitterns using
stereo microphones in 1975–1976, and 1988–1989,
concluding that the booming calls of bitterns are
individually distinctive based on time and frequency.
However, it was mentioned that the variability of the
prelude, or so-called bad poor booms, can decrease the
detection rates. More recently, Adamo et al. (2004)
examined intra- and inter-specific booming of 18 radio-
tagged bitterns using stereo recordings and found that
vocalizations of the same male were not stable over time.
Frommolt and Tauchert (2014) identified individual bitterns
based only on spectrogram template matching derived from
four four-channel microphone arrays, each of which were
30 cm apart, to monitor the population size. Wahlberg et al.
(2003) also estimated the location of the bittern using four
microphone arrays, each of which was placed 65 and 294 m
apart, with a spatial localization accuracy of approximately
100 m.

The aim of this study was two-fold. First, we assessed the
feasibility of portable microphone arrays to acoustically
monitor low-frequency vocalizations by simulating the size
of the microphone array under different noise levels. In this
analysis, we examined both the temporal and spectral

resolutions of localization. Second, we aimed to monitor
bitterns in an actual field environment using relatively
small microphone arrays.

METHODS

Simulation
We examined the sound source localization by numerical
simulation. Figure 2 shows a schematic illustration of this
simulation. For this simulation, we assumed an 8-ch circular
microphone array in a free acoustic space, with radius of
10 cm, 50 cm, 1 m, or 10 m. On all microphone arrays, 8
microphones were placed on the periphery at the angular
interval of 45°. The sound source we used for simulation was a
10-s recording of the actual bittern booming. Owing to the
low intensity of the original sound source, we increased its
sound pressure by 12 dB using the SOX (version 14.4.2.),
sound processing software (http://sox.sourceforge.net/). The
sound source was assumed to be located 30 m away from the
center of the microphone array in the horizontal direction at
0° with respect to the radial microphone array coordinates.
The input to the microphone array was simulated by
convolution, according to the geometrical relationship
between the sound source and the microphone array. The
distance between the microphone array and the sound source
was set to 30m, for the clear recording of the sound. The
distance is also practical, as we can position the recording
device without interfering the target activity in the field. In
this simulation, we additionally considered ambient noise.
We added a diffused white noise to the convoluted sound
source so that the signal-to-noise ratio (SNR) can attain 20,
10, and 0 dB. For analog-to-digital conversion, we used 16 bit
and 16 kHz sampling.

We calculated the MUSIC spectrum values for two
frequency ranges: the lower one specifically targeting
bitterns ranging between 50–250 Hz (LF), and the other
for wider bandwidth, ranging between 50 and 2,800 Hz
(WB). We then used the MUSIC method to estimate the
DOA by calculating the eigenvalue decomposition of the
correlation matrix among the input signal channels. The
MUSIC method uses the transfer function between a
sound source and an M-channel microphone array, as a
prior information, defined as,

H(θ,ω) � [h1(θ,ω),/, hi(θ,ω),/, hM(θ,ω)]T (1)
where hi(θ,ω) denotes the transfer function between the sound
source, S(θ), from the direction, θ, in the microphone array polar
coordinates and the i-th microphone. ω indicates frequency.

The M-channel input signal vector in the frequency domain is
denoted as,

X(ω, f) � [X1(ω, f),/, Xi(ω, f),/, XM(ω, f)]
T (2)

whereXi(ω, f) is a spectral component of the i-th microphone at
the f-th time frame and at frequency ω, which can be obtained by
performing short-term Fourier transform (STFT) to the input

FIGURE 2 | Schematic illustration of numerical simulation.
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acoustic signal recorded with the i-th microphone of the
microphone array.

The correlation matrix is calculated from X(ω, f) by,

R(ω, f) � 1
W

∑
W

i� 0
X(ω, f + i)Xp(ω, f + i) (3)

where ()p represents the conjugate transpose operator; and W
represents the window length for time averaging.

The eigenvalue decomposition is then performed for the
correlation matrix R(ω, f) as,

R(ω, f) � E(ω, f)Λ(ω, f)E−1(ω, f) (4)
where E(ω, f) � [e1(ω, f), e2(ω, f),/, eM(ω, f)] represents
the eigenvalue matrix comprising the Eigen vectors
perpendicularly intersecting each other; and Λ(ω, f) is the
diagonal matrix comprising the eigenvalues in descending order.

Larger eigenvalues indicate higher power sound sources, that
is, the target signal; whereas the lower eigenvalues correspond to
the noise signals. By using the threshold, Ns, indicating the
number of sound sources, the M-dimensional space of the
correlation matrix is decomposed into the signal subspace and
noise subspace. As performing the eigenvalue decomposition
through every frame is computationally expensive, it was
calculated only once in several frames in our implementation
with the parameter called PERIOD.

The MUSIC spatial spectrum was calculated by,

P(θ,ω, f) � Hp(θ,ω)H(θ,ω)
∑M

i�Ns+1
∣∣∣∣H(θ,ω)ei(ω, f)

∣∣∣∣
(5)

As the eigenvectors from eNs+1(ω, f) to eM(ω, f) belong in the
denominator, that is, the noise subspace, the inner product of
H(θ,ω) and these eigenvalues will be 0 when θ directs to the

sound direction. P(θ,ω, f) then becomes infinity. Therefore,
P(θ,ω, f) and the power of the sound source exhibit a non-
linear correlation. Finally, sound source localization was achieved
by identifying the peaks on the MUSIC spatial spectrum.

We used HARK 3.1.0 as the implementation for sound source
localization and HARKTookl5-GUI 3.1.0 for the calculation of
the transfer function between the sound source and the
microphone array. We used an 8-channel microphone array
(M=8). For STFT explained in Eq. 2, a window size of 512
samples (32 ms) and a window shift of 160 samples (10 ms) were
used. This indicates that each frame of the input sound is
represented as a matrix comprising 8 channels of 257
dimensional vectors. The number of channels corresponds to
that of the microphones, whereas the number of dimensions
corresponds to that of the frequency bins ranging between 0 and
8,000 Hz, which indicates that the bandwidth of each frequency
bin is 31.25 Hz (8,000/256). As the frequency range for sound
source localization was limited to 50–250 Hz, seven frequency
bins from the 3rd (62.5 Hz) to the 9th (250 Hz) were used in this
simulation.

As the first step of the MUSIC algorithm, the correlation
matrix was calculated for each frequency bin in each frame, which
produced an 8 × 8 correlation matrix for each frequency bin.
Subsequently, to increase the stability of the correlation matrix,
temporal integration was performed by averaging 50 frames of
correlation matrices (W = 50). As the interval between two
consecutive frames was 10 ms according to the window shift
of STFT, the correlation matrix for one frame input was
calculated from the 500 ms input signal. The number of sound
sources,Ns, to calculate the MUSIC spatial spectrum was set to 1.

Study Site and Bird Recording
The study site was located in the Sarobetsu Mire, in the
northernmost area of Hokkaido Island, Japan (Figure 32). The
Sarobetsu mire encloses 6,700 ha of freshwater lakes and
wetlands, some of which belong to the Rishiri-Rebun-

FIGURE 3 | Location of the study area.

FIGURE 4 | Photograph of the 8-channel microphone array.
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Sarobetsu National Park and partially protected under the
Ramsar convention since 2005 (Saito et al., 2008). The area is
a known breeding ground for endangered birds, such as the
Eastern marsh harrier (Circus spilonotus), Japanese red-crowned
crane (Grus japonensis), and Yellow-breasted bunting (Emberiza
aureola).

We continuously recorded bitterns from 17:00 to 10:00 on 13
May 2021 during the peak breeding season. Bitterns were
recorded using 8-channel microphone arrays (System in
Frontier, TAMAGO-03, Japan). Eight microphone nodes
were arranged horizontally at every 45° angle along the
periphery of the egg-shaped body (height = 12 cm; width =
8 cm). This structure allowed us to estimate the azimuthal
DOAs of the sound sources. The data was acquired for each
channel at 16,000 Hz and at a resolution of 24 bits. We placed
the microphone array on a tripod approximately 1.5 m above
the ground, and connected it to a small PC (Raspberry-pi 4,
United Kingdom) and a mobile battery using USB cables
(Figure 4). We synchronized all the clock of all PCs by
tethering them to a cell phone. A total of five microphone
arrays, were placed at the interval of approximately
300–500 m, along the edge of the wetland.

The wetland is a freshwater back marsh of the Sarobetsu river,
with the maximum depth of 2 m. The perimeter of the water
surface is approximately 3.5 km (Saito et al., 2008). The wetland
contains sphagnum spp. communities, surrounded by reed
species and Asian skunk cabbage (Lysichiton camtschatcensis),
under the canopies of alder (Alnus japonica).

The night had almost no wind. To sample vocalizations during
the hours of darkness, while avoiding active hours of the grizzly
bears (Ursus arctos), recording experiments in the study area were
conducted mostly unattended by human observers. Human
observers attended only for the first few minutes to check
whether the equipment started correctly.

We silently monitored the birds non-invasively, apart from
potential nesting sites and without playback experiments using
loudspeakers to trigger territorial responses. This study was
conducted with the approval of the Hokkaido Regional
Environment Office and Osaka University’s Animal
Experiment Ethics Review Committee.

Localization
We estimated the DOA of the sound source acquired offline from
the microphone array using HARKBird. Details of the major
localization parameters are summarized in Table 1. We adjusted

each parameter value by visually examining the spectrogram of
each localized sound. We also auditorily inspected each of the
localized sounds and manually removed sounds that were not
bittern calls.

RESULTS

Simulated Temporal and Directional
Resolutions
Figures 5, 6 show the results of the numerical simulation for LF
(left) andWB (right), respectively. The top subgraphs in Figure 5
show the input signals in the time domain, and the remaining
subgraphs illustrate the MUSIC spectrum for microphone arrays
of radii 10 cm, 50 cm, 1 m, and 10 m. The colored line graphs in
each subgraph show the results under three different noise levels
(20, 10, and 0 dB). Figure 6 shows the MUSIC spatial spectrum at
the 466-th time frame, which obtained the highest peaks as shown
in Figure 5. The conditions of the 1st-4th subgraphs if Figure 6
correspond to those of the 2nd-5th subgraphs in Figure 5.

As expected, narrowing to the frequency range of the target
sound, that is the low frequency call of bittern, increased the
temporal detectability. For example, the peaks on the WB in
Figure 5 were generated irrelevant to the presence of the actual
bittern calls in the given timeframe, shown on top. In contrast, the
timing of certain peaks in LF matched the actual bittern calls,
indicating higher temporal detectability. Surprisingly, the
smallest sized microphone array exhibited the highest
temporal detectability, indicated by a higher match between
the peaks on the graph, corresponding to the timing of actual
bittern calls. The detectability decreased with increasing size of
microphone array, that is, the deviation between the simulated
peaks and the timing of booming became increasingly larger. The
peaks were marginal for the microphone arrays of radius = 10 m.
The influence of noise on the detectability were unclear. The
detectability was higher under a quieter environment (with low
noise level) for the smallest sized microphone array (radius =
10 cm), whereas this trend became unclear with low detectability
associated with larger microphone arrays.

In contrast, the directional detectability increased with the size
of microphone arrays (Figure 6). There was a ghost peak at 180°,
or opposite to the target sound source direction (Figure 2), on the
small-sized microphone arrays. Presumably, this ghost peak was
coincidentally generated by the proximity to the transfer function
for the opposite side, although this phenomenon requires to be

TABLE 1 | Localization parameters of HARKBird.

Parameter Unit Value Explanation

PAUSE_LENGTH Millisecond 500 Previous section length of sound source
MIN_SRC_INTERVAL Degree 10 A threshold for angle difference to be regarded as the same sound source
PERIOD Number of frames 16 Cycle to calculate localization results
THRESH 13 A threshold to separate the sound source and noise
UPPER BOUND FREQUENCY Hz 200 Upper bound frequency
LOWER BOUND FREQUENCY Hz 100 Lower bound frequency
NUM_SOURCE 1 The number of sound sources
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FIGURE 5 |MUSIC spectrum in time for LB (left) and WB (right). The top subgraphs show the input signals in time domain, and the remaining subgraphs illustrate
the MUSIC spectrum for the target direction (0°) over all frames for the corresponding frequency range. The horizontal and vertical axes are the simulation frame and
MUSIC spatial spectrum values. The peaks in each subgraph show the presence of the sound source.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8545726

Matsubayashi et al. Localizing Eurasian Bittern

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


FIGURE 6 | MUSIC spatial spectrum for LB (left) and WB (right). The vertical and horizontal axes indicate the direction and MUSIC spatial spectrum value,
respectively. The conditions of the 1st-4th subgraphs correspond to those of the 2nd-5th subgraphs in Figure 5.
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investigated in greater detail in future studies. The size of the
ghost peak was remediated by increasing the size of the
microphone arrays. The results additionally showed that the
slope became sharper for large-sized microphone arrays at
approximately 0°, which corresponds to the main lobe in
beamforming. Despite these ghost peaks generated
coincidentally, the width of the main lobe was much narrower
on the large-sized microphone arrays, indicating a higher spatial
resolution. The detectability was high under low noise levels as
expected. However, the performance was approximately
maintained up to 0 dB, which is an established advantage in
MUSIC algorithms.

Detection of Booming Calls in the Field
The relative position of the microphone arrays to the target birds,
the surrounding vegetation, and the water surface resulted in

reverberation and echoes of actual bittern calls. Figure 7 shows
spectrograms of bittern-like sound derived from an 8-channel
microphone array, which was set on the edge of the water body
adjacent to the forest. Two phrases, the one starting at 0:01 and
the other starting at 1:05, both of which consisting of six syllables,
were actual bittern songs, while others were echoes of those
originals. The original calls were echoed twice each time. The
1st echo kept the same number of syllables, that is, six syllables in
this case, while the number of syllables decreased in the 2nd echo,
thus fragmented. The number of syllables is kept in the 1st echo,
probably because the original calls vocalized in the wetland were
first reflected directly by the thick trees and bushes behind the
microphone array. Differences in the time delay between these
two sets of echoes were presumably caused by the face orientation
of the long-neck bittern and environmental reverberation, for
example, trees, vegetation, and the extent of water surface, all of

FIGURE 7 | Example spectrograms of bittern calls and echoes.

FIGURE 8 | Example spectrograms of the two bitterns’ calls.
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which could generate a complex reflection effect. The reflection
effect also caused differences in the degree of sound
fragmentation in the 2nd echoes.

The maximum detection distance in open area was
approximately 250 m. Although the sound attenuation
caused by vegetation was minimum in open area, we used
recordings from a site unaffected by echoes for further
analysis, because distinguishing the echoes of the original
and actual bitterns far away was challenging when random
time delays occurred. Echoes were less severe in a bush along
a wetland covered with thick vegetation. Figure 8 shows an
auditory scene when two bitterns were booming alternately.
In this two-minute recording, Bitten A first started a booming
phrase consisting of four elements near the microphone
array. Four seconds later, Bittern B at some distance from
the microphone array vocalized a booming phrase consisting
of five elements. Bittern B then boomed again approximately
40 s later, a phase consisting of four elements. After 20 s,
Bittern A boomed again, a phase consisting of five elements.
Note that the previous boom with five elements occurred
approximately six min before the recording of Bittern B at 0:
12, so that they were less likely to be echoes. Similarly, one
minute of silence between Bittern A starting at 0:03 and
Bittern B starting at 01:07, seemed too long to make the
subsequent one an echo, although both consisted of four
elements. Additionally, the results matched field observations
we made at the beginning of the recording which was two
hours before this scene.

Localization of Bitterns
We detected at least two booming males based on the differences
in the DOAs derived from each microphone array. The
localization parameters are listed in Table 1. Figure 9 shows
examples of localized calls of the two bitterns, as described in

Figure 8. At 18:30 on May 13th, Bittern A and B were localized at
45° and 350°, respectively, with respect to the microphone array.

We detected 528 calls of Bittern A and 260 calls of Bittern B
during the observation period at 4:45, as described above. The
temporal localization accuracy between 17:30 and 20:30 when
vocalization was most active was summarized in Table 2. The
comparison between the localized and annotated call duration
showed that there was a difference in the localization accuracy. It
was highly influenced by the surrounding noise and the distance
between the microphone array and target individual. The
localization accuracy was higher for Bittern A, which was
singing in closer proximity to the microphone array between
the range of 64.4–95.2% during the peak hours. High localization
accuracy indicates the high reliability of the automated
monitoring data for further analyses. In contrast, the
localization accuracy was low for Bittern B, which was
booming farther away. Even after other songbirds stopped
singing at around 18:00, the localization accuracy remained
low, at 27.2% between 18:30 and 19:30, and 46.5% between 19:

FIGURE 9 | Examples of localized sound including the two bitterns’ calls.

TABLE 2 | Temporal localization accuracies for each bittern. Localization accuracy was calculated by dividing the actual duration by the localized duration. The actual
duration was inspected manually.

Bittern A Bittern B

Time 17:30–18:30 18:30–19:30 19:30–20:30 17:30–18:30 18:30–19:30 19:30–20:30

Localized duration(s) 61.6 109.3 147.0 385.6 151.8 256.2
Actual duration(s) 39.7 104.1 126.4 22.4 41.3 119.0
Localization accuracy (%) 64.4 95.2 86.0 5.8 27.2 46.5

FIGURE 10 | Temporal distribution of the two bitterns’ calls.
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FIGURE 11 | Circular histogram of the direction of arrival (DOA) of the two bitterns’ calls.
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30 and 20:30. Additionally, false detection was caused by
environmental noises such as rustling of trees and waders
singing in a direction similar to that of the bittern at the
beginning of the evening.

Figure 10 shows the temporal distribution of the localized
calls of the two bitterns at the same time frame. Bittern A boomed
throughout the sampling period. The number of calls peaked
twice, at 19:15 and 20:15, which were 21.0 and 25.4% of the total
calls of Bittern A, respectively. On the other hand, Bittern B
started booming at 18:15 with increasing frequency, with its peak
at 19:45, being 26.15% of the total of Bittern B. Bittern B became
silent approximately 60 min starting at 20:00. The number of calls
was lower after silence. Both bittern’s calls were most active
around sunset at 19:53, constituting 63.45% of the total call of
Bittern A, and 72.69% of that of Bittern B occurred within 60 min
before and after sunset at 19:53. Notably, the peak timing of
Bittern B’s call that occurred between 19:45 and 20:00 matched
the timing of sunset. The vocalization frequency dropped after
this peak time for both bitterns.

The numbers and DOAs corresponding to each bittern boom
are shown on a circular histogram, during the same time intervals
are summarized in Figure 11. The location of the microphone
array and the approximate location of the two bitterns based on
the DOAs and the amplitude of their calls are shown on a map in
Figure 12. Bittern A was relatively stationary, vocalizing at
approximately 45° or northeast of the microphone array. On
the other hand, Bittern B, which was booming at 56.25°, or

northwest of the same microphone array between 17:30 and
21:15, including 45 min of complete silence, and drastically
changed its location at 21:30, to 11°, or approximately north of
the microphone array.

DISCUSSION

The simulation results revealed two technical limitations of the
recording device used in the field. First, ghost peaks were generated
on the opposite side (180°) of the sound source on smaller
microphone arrays, although it had a higher sensitivity for
detecting MUSIC spectrum values, as compared to larger
microphone arrays. Second, smaller-sized microphone arrays had
relatively wider main robes, reflecting a poorer spectral resolution.
Enlarging the size of the microphone arrays could remediate these
limitations, as is evident from the simulated results. However, it
could worsen temporal detectability, as described in Figure 5. This
is because the target sound could not be contained in the processing
window size of the frequency analyses. The size of the processing
window associated with the sampling rate of 16,000 used for the
simulation contains 512 samples which is equivalent to 10.8 m. In
other words, the largest microphone arrays simulated had a
diameter of 20 m with a time difference equivalent to
approximately 1,000 samples, which exceeded 512 samples.

One potential solution to this issue is the use of a hybrid
method. Smaller microphone arrays could be used to temporally

FIGURE 12 | Estimated location of the two bitterns relative to the microphone array.
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detect sound sources, and then use larger microphone arrays with
finer spectral resolution to localize sounds afterwards. Figure 13
shows the localization results of a hypothetical hybrid

microphone array in the LF range. This hybrid microphone
array had 8 microphone nodes, four of which had a radius of
10 cm and the rest with a radius of 10 m, alternately arranged.

FIGURE 13 | MUSIC temporal spectrum (top) and temporal spectrum (bottom) in LF for the hybrid microphone array.
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This formation allows each microphone node to cover 90°.
Second, we could lower the sampling rates to levels that
matched the frequency range of the target. For example, if we
lowered the sampling rate from 16,000 to 1,000 Hz, the size of the
processing window for 512 samples increased from 10.8 to 160 m,
thereby allowing all the sounds derived from the 8 microphone
nodes of the 10 m-radius microphone array contained in
this range.

Despite the technical limitations associated with
microphone arrays, this study demonstrated that robot
audition could successfully be applied to monitor nocturnal
birds in the field. Using portable microphone arrays, we
localized advertisement calls of at least two Eurasian
bitterns that have an extremely low-pitched frequency
range. To the authors' best knowledge, this is the first
attempt to monitor the spatiotemporal distribution of vocal
activity of bitterns based on localized sounds derived from a
small microphone array, as compared to the ones in other
similar studies, e.g., microphone array radius of 30 cm in
Frommolt and Tauchert (2014) and 65–94 m in Wahlberg
et al. (2003).

The results show that this technology is applicable to
conduct auditory surveys of the numbers, behaviors, and
microhabitat selection of nocturnal wetland birds. All the
above-mentioned measurements are difficult to obtain using
the other observation methods, especially in highly reverberate
wetland environments. DOAs were particularly useful not only
to identify two booming males, but also to distinguish actual
vocalizations of each bittern from the echoes of the originals.
Reverberation and echoing were most severe at a site facing the
water body, surrounded by thick and tall wetland vegetation
and riparian trees, resulting in false detection of the bittern. In
addition to the merits of data consistency and the absence of
observer bias, this observation method significantly decreases
the observation cost and risk of bird monitoring in dark
wetlands. The potential bittern habitat in Japan is known
for its high population of grizzly bears. Future studies will
include integrating DOAs from multiple microphone arrays to
enable the estimation of the distance to the target bird.

Although we have shown the effectiveness of robot audition
for auditory monitoring of nocturnal wetland birds that have low-
frequency vocalization using small-sized microphone arrays, we
should note that our recording example of Eurasian Bittern is a
simple situation, relative to monitoring, and thus may not be
extrapolated to other birds for three reasons. First, bitterns are
widely dispersed; thus, it is easier to discriminate individuals
compared to other flocking birds. Second, bitterns’ vocalizations
are simply structured, loud, low, and narrow banded; thus, they
travel over long distances and are relatively insensitive to
deterioration during sound transmission. Third, they are less
mobile when they vocalize. Most birds have more broadband
vocalizations and may be in motion; thus, they are difficult to
detect owing to frequency-dependent variations in the
transmission loss.

The main task of this monitoring was to detect the number of
territorial bitterns and their territory size. Based on the observation
results and localization limit, we concluded that there were two

mature males in the study area at the time of recording, both of
which were booming in the southern part of the lake. There are two
likely reasons why both were found only on the southern side of the
lake. First, the southern shore of the lake is more isolated and
contains a larger wetland area. In contrast, the northern shore is
closer to residential areas and partially developed for recreational
areas. The area contains fewer reed marshes. Second, the entrance to
the southern part was temporarily restricted to protect the breeding
of the Japanese crane. Although limited by a short observation
period, higher detection rates in the southern part reflect habitat
quality as well as the effective management of human interruption.
Continuation of monitoring is required to further assess habitat
preferences.

We have two recommendations for prioritizing the
development of localization technologies. Automated species
classification via machine learning is essential. Although
HARKBird performs automatic sound detection and sound
separation into multiple noise-reduced recordings based on
the MUSIC method, we manually inspected each of the
localized sounds. There are two reasons for the need for
manual inspection. First, we had severe reverberation and
echoes caused by the water surface surrounding the trees.
Second, low-pitch sounds were similar to background
environmental noises such as the rustling of leaves that
occurred in a direction similar to that of the sound source.
The comparison between the localized and annotated call
duration revealed that the localization accuracy was highly
affected by the level of surrounding noise and the distance to
the microphone array. More robust methods to classify targets as
well as separate targets from background noise are needed to
achieve a truly automated auditory survey of bird vocalization.
One potential method to improve the performance of automated
sound classification is the use of beamforming in sound
separation (Kojima et al., 2016). Increased performance in
automated sound detection will significantly improve the
usability of localization techniques for auditory monitoring of
birds in the real field with many environmental noises. A more
robust classification method in noisy surroundings will not only
help delineate target sounds from other coexisting species, but
also capture the soundscape.

Second, there is a need for recording equipment that is truly
water-proofed, portable, and self-synchronizing. Many of the
fields, such as the wetland environment in this study, are wet
and suffer from moisture condensation. Although our recording
gear, TAMAGO, is simple and water-proofed, the USB cables
connecting TAMAGO, Raspberry-pi, and the mobile battery are
partially exposed. This makes it not optimal for use in wetlands
that are highly misty. Paradoxically, many rare species that
biologists need to survey are found in misty environments.
The degree of waterproofing coincides with the size and
weight of the equipment, yet carrying a large and heavy
equipment is not realistic in the poor footing or remote fields.
Self-synchronization is another challenge. In our study, we
synchronized Raspberry Pi by tethering it to the cell phone,
yet delays occurred randomly. GPS synchronization could be a
solution, but the current cost of the device will limit its
availability.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 85457213

Matsubayashi et al. Localizing Eurasian Bittern

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Ultimately, automated sound localization on mobile robots
has great potential for collecting auditory data at larger and
longer spatiotemporal scales, with finer resolution and higher
accuracy compared to human observers. As demonstrated in
our study, it can detect the numbers, movements of
individuals, and habitat use of the target. This method is
particularly useful for monitoring rare species in an
unintrusive manner, while reducing the observation cost
and risks to the human observer.
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