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Legged robots have the potential to cover terrain not accessible to wheel-based robots
and vehicles. This makes them better suited to perform tasks such as search and rescue in
real-world unstructured environments. In addition, pneumatically-actuated, compliant
robots may be more suited than their rigid counterparts to real-world unstructured
environments with humans where unintentional contact or impact may occur. In this
work, we define design metrics for legged robots that evaluate their ability to traverse
unstructured terrain, carry payloads, find stable footholds, and move in desired directions.
These metrics are demonstrated and validated in a multi-objective design optimization of
10 variables for a 16 degree of freedom, pneumatically actuated, continuum joint
quadruped. We also present and validate approximations to preserve numerical
tractability for any similar high degree of freedom optimization problem. Finally, we
show that the design trends uncovered by our optimization hold in two hardware
experiments using robot legs with continuum joints that are built based on the
optimization results.
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1 INTRODUCTION

Animals and legged robots are generally able to traverse more terrain than wheeled or tracked
vehicles. Therefore we expect that the use of a legged robot as opposed to a wheeled robot would
greatly increase the regions where the robot can operate. Legged robots are especially capable of
performing tasks in unstructured environments alongside humans instead of being limited to
factories or other highly structured environments. However, operating safely around humans in
unstructured environments is difficult for traditional rigid, position-controlled robots.

Traditional rigid position-controlled robots present dangers to humans because of their
high reflected inertia due to their high gear ratios. These reflected inertias cause high contact
forces when colliding with objects present in unstructured environments that can be damaging
to both the robot and the objects. While force control can be a solution to this problem for rigid
robots, force control is inherently difficult for stability reasons. The result is that there has been
a recent trend in exploring robot designs made from softer materials and powered by soft
actuation to allow for more passive compliance as opposed to traditional rigid position-
controlled robots. These kinds of robots are known as soft robots. These soft robots are safer to
operate around humans and in unstructured environments because incidental contact forces
can be greatly reduced and high contact forces can be mitigated with the natural compliance of
the platform.
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Soft continuum-joint robotics legs in conjunction with soft
manipulators can provide the groundwork to perform whole-
body, dynamic, mobile manipulation in soft robotics. Work in
mobile manipulation is relatively new for any kind of quadruped
robot. Boston Dynamics (a commercial enterprise) with their
SpotMini is one of the only groups to have demonstrated control
of a quadruped with an arm attached. Spot is a rigid robot with
compliance introduced through impedance control. However, if
the whole system was compliant by nature, the platform would be
safer around humans and less likely to damage itself when it falls.
In addition, robots with compliant legs have the possibility of
adapting to rough terrain more effectively (Godage et al. (2012))
than their rigid counterparts.

The research in this paper is focused on methods for designing
such a compliant platform. Specifically, our goal is to develop and
validate useful metrics to aid in the design optimization of a 16-
degree-of-freedom (DoF), pneumatically-actuated, continuum-
joint, soft quadruped robot whose goal applications are mobility
in unstructured environments and mobile manipulation. Our
general contributions are two-fold: 1) we introduce a general
methodology for the design optimization of a large-scale
quadruped and 2) we provide important simplifications and
approximations to maintain computational tractability. While
this paper specifically focuses on a continuum-joint soft
quadruped, these contributions are applicable to other
quadruped platforms–rigid, soft, hybrid, or otherwise.

2 RELATED WORK

The validation test bed presented in this paper is not entirely soft
like many of the platforms used for soft robot locomotion, nor is it
entirely rigid like many of the platforms used for legged robot
design metrics and optimization. Hence this section summarizes
work done in each field in order to provide context for the work in
this paper which is inherently a mixture between both.

2.1 Legged Robot Design Metrics and
Optimization
Little research exists regarding metrics for a design optimization
of a legged, soft robot. There is design optimization research for
traditional rigid, legged robots such as the genetic algorithms used
in Birglen and Ruella (2014), Fedorov and Birglen (2015), and
Gülhan and Erbatur (2018). However, most of the research
considers designs with fewer than ten design variables which
are not directly applicable to a legged, soft robot. Because the
designmetrics formed for these optimizations are not sufficient to
aid directly in this work, we have developed new design metrics
tailored specifically to a legged soft robot.

Chadwick et al. (2020) recently contributed an open source
design optimization toolbox that uses evolutionary algorithms
and allows user-specific metrics, The paper itself, however,
provides little guidance as to what metrics to use or what
design trade-offs exist. In Uno et al. (2021), the authors
introduce metrics that are similar in nature to ours (i.e.
attempting to measure the ability to traverse rough terrain),

but they do not use the metrics to produce novel designs or
explore trade offs in the metrics as shown in this paper.
Semasinghe et al. (2021) is one of the most relevant papers
which introduces three design metrics for the design
optimization of the quadruped robot: the system energy
consumption, the passive impedance torque, and the stepping
time. We build on this work by presenting metrics that also treat
stability, payload, and desired velocity capabilities which are
important factors for applications such as search and rescue.
We also explore tradeoffs in the Pareto front and provide
hardware validation of the optimization results using a
physical prototype, built using several optimized designs.

Other notable work includes Roennau et al.’s optimization of
the leg mounting configuration on their stick insect inspired
robot (LAURON V) by attempting to maximize a manipulability
measure along several planes in the workspace Roennau et al.
(2014). De Vincenti et al. (2021) and Ha et al. (2018) optimized
both design and control of quadrupedal robots simultaneously.
Both approaches used relatively few design parameters (i.e. less
than 10) due to using gradient-based optimizers. Additionally,
there is little treatment of metrics that are important for rough
terrain traversal. Our paper contributes several intuitive metrics
that are adapted for rough terrain.

2.2 Soft-Robot Locomotion
Land-based soft robot locomotion research is still rather nascent.
The most promising and relevant of the previous work (in terms
of payload) is research from Godage et al., in 2012. They built a
small quadruped robot using pneumatically-actuated continuum
limbs Godage et al. (2012). Each of these limbs has two degrees of
freedom. They demonstrate remarkable capabilities including
open-loop walking on flat and uneven terrain Godage et al.
(2012). Shepherd et al. also achieve similar open-loop
locomotion success with a small soft robot made primarily
from elastomeric polymers Shepherd et al. (2011). Many
researchers have produced similar designs looking at open-
loop locomotion for lightweight soft continuum crawling
robots (see Onal and Rus (2013); Florez et al. (2014); Wang
et al. (2014); Rogóż et al. (2016); Vikas et al. (2016); Cao et al.
(2018); Zou et al. (2018); Qin et al. (2019), and a survey on soft
crawling robots in Chen et al. (2020)). However, as far as we can
tell, none of these platforms were designed with specific
locomotion metrics in mind. Instead, they tended to optimize
the gait after the robot was already built.

There has been some work on multi-legged soft or compliant
robots [see Zhang et al. (2021); Kim et al. (2021)]. Perhaps the
paper most similar to our work uses an evolutionary algorithm to
optimize the shape of a soft robot leg [see Morzadec et al. (2019)].
However, they do not describe how this approach might scale as
the number of degrees of actuated degrees of freedom, the
number of legs, and the number of desired design metrics
increase. Instead, their approach is presented more generally
than how to design compliant continuum joint robot for
locomotion. Because the platform designed in this work is
based on optimizing specific metrics and examining the trade-
offs between them, we expect that it should be capable of much
larger payloads and higher speeds than previous work in related
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untethered soft robot locomotion. We have also added closed-
loop feedback configuration control of the limbs in order to
evaluate force output at different locations in the leg’s workspace.

Most of the other work on soft-robot locomotion involves
bioinspired platforms such as starfish Jin et al. (2016),
salamanders Crespi et al. (2013), and octopi Cianchetti et al.
(2015). A majority of these platforms are small scale–with most
being under 30 cm long (the longest is a meter in length, but only
6 cm tall). Because of their small scale these platforms are
incapable of lifting heavy payloads and therefore unsuitable
for applications that require mobility while carrying a
significant payload (e.g., search and rescue). Our goal is to
develop, optimize, and build a platform suitable for such use
cases in this work, while still building on the apparent strengths of
soft continuum robot joints for locomotion in unstructured
terrain.

3 METRIC DEFINITIONS AND
APPROXIMATIONS

In this section, we introduce the four general metrics for the
optimization of a quadruped robot with soft continuum joints
and also discuss several approximations of these metrics that
preserve numerical tractability. The metrics are formulated to
capture various aspects of performance and control of a
quadruped design but their use is not limited to four-legged

designs. The design metrics and their corresponding
approximations are developed in-depth in each subsequent
section and are listed here for convenience:

1. Dexterity in Walking Regions (Section 3.1)
2. Average Payload in Walking Regions (Section 3.2)
3. Average Static Stability (Section 3.4)
4. Average Desired Velocity (Section 3.5)

The design metrics 1 and 2 are fairly straightforward and can
be calculated directly. However metrics 3 and 4 are part of a class
of metrics which, based on our optimization method, require an
evaluation across the entire robot workspace which would not
nominally be tractable. For this reason, we first present metrics 1
and 2. Then we present a generalization of how to calculate
metrics 3 and 4 which can apply to any other similar metric,
before we present the specifics of the static stability and average
desired velocity metrics.

For the calculation of each metric, we define the possible
terrain a robot may face in real-world situations as the walking
region (W) which consists of all the 3D Cartesian points located
in an infinite volume bounded by the minimum and maximum
walking clearance from the bottom of the robot (visualized in
Figure 1A). The minimum and maximum walking clearances
correspond to a minimum and maximum desired walking height
for the body of the robot over a given terrain. This taskspace is
six-dimensional as it combines the 3D position of the foot in W
with its corresponding 3D orientation vector (i.e., the pose of the
foot).

In order to efficiently sample from this taskspace, we use the
discretization presented by Bodily (2017)–though any
discretization can be used. This consists of discretizing the
taskspace into a M3 × N3 rectangular grid. M3 is the 3D
tensor that represents the discretization of the foot position in
Cartesian Space. N3 is the 3D tensor for the discretization of the
foot orientation (represented as an axis-angle vector) at each
discrete Cartesian position ofM3. A given foot pose is assigned to
a bin in this discretization by finding the nearest Cartesian
discretization point to its position in M3 and subsequently
locating the nearest orientation discretization point in the N3

grid associated with this Cartesian point.

3.1 Dexterity in Walking Regions
3.1.1 Metric Definition
The dexterity in walking region metric represents the number of
foothold combinations a particular quadruped design can reach
during online control and planning. The point in optimizing this
metric is that if more footholds are found, then 3D rough terrain
planners such as in Loc et al. (2010) or Zhang et al. (2019) should
find better solutions.

We find how many footholds a leg can reach in the discretized
taskspaceW by sampling the leg’s configuration space.We do this
by sweeping each of the leg’s joints from their minimum to
maximum values at a set resolution recursively. At each
configuration, we check if the foot is located in W using
forward kinematics. If the foot pose is in W and is within an
orientation tolerance of γmax from the vertical (see Figure 1A), we

FIGURE 1 | (A) A visualization of the walking regionW. (B) The free body
diagram of a single leg cut away from the body and making contact with the
ground. The green circles represent joints as lumped particles, the black lines
represent rigid links whose actual geometry is being optimized, and the
dotted line represents the ground plane.
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mark the corresponding pose “bin” of W as reachable. The
orientation tolerance eliminates unrealistic poses that cannot
result in suitable footholds (e.g., the foot facing upward or
parallel with the ground). The choice of γmax is dependent on
the foot design because it is related to the coefficient of friction, μ,
between the foot and the ground. For a given μ, there is a critical
angle at which the foot will slide based on a static analysis of the
foothold. Consequently, γmax must be less than this critical angle.
This implies that foot designs with higher μ values allow for
greater values of γmax. The dexterity in walking regionmetric for a
single leg, nW,i, is the number of unique pose bins in W that are
reachable.

To calculate the dexterity in walking region metric for the full
legged robot, nfoot, we consider all reachable foothold
combinations by multiplying all the nW,i together:
nW,all � ∏nleg

i�1nW,i, where nleg is the number of legs on the full
legged robot. For example, consider a 5 legged robot (i.e. where
nleg = 5) where the first, second, third, fourth, and fifth legs have 3,
4, 5, 6, and 7 reachable footholds respectively. This means that
nW,all = (3 × 4 × 5 × 6 × 7) = 2520 combinations for this robot.

Note that nW,all only includes combinations where all the feet
are in W. Static stability (which is discussed in more detail in
Section 3.4) only requires that three legs be on the ground at all
times. To find all possible combinations where at least three legs
are in the walking region (i.e., nfoot), we use

nfoot � nW,all ∑
nleg

r�3
C nleg, r( ) (1)

where C(nleg, r) is the number of combinations of r legs being
chosen from the total number of legs, nleg:

C nleg, r( ) � nleg!

nleg − r( )!r! (2)

3.1.2 Metric Approximation
For our optimization, we simplify this metric in two ways. First,
since the optimization is limited to quadrupeds, the summation
in Eq. 1 simplifies to a constant 5 (nleg = 40 C(4, 3) + C(4, 4) =
4 + 1). Second, because we require leg designs to be symmetric we
only need to evaluate the dexterity in walking region metric for
one leg as nW,1 = nW,2 = nW,3 = nW,4 in this case. Substituting these
simplifications into Eq. 1 reduces the expression to nfoot � 5n4W,1.
Since this is a strictly increasing function for nW,1 > 0, maximizing
nW,1 is the same as maximizing nfoot. Therefore, we simply use
nW,1 in the optimization.

3.2 Average Payload in Walking Regions
3.2.1 Metric Definition
This metric quantifies a legged robot’s ability to statically support
a payload during operation. We choose to do the analysis
statically because the robot is designed to operate under a
static gate. The premise of the average payload in walking
regions metric is as follows.

For each combination where at least three leg configurations
exist inW (i.e., one of the combinations of leg configurations that

counted for nfoot as described in Section 3.1) we calculate the
required joint efforts (τ) to support the weight of the robot
(Frobot). We ensure that each τ satisfies

τmin ≤ τ ≤ τmax (3)
where τmin and τmax are joint torque limits. If each joint torque in
τ is not within the limits, we assign a payload capability (Fpayload)
of zero to the configuration. However if they are all within the
limits, we calculate the maximum weight that the robot design
can theoretically support (Fmax) by saturating the joint whose
effort is closest to its limit and estimating the resulting force
output. Fpayload is then calculated as

Fpayload � Fmax − Frobot. (4)
Some configurations that are close to singularities allow Fmax

to approach infinity because these configurations are limited by
the strength of the structure of the robot as opposed to joint-effort
limits in their load bearing capacity. Therefore, we compute the
payload score for a specific configuration (Spayload) as Spayload =
min(Fpayload, Fpayload, max) where Fpayload, max is chosen based on
the robot structure (i.e. a force that is lower than a critical
buckling, axial, or shear force on the structure). The average
payload in walking regionmetric is then computed as the average
of all the Spayload over all the valid configurations.

3.2.2 Metric Approximation
In our case, the symmetry of the quadruped design allows us to
approximate the average payload in walking region metric by
finding Fpayload for a single leg. This is valid if we use a good
estimate for the load a single leg needs to support relative to the
total weight of the robot. Accordingly, this section derives a
model used to determine the joint efforts required from a single
leg given an estimate of Frobot. This section also demonstrates how
to find Fmax with the joint effort which is closest to its limit.

Figure 1B shows a FBD of a single leg cut away from the base
of the robot. Point A is where the shoulder of the leg connects
with the body of the robot. Rbody is the reaction force from the
body at Point A. Summing moments about A gives

τ � ∑n
i�1

JTlink,imlink,ig + JTjoint,imjoint,ig( ) + JTfootN + JTfootf, (5)

where n is the number of links and JX,i ∈ R3×(#of joints) refers to
the manipulator Jacobian relating the Cartesian velocities of point
X (i.e., center of gravity of a link or a joint) in the leg base frame
(the coordinate frame in Figure 1B) to the joint velocities.

In walking, friction f is only present when the leg attempts to
accelerate by pushing against the ground. This is either to push
the leg forward before lift-off or as it pushes back as the leg makes
contact after a swing. We restrict the calculations for the average
payload in walking regionmetric to cases where the friction is zero
since a legged robot may have multiple desired walking
directions. The zero-friction case corresponds to the robot
being able to support itself while standing still or in the
middle of a gait and not applying a force along the plane of
the ground to accelerate. The average desired velocity metric,
presented in Section 3.5, will investigate the robot’s ability to
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provide a force in a desired walking direction. In these cases, we
assume that the robot is able to apply a force only in the normal
direction without applying any horizontal forces along the
ground that would produce a friction force. With friction, f,
being zero, Eq. 5 simplifies to

τ � ∑n
i�1

JTlink,imlink,ig + JTjoint,imjoint,ig( ) + JTfootN, (6)

where the only unknown for a given configuration is the normal
force, N.

The value of N for a single leg is dependent on the location of
the center of gravity of the robot and the normal forces from all
the other legs. We choose an approximate value for N that
reasonably represents the average load the leg is required to
bear since we are only considering one leg and cannot explicitly
calculate it. Figure 2 illustrates the possible values ofN depending
on the location of the center of gravity of the robot with respect to
the location of the footholds of the other legs. Without loss of
generality for other footholds, we restrict our analysis to the leg at
foothold 1. A static force balance shows that the lower bound for
N is zero when the center of gravity is located above point A. The
upper bound of N (when the robot is static) is the full weight of
the robot when the center of gravity of the robot is directly over
point B. All other locations of the center of gravity of the robot (in
static equilibrium) result in a value of N between these bounds.
Therefore, a reasonable choice forN is half the weight of the robot
(i.e.,N � Frobot

2 ). While this may seem a bit ambiguous, we see later
in this section why the specific choice of N does not greatly affect
the trends we desire to discover from this metric in optimization
problems.

With this choice for N, we can calculate the joint efforts
required to support N using Eq. 6. As mentioned in Section
3.2.1, if τ satisfies Eq. 3we approximate Fmax where at least one of
the joint efforts is saturated and the other joint efforts are not. In
Eq. 6 the summation term represents the joint efforts required to

resist gravity. We will refer to this term as τg. We desire to scale N
by a scalar, s, such that at least one joint effort τi ∈ τ is at its limit
and the rest remain within their joint-effort limits. Thus we have
τ � τg + JTfootsN, where τ satisfies Eq. 3 with at least one of its
elements equal to either its corresponding τmin or τmax. Since s is a
scalar, this equation can be rewritten as

τ � τg + sJTfootN. (7)
The value of s is the minimum value required to saturate τi

while all other elements of τ satisfy Eq. 3:

s � min
τmax/min, i − τg,i

τN,i
( ) (8)

where τN � JTfootN. Here, τmax/min, i is either the maximum or
minimum joint effort a joint may have in its given configuration
as described by its joint model. Whether the maximum or
minimum joint effort is used is determined by the sign of τN,i.
If τN,i is positive, we use the maximum, and if τN,i is negative, we
use the minimum. This is because the scaling of N only causes a
change in joint efforts in the direction of τN,i. Fmax can then be
approximated with s as Fmax ≈ sN. Therefore, the approximation
of the payload capability in Eq. 4 becomes

Fpayload ≈ sN −N � Frobot

2
s − 1( ). (9)

This tells us how much additional force can be applied beyond
the nominal N needed to support the robot weight. This
approximation is then saturated with the Fpayload, max to arrive
at the full, approximated metric, Ŝpayload. Recall that Ŝpayload
represents only the payload capabilities of a single leg.
However, when all the legs are symmetric, it can be seen that
maximizing this approximation will be the same as maximizing
the robot’s overall payload capabilities, Spayload.

We can evaluate our choice ofN as half the weight of the robot
using Eq. 9. N changes based on the location of the center of

FIGURE 2 | Diagram showing the horizontal foothold projection (left) and an simplified isometric view of the robot (right). Static analysis shows the force required of
the leg at foothold 1 has a lower bound ofN = 0 occurs when the CoM is over point A, as shown in the isometric view. The upper boundN = Frobot/2 occurs when the CoM
is over point B.
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gravity which results in different values of s at each robot
configuration. However, the relationship Fmax ≈ sN remains
the same since this is an actual physical limit of how much
force a given configuration can support. A higher value of N
increases the number of configurations where Eq. 3 does not hold
and will not contribute to the payload metric because they would
be zeroed out. A lower value has the opposite effect. However,
trends for higher-payload robots are still distinguishable in an
optimization regardless of the choice of N since the only
information loss occurs with low-payload designs that are
zeroed out. Therefore, the specific choice of N has minimal
effect on being able to find robots with overall higher payload
capabilities.

3.3 General Legged Robot Configuration
Space Approximation
Recall that all of the design metrics presented in this paper require
calculations over the entire configuration space of a legged robot.
However, some of them quickly become intractable. The reason
for this is that a naive approach to calculating the metrics would
be to search across the entire configuration space of the leg,
despite really only requiring calculations for realistically plausible
footholds. Searching the entire configuration space could be
executed by incrementing each joint from its lower limit to
upper limit at a set resolution to capture all combinations of
joint configurations at the given step resolution. At each of these
sampled robot configurations the pose of any point on the leg
(such as the foot) can be obtained with forward kinematics.
Unfortunately, sampling this way at a meaningful resolution
makes calculating a design metric intractable. To illustrate,
consider a metric for a 16-DoF configuration space sampled at
a resolution of 10° (i.e., 18 samples per joint variable in the case of
a rotatory joint moving from −90° to 90°). Calculating this metric
would require 2.884 × 1020 calculations. If a computer could
compute each of these calculations in 10–12 s, it would still take
over 9 years to solve. Additionally, a resolution of 10° is generally
too coarse to be useful, especially for the calculation of the metrics
presented in this paper. Note that this 9 year computation time is
only for a single design. A fully-developed optimization will
repeat this calculation thousands of times. In this section we
introduce a method to make this approach possible while
maintaining a sufficiently fine resolution.

3.3.1 Description
To emphasize an important point we must restate that this
generalization enables searching over only the possible
footholds of a legged robot instead of the entire configuration
space, which is far more tractable.

Algorithm 1 shows this general approximation method and
Figure 3 shows a flow chart to help visualize the main parts of this
algorithm. First, a discretization of the Cartesian workspace of
each leg is defined (Line 1). This can be either a full 6D pose
discretization or a 3D/2D position-only discretization. Next, each
of the legs’ configuration spaces are sampled in Lines 2–3.
Whenever the leg’s foot is located within the desired walking
regionW (as described in Section 3.1), we calculate the portion of

the metric that is specific to the leg configuration, sC (Lines 4–5).
For the average static stabilitymetric detailed in Section 3.4, sC is
the horizontal discretized bin location of the foot for the average
static and longitudinal stability margins. For the average desired
velocity metric in Section 3.5, sC is calculated on Lines 6–10 of
Algorithm 3.

On Line 6, we combine sC of the current leg configuration with
the other sC’s that were found from other configurations that
reached the same discretization bin. This results in a score for the
specific discretization bin, sbin,j. As an example, the average
desired velocity metric (in Section 3.5) always takes the lowest
score found in the bin since this is the limiting factor on the
desired velocity. On Line 7, we record the number of times, nbin,j,
the leg reaches the jth discretization bin.

Algorithm 1. General Legged Robot Metric Over Configuration
Space Approximation

Once each leg’s configuration space is sampled to calculate sbin
for each discretization bin (i.e. sbin,j, ∀j), we iterate over each of the
possible combinations of discretization bins from each leg (Line
12). For each combination of footholds, we calculate the part of
the metric that depends on the combinations of all the footholds,
scomb (Line 13). We then sum all the scomb together (Line 16) and
then normalize this sum by the number of possible combinations
of legs, nfoot in W (the dexterity in walking region metric as
calculated in Section 3.1.2) in Line 18 to arrive at the
approximation of the metric.

The number of calculations for the approximation can be
simplified further by projecting the spatial discretization onto a
2D discretization (Lines 11 and 12) as we do in Sections 3.4 and
3.5. This is done by combining the scores of 6D or 3D bin scores
into a single 2D discretization bin score in a meaningful way. For
this paper, we average all the scores in bins that are being lumped
into a single 2D bin. This simplification is valid as long as the
lumping of bins into 2D bins is still meaningful for the metric.
Both of the metrics we describe next are only looking for averages,
so this simplification is reasonable. It is also reasonable for any
metric that is looking for an average over the entire workspace.

The tractability of this approximation is dependent on the
number of distinct bins in the spatial discretization used for
iterating over the foothold combinations (Line 12). If there are
too many bins, this approximation method will exhibit the same
problems as sampling the entire legged-robot’s workspace.
However, it can be far more tractable for meaningful
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discretizations than attempting to search the full configuration
space of a high-DoF legged robot. For example, in our application
(described in more detail in Section 4), we calculate approximate
metrics of the 16-DoF quadruped by sampling the configuration
space at a resolution of 4° (i.e., 45 increments per joint variable)
using 2D Cartesian square bins that are 10 cm wide in the
approximations. We experimentally observed that this
calculation takes at most a few hours to solve, while
sometimes it was solved in as little as 20 s. Contrast this to the
example presented at the beginning of this section where
sampling the full configuration space of the 16-DoF robot
once using only 10° increments would take over 9 years to
calculate the objective function once.

3.3.2 Validation
We validate the configuration space approximation presented in
this section with gradient-based optimizations for both the
average static stability criteria and average desired velocity
metrics and their respective approximations on a simulated
four-DoF quadruped robot. Additional details about this
validation are included in Sherrod (2019). However, in this
paper we simply outline the validation method and result in

order to give confidence that this approximation is both useful
(i.e., computationally) and accurate.

Figure 4 is a diagram of the four-DoF quadruped we used for
validation experiments. It consists of a base of length l and width
w. The four legs of length lleg are attached to the corners of the

FIGURE 3 | A flow chart visualizing the general approximation method as outlined in detail in Algorithm 1. The red cubes indicate an example of a foothold
combination.

FIGURE 4 | Top and side view of the simple four-DoF quadruped design.
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base via rotary joints which rotate about the z-axis of each leg
frame. The mount angle, θ, indicates the angle at which these
joints are attached relative to the base. The robot is designed to be
symmetric about the body frame’s x and y axes. We acknowledge
that this four-DoF quadrupedmay not be efficient–or even able to
walk. But its simplicity allows our design metrics to be calculated
directly and then compared to their approximations.

The design space for the stability margin optimizations
consisted of w, l, and θ while the design space for the average
desired velocity metric was only composed of θ. This is because
changes in w and l do not affect the average desired velocity
metric.

Results for these optimizations are shown in Table 3. All the
metrics obtained by using the approximation of the configuration
space result in the same optimum as the metric which used the
entire configuration space. The highest error is for the average
desired velocity approximation and is only −1.01 × 10–2 degrees.

The important outcome here is that the proposed
approximation matches the gradient trends [see Sherrod
(2019)], and solutions from a less tractable but more accurate
gradient-based method. This gives confidence that this method is
a valid approach to optimizing a 16 degree-of-freedom
continuum soft robot as detailed in Section 4.

3.4 Average Static Stability Criteria
3.4.1 Metric Definition
There are many static-gait controllers and/or planners for robots
with four or more legs that use a measure of stability in a given
configuration to plan and execute gaits. These measures are
referred to as stability margins. Several of these stability
margins are surveyed in De Santos et al. (2007).
Configurations with larger stability margin values are deemed
more stable and therefore, more desirable in planning and
control. Designing a robot to maximize these stability margins
over the entire configuration space eases the implementation of
the aforementioned controller.We therefore use the average static
stability criteria which is the average stability margin over all of
the robot’s valid configurations as an optimization metric. Here,
valid configurations are defined as configurations where three or
more legs can be found within the walking region W (i.e., one of
the foothold combinations counted in nfoot as described
Section 3.1).

We choose to use two of these stability margins in our
experiments: the static stability margin originally from
McGhee and Frank (1968) and the longitudinal stability
margin originally from McGhee and Iswandhi (1979). As will
be shown in Section 3.4.2, these specific margins are chosen
because we can simplify their calculation to make the
optimization tractable. Also, they follow the same trends as
the other stability measures as seen in the experiments in De
Santos et al. (2007). Therefore, maximizing one of these tends to
maximize the other average stability measures as well.

The basis of the static stability margin and longitudinal
stability margin are as follows. For static gaits, the horizontal
projection of the center of gravity of an ideal legged robot (one
with massless legs) must remain within the support polygon to
remain stable. The support polygon is defined as the convex hull

about the contact points projected onto a horizontal plane.
Figure 5 illustrates this for a robot with three legs making
contact with the ground. The static stability margin is the
shortest distance from the center of gravity projection to the
edge of the support polygon. The longitudinal static stability
margin is the shortest distance from the center of gravity
projection to the edge of the support polygon along a given
direction which usually corresponds with the direction of
intended travel. Both of these margins are diagrammed in
Figure 5. While these measures only guarantee stability for an
ideal robot whose legs are massless, they do provide insight into
the stability of real-world robots whose legs cannot be modeled as
massless.

3.4.2 Metric Approximation
We approximate the average static stability criteria as follows for
the quadruped. First, recall that the calculation of the dexterity in
walking region metric (Section 3.1) results in the 6D
discretization of the foot’s pose whenever the foot is found
within W. We record the number of distinct orientation bins
reached at each Cartesian bin. The top-left corner of Figure 6 is a
simple illustration of this. For example, in the bottom-left
Cartesian bin, three distinct orientation bins are reached. We
then flatten this 3D Cartesian discretization into a 2D Cartesian
discretization that is a horizontal plane parallel to the xy plane of
Robot Body Frame as shown in Figure 6. This is done by adding
the orientation counts of each discretization bin that is located
above a given bin in the xy plane to find the total number of
orientations for the single bin representing the entire column in
the 2D discretization.We thenmirror this 2D Cartesian bin about
the Robot Body Frame for each leg of the quadruped the

FIGURE 5 | Visualization of the support polygon and the static stability
margin and longitudinal stability margin.
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symmetric leg represents as illustrated in Figure 6. Note how
symmetry is preserved about the Robot Body Frame with this
operation. This transformation of the 2D Cartesian bins for each
leg is necessary since we need the locations of the feet for each of
the four legs to calculate the stability margin. Enforcing
symmetric designs simplifies the problem as we only need to
find the possible footholds of one leg and then transform these
footholds to the locations of the other legs instead of having to
find the possible footholds of all four legs separately.

Algorithm 2. Average Static Stability Criteria Approximation
Calculation

We then calculate the metric approximation by iterating
through each possible foothold combination of the four feet in
the 2D horizontal Cartesian bins as described in Algorithm 2. An
example of one of these combinations is highlighted in red in
Figure 6. We calculate the stability margins for each of these
combinations using the center of the 2D Cartesian bins for the
footholds’ position. As shown in Algorithm 2, we look at the
stability margin for when all four feet are in contact with ground
(Line 3) as well as the four cases for when only three of the feet are
in contact with the ground at these horizontal positions (Line 6).
This is a total of five different stability margin calculations for
each combination of 2D bins (which corresponds to the
combination formula sum of Eq. 1). The weighted stability
score for each foothold combination, scomb, is found by
multiplying the sum of these five stability margins, ssum, by

the number of times a particular combination of the 2D bins
can be found in the overall configuration space, ncomb (Line 10).
This weighting is necessary since we desire the average stability
margin, and therefore, we need to weight the scores of the
foothold combinations according to the frequency the robot
can find them. This frequency, ncomb, is found on Line 9.
Here, nbin,i is the number of orientations for the ith bin which
corresponds to the foothold bin in the combination from the ith
leg. As an example, for the foothold combination highlighted in
red in Figure 6, ncomb is ncomb = 9 · 26 · 8 · 18 = 33, 696. In Line 11,
all of the scomb are added together and normalized by the total
number of valid foothold combinations, nfoot, (the dexterity in
walking region metric described in Section 3.1.2) to obtain the
approximated average static stability criteria, sapprox.

While this approximation is shown for a quadruped robot
with symmetric legs. It can easily be extended to a non-symmetric
robot where each leg’s workspace is binned individually and
flattened into a 2D discretization. It can also be expanded to
robots with n number of legs where for each combination of 2D
bins, the stability margin is calculated for each possible
combination where there are at least three footholds.

The tractability of this approximation is clearly dependent on
the number of Cartesian discretization bins. During computation
the time spent iterating through combinations of 2D horizontal
Cartesian bins is much larger than that of searching the
configuration space of a single leg. Therefore, extending this
metric to non-symmetric legs is likely more tractable than
extending this to more legs.

3.5 Average Desired Velocity
3.5.1 Metric Definition
While the average static stability criteriametric indicates a robot’s
ability to find stable configurations, it does not ensure that the
robot will be able to apply the necessary forces on the ground to
propel itself in a desired direction. The average desired velocity
metric helps indicate this ability.

To walk in a desired direction, a leg needs to be able to apply a
sufficient force opposite this direction to propel the body forward.
The leg’s ability to apply this force is composed of two parts:

1. Movement in the necessary direction to apply the force.
2. Execution of the joint efforts required to apply the necessary

force in that direction.

The average desired velocity metric analyzes a robot’s average
ability to accomplish this over all of its valid configurations. Here,
valid configurations are defined as configurations where three or
more legs can be found within the walking region, W (one of the
foothold combinations found to calculate nfoot as described in
Section 3.1).

An indication of a leg’s ability to move in a given direction can
be found via its manipulator Jacobian (which is a function of leg’s
configuration). The particular Jacobian of interest is the one that
relates the joint velocities of the leg to the Cartesian velocities of
the foot expressed in the body frame of the robot.

The top three rows of this Jacobian indicate the effect of the
joint variables on the foot’s movement in the x, y, and z directions

FIGURE 6 | Illustration of the calculation of the approximation of average
static stability criteria metric. The highlighted red squares indicate an example
sampling of the possible footholds of the quadruped from its four legs.
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of the body frame. The sum of the absolute values of each element
of these rows indicates the maximum velocity at which the foot
could move in each of these three body frame directions. Thus,
maximizing these values for a particular direction over all of a
leg’s configurations would increase its ability to move in this
desired direction. However, movement alone does not guarantee
that the leg is capable of applying the necessary force. Given a
configuration, a leg must be capable of applying the necessary
force to propel the robot forward in this direction.

3.5.2 Metric Approximation

Algorithm 3. Average Desired Velocity Metric Approximation
Calculation Part 1

The approximation for the average desired velocity for the
symmetric robot is calculated in three parts:

1. Sampling the leg’s configuration space to assign scores to the
pose bins of the walking region, W, which is shown in
Algorithm 3.

2. Combining the scores of pose bins in a 3D column of the
discretization to create a 2D discretization and then
transforming these 2D discretizations into the Robot Body
Frame (similar to what is shown in Figure 6 for the stability
metric approximation).

3. Iterating through the possible foothold combinations to
calculate the approximation of the desired velocity metric as
outlined in Algorithm 4.

In Algorithm 3, we show how to sample the leg’s configuration
space (Line 3). Each time the foot is found in the walking region
(Line 4), the portion of the metric that is dependent on the
configuration of the leg is calculated for each leg (one through
four) of the quadruped (Lines 5–19). This allows us to get scores for
each pose bin in the discretization ofW for all four of the legs (vbin, 1,
vbin, 2, vbin, 3, and vbin, 4) with one sampling of the configuration
space. As is seen in Lines 11–17, the lowest score found in a distinct
pose bin is the one that is recorded. This is because the lowest score
correlates to the limiting configuration on possible velocities in the
bin. Therefore, using the lowest score guarantees that all
configurations reached in the bin can at least achieve this desired
velocity (with the assumption the leg can provide the torque
necessary for acceleration as mentioned in Section 3.5.1).

The calculation of the joint efforts, τ, required to apply Fmin

(Line 6) is approximated in a similar manner to the calculation of
the joint efforts required to support the robot’s weight for the
average payload in walking regionsmetric in Section 3.2.1. Fmin is
simply added to the FBD which results in Eq. (5) becoming

τ � ∑n
i�1

JTlink,imlink,ig + JTjoint,imjoint,ig( ) + JTfoot N +Wmin( ) (10)

whereWmin is Fmin represented as a 6 × 1 wrench with the torques
being set to zero. Note, Fmin is simply a possible value of the
friction force, f from Eq. 5.

Algorithm 4. Average Desired Velocity Metric Approximation
Calculation Part 2

After the vbin,i is calculated for every orientation bin reached
by each leg, the 6D pose discretization is flattened to a 2D
discretization similar to what is shown in Figure 6. However
instead of adding the scores, as we did for the approximation of
the average stability criteria metric, all of the vbin,i values of each
distinct 6D pose bin are averaged to find the vbin,i for the 2D
rectangular bin. Since the goal is the average desired velocity
metric, taking the average finds the average performance in the
2D bin. We translate this flattened discretization into the Robot
Frame for each of the four legs as is done for the approximation of
the static stability criteria metric in Section 3.4.2 (visualized in
Figure 6).

We finally iterate over each combination of four footholds
(one foothold from each leg) in the 2D horizontal Cartesian
discretizations, similar to what is described in Section 3.4.2 and
Figure 6, to approximate the portion of the metric that depends
on the results of all the legs together. This is outlined in Algorithm
4. For each combination, we create the set of vbin,i’s which are the
desired velocity scores for each 2D bin of the combination. We
find the two smallest values of the set in Lines 4-6 and use these to
calculate the desired velocity score of the foothold combination
(scomb) in Line 7. This results in vmin being used for four of these
combinations when it is the limiting factor and vmin2 being used
for the combination of three footholds when the foot causing vmin

is lifted.
We weight the combination score, scomb, by the number of

times the foothold combination can be found in the overall
configuration space, ncomb, in Line 9 since we want to find the
overall average. This weighting, ncomb, is calculated in the same
manner as it is for the approximation of the average static stability
criteriametric in Line 8. We sum all of the scomb for each foothold
combination together (Line 10) and then normalize them by the
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number of valid foothold combinations, nfoot, (Line 12) to obtain
the approximated average desired velocity metric, sapprox.

While this approximation is shown for four symmetric legs,
like the approximation for the average static stability criteria
metric, this can easily be extended for a non-symmetric n-legged
robot. However, it has the same limitations in tractability as the
approximation for the average static stability criteria mentioned
in Section 3.4.2.

4 OPTIMIZATION OF 16-DOF
CONTINUUM-JOINT QUADRUPED

In this section we demonstrate how the application of the
proposed metrics and their approximations (from Section 3
allow us to optimize the design of a 16-DoF continuum joint
quadruped. We also present and explore trade-offs between the
metrics to show how these tools may be used in the design process
and which metrics or objectives are competing.

4.1 Robot Description
The design of the 16-DoF quadruped consists of a wooden base
and four individual four-DoF, pneumatically-actuated,
continuum-joint legs attached to the base. The robot is
designed to be symmetric to reduce the number of design
variables and to simplify the calculation of the metrics
presented in Section 3. Illustrations of the leg design and base
are shown in Figure 7. In total, we have ten design variables for
the 16-DoF quadruped: x � [w, l, θ, β, L1, L2, α1, L3, L4, α2]. Their
descriptions are listed here:

• Base width w.
• Base length l.
• Mounting angle of the legs θ.
• A shoulder mount attaching the leg to the base positioned at
an elevation angle β.

• A link (called Link 1) defined by lengths, L1 and L2, and
bend angle, α1.

• A link (called Link 2) defined by lengths, L3 and L4 and bend
angle, α2.

Each leg of the quadruped design consists of two separate two-
DoF, pneumatically-actuated, continuum joints as seen in
Figure 7. These joints operate by using two sets of
antagonistic bellows that can be filled to pressures ranging
from zero to 600 kPa (gauge). There are two versions of these
joints: one with four bellows and one with eight. They are
identical in function with the exception that the eight-bellows
version is larger and produces more torque. Each joint is modeled
as having two degrees of freedom (denoted u and v) and we refer
readers to Hyatt et al. (2020) for more in-depth discussion of the
kinematic and dynamic properties of these soft actuators.

4.2 Optimization Problem
Our multi-objective optimization problem is formally stated as

max
x

F x( ) � f1 x( ), f2 x( ), f3 x( ), f4 x( )[ ]
subject to L1 + L2 + L3 + L4 + 2h + Lfoot − Lmax ≤ 0

x i ≤xi ≤ �xi i ∈ 1, 10[ ]
(11)

where x ∈ R10 is the vector of design variables described in Section
4.1. F(x) is a vector containing each of the four design metric
approximations outlined in Section 3. h is the length of the joints
(0.205 m) and Lmax = 1.829 m (6 ft). The first inequality constraint
prevents overly long legs. In the second inequality, x i and �xi are the
ith design variable’s lower and upper bounds respectively. Numerical

FIGURE 7 | (A): An illustration of the leg of the robot. Joint 1 is a two-DOF, eight-bellows, pneumatically-actuated, continuum joint. Joint 2 is a two-DoF, four-
bellows, pneumatically-actuated, continuum joint. The valve block actuates Joint 2. A foot is attached to the end of Link 2. (B): A top view of the model of the body of the
quadruped. Valves needed to actuate Joint 1 are included in this model.

TABLE 1 | The bound constraints and perturbation bounds for each design
variable of the 16-DoF continuum-joint quadruped.

Design Variable Lower Bound Upper Bound

w 0.4 m 1.3 m
l 0.4 m 1.3 m
θ −45° 135°

β −180° 0°

L1 0.185 m 0.5 m
L2 0.263 m 0.5 m
L3 0.143 m 0.5 m
L4 0.150 m 0.5 m
α1 −90° 90°

α2 −90° 90°
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values for the bounds are given in Table 1. We choose to solve this
optimization problem with a genetic algorithm adapted from Bodily
(2017) to the quadruped design. F(x) is the vector-valued objective
function where fi(x) is each of the four design metrics discussed in
Section 3. The objective function is evaluated for each point in the
population and converted to an individual fitness score using the
maximin fitness function presented in Balling and Wilson (2001) in
order to find an approximate Pareto Frontier. Algorithm 5 shows
our implementation of the evolutionary algorithm.

Algorithm 5. Evolutionary Algorithm Implementation

Table 2 lists the fixed parameters that were used to calculate
F(x). This includes the XYZ Discretization Bin Size and SO3
Discretization Bin Size which are the resolutions of the

discretization of the workspace. We sample the leg’s
configuration space at every combination of u and v for each
joint between −π

2 and
π
2 at the resolution Joint Angle Res. However,

because of physical joint limits, the magnitude of the vector
formed by u and v cannot exceed π

2. If this constraint is violated in
a given configuration the design metrics are not calculated. This
ensures only realistic leg configurations are included in the
population. Min Walking Clearance, Max Walking Clearance,
and γmax are the parameters necessary to define the walking
region, W, which is needed to calculate all of the design metrics.
As mentioned in Section 3.2.1 Fpayload, max is necessary to
calculate the average payload in walking regions metric and is
chosen based on the robot structure such that it is lower than the
maximum allowable buckling, axial, or shear force.

The vector �ux in Table 2 is the unit vector indicating the
desired direction in the quadruped’s Body Frame (see Figure 7)
used to calculate the average desired velocity metric. The vector
�Fmin is necessary in the calculation of the average desired velocity
metric (see Section 3.5). μs is the static coefficient of friction
between the foot and carpet (equal to 1.8 between the foot and the
carpet in our lab) andN is the magnitude of the normal force for a
single leg described in Section 3.2. In that section, N is defined as
half the weight of the robot, and therefore, it is a function of the
quadruped design being evaluated. The direction, − �ux, ensures
this force provides propulsion in the desired direction. The
magnitude μsN represents the maximum possible force the
robot can apply without slipping and results in the max
possible acceleration of the quadruped. Since �Fmin is the
minimum force that a leg configuration must be able to apply
to include its score in the desired velocity metric (refer to Section
3.5.1), it does not make sense to require this minimum force to
provide the maximum possible acceleration for the leg. Thus, we
chose a value for �Fmin that was an order of magnitude lower than
this force (i.e. 0.1). In other words, it is acceptable to include
designs that are not able to provide maximum acceleration in the
desired velocity metric.

4.3 Results
We initialize the genetic algorithm with 200 random quadruped
designs. Per the evolutionary algorithm outlined in Bodily (2017),
this results in 100 designs surviving from one generation to the
next based on their maximin fitness function values. We choose
to preserve a large number of designs from one generation to the
next to clearly delineate the 4-dimensional Pareto front. The

TABLE 2 | A list of fixed parameters for the optimization of the 16-DoF continuum-
joint quadruped.

Parameters Value

Min Walking Clearance 0.25 m
Max Walking Clearance 0.8 m
γmax 45°

Joint Angle Res 4°

XYZ Discretization Bin Size 0.20 m
SO3 Discretization Bin Size 4.93°

Fpayload, max 981 N
�ux [ 1and0and0 ]
μs 1.8
�Fmin −0.1μsNux


→

TABLE 3 | Optimization results for four-DoF quadruped. Values marked by * indicate values that were kept constant for the particular optimization.

Metric wstart lstart θstart wopt lopt θopt

Static Stability Margin 1.0 1.0 30.0 1.25 1.25 −45.0
Approx. Static Stability Margin 1.0 1.0 30.0 1.25 1.25 −45.0
Error - - - 7.0e − 11 1.0e − 10 −1.0e − 11

Longitudinal Stability Margin 1.0 1.0 30.0 0.125 1.25 −45.0
Approx. Longitudinal Stability Margin 1.0 1.0 30.0 0.125 1.25 −45.0
Error - - - 2.0e − 12 0.0 2.0e − 12

Average Desired Velocity 0.1* 0.2* 30.0 0.1* 0.2* −8.88e − 3
Approx. Average Desired Velocity 0.1* 0.2* 30.0 0.1* 0.2* 1.25e − 3
Error - - - - - −1.01e − 2
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objective function for each design in a generation is parallelized
on a supercomputer with 28 cores on a 14-core Intel Broadwell
(2.4 GHz) processor. The optimization took 1 day, 15 h, and
40 min to evolve 60 generations. Between all the cores, there
was over 46 days of computation time. In total, we ran the
optimization ten different times varying the population size.
We did not observe meaningful differences between the
resulting Pareto fronts, so the results presented in this section

are from a single representative trial. The data for all optimization
runs is publicly available at the link provided in the Data
Availability Section.

The optimization was terminated on the 60th generation when
the Pareto front converged.We define convergence in this context
to mean that the top-scoring designs for each metric along the
Pareto front improve less than 1% for ten consecutive
generations. For comparison, we observed these four

FIGURE 8 | (A) The Pareto front of the optimization after 60 generations represented in a scatter plot matrix. The robots with the best dexterity in walking region,
average payload, average stability criteria, and averaged desired velocity are labeled as A, B, C, and D respectively. (B) The Pareto front of the optimization after 60
generations. The robots with the best dexterity in walking region, average payload, average stability criteria, and averaged desired velocity are labeled as A, B, C, and D
respectively.
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individuals improve between 15 and 363% in each metric from
the first generation. Figure 3.14 of Sherrod (2019) also shows the
progression of this Pareto front every ten generations. Figure 8B
shows the Pareto front of the last generation. The four objectives
are shown in bubble plots with the dexterity in walking regions
and average payload in walking regionmetrics represented on the
x and y axes, respectively. The average stability margin metric is
represented by the color of the bubbles and the average desired
velocitymetric is represented by the bubble size. Recall that we are
maximizing the objective function (Eq. 11) so larger metric values
are better.

For comparison, the designs with the best dexterity in walking
region, average payload, average stability criteria, and averaged
desired velocity are labeled as A, B, C, and D respectively.

Generally, designs that do well in stability perform poorly in
the other three metrics. The prime example of this is that the
quadruped with the best stability score (C) has a score of zero in
the average payload and average desired velocitymetrics and a low
score for the dexterity in walking regions metric. Also note that
designs that performwell in the average payload also performwell
in desired velocity–as is seen by the proximity of B and D. This is
most likely because we require a design to be able to produce
enough force to carry its own weight and accelerate forwards in
the calculation of the average desired velocitymetric. Thus robots
that are able to supply the necessary force in the desired direction
are more likely to be able to support higher payloads as well.

Figure 8A helps further illustrate the relationships between
the different objectives. Here, the final population of designs for

TABLE 4 |Kinematic values for the labeled designs in Figures 9, 10. Lengths are inmeters, and angles are in degrees. Leg66 and Leg4 are used for hardware experiments in
Section 5.

Design w l θ β L1 L2 L3 L4 α1 α2

A 0.953 1.234 37.8 −124.6 0.185 0.382 0.145 0.369 12.4 68.4
B 0.905 0.471 37.8 −59.9 0.185 0.263 0.143 0.150 55.1 90.0
C 1.158 1.239 45.6 −5.8 0.187 0.348 0.500 0.205 21.2 42.7
D 0.831 0.427 43.1 −73.1 0.185 0.263 0.143 0.150 72.8 90.0
Leg66 1.117 0.454 47.3 −69.6 0.185 0.263 0.143 0.150 68.7 89.8
Leg4 1.292 1.181 51.2 −95.0 0.207 0.371 0.143 0.234 57.0 63.0

FIGURE 9 | Visualization of designs (A–D). Axis units are in meters. Rigid links are shown in black while the pneumatic joints are shown in green. The red outline on
the heat map is a projection of the quadruped body (solid red) onto the x − y plane for visualization clarity.
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the optimization in four-dimensional objective space are plotted
in the six possible pairs between the four objectives (known as a
scatter plot matrix). This shows how any two of the four metrics
are related to each other. Those designs that are non-dominated
with respect to the two metrics in a given plot (i.e., Pareto
optimal) are marked in green. A, B, C, and D are also marked
in each plot. As is indicated by the near-vertical slope of its Pareto
front, the only non-competing objective is average payload and
average desired velocity metrics. All other Pareto fronts have
negative slopes, indicating competing objectives.

Table 4 lists the design variables of A, B, C, and D marked in
Figure 8A,B. Figure 9 shows these quadruped designs in their
zero configurations (i.e., u and v set to zero) over heat maps
indicating how many foot orientations exist in a given horizontal
2D bin location in the body frame. This helps to illustrate each
quadruped’s dexterity and stability performance. These plots are
similar to what is described and illustrated in Figure 6. The red
rectangle in these figures indicates the outline of the
quadruped’s body.

Designs with higher payload and desired velocity scores
(designs B and D) tend to have smaller bases and the
minimum lengths required for their legs. This is to reduce the
overall weight of the robot allowing more of the force created by
their joint torques to be utilized on extra payload. Another
interesting trend in these designs is that the last bend angle α2
tends to be around 90°. This creates a smaller moment arm for the
second joint of each of the legs when applying a downwards force
on the ground. Therefore, this joint can convert more of its torque
into a downward force rather than having to overcome a bigger
moment arm as is the case when this bend angle is smaller.
Finally, these designs tend to utilize the inherent stiffness of the
joints to provide extra torque. Since the foot is located below the
walking region at their zero configurations the joints want to
spring back when the foot is in the walking region. B and D
exhibit this phenomenon. The joint stiffness provides extra
torque to lift the robot in addition to the torque provided by
the pressure in the joints’ bellows. However, this also appears to
be the reason these designs have a lower dexterity score, as they
have a smaller quantity of configurations within the walking
region.

The more stable robots (designs A and C) tend to have larger
bases. A larger base helps in stability since it causes more of the
footholds to be further out from the center of gravity and creates a
larger support polygon (see Figure 5). Unsurprisingly, the most
stable robot, C, has long legs to find some very stable (in terms of
the support polygon criteria) configurations. However, the extra
weight caused by a larger base decreases their ability to score well
in the average payload and average desired velocitymetrics. While
highly stable, designs like C are unable to find many
configurations with footholds in the walking region (i.e., its
heat map is entirely blue). Therefore we suggest that the
average static stability metric is best utilized either weighted in
an overall objective function or used in a multi-objective function
(as we do in this work) as opposed to being utilized in a single
objective optimization.

Overall, the optimization provides valuable insight into the
relationships between the four objectives as well as the different

design characteristics of the quadruped that led to better
performance in each metric.

5 HARDWARE VALIDATION EXPERIMENTS

5.1 Experiment Description
While simulation trends discussed in Section 4.3 provide valuable
design insights by themselves, we also wanted a fundamental
verification that these trends hold–even with unknown modeling
errors. We expect most of the modeling error to come from the
pneumatic joint torque model, due to unmodeled disturbances like
hysteresis or nonlinear joint stiffness. Since the dexterity in walking
region and average static stabilitymetrics are calculated largely with
kinematic quantities and masses that are directly measurable, we
focus the hardware experiments on the other two metrics which
depend more on accurate models of joint torques: average payload
and average desired velocity.

Since building a fully mobile quadruped is also not in the scope
of this paper, directly observing the average desired velocitymetric
is challenging. Instead we mounted a single leg to a static testing
apparatus and examined the ability of two different optimized
solutions to apply a downward force. This facilitates an indirect
observation of the average desired velocity metric and a direct
observation of the average payload metric. The two experiments
we design are as follows:

FIGURE 10 | The frame orientations of a constructed leg used in the
experiments with the HTC Vive trackers attached to sense its configuration.
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1. Experiment 1 was meant to verify that the average desired
velocity metric is physically meaningful. Taking force
measurements across the workspace of a leg indicates if a
design is able to apply forces that cause desired accelerations.
A step consists of swinging the leg forwards, making contact
with the ground, pushing through the middle of the
workspace, and breaking contact in the back of the
workspace. A design incapable of generating higher forces
during the beginning stages of a step would be unable to
accelerate easily. Hence we expect to see higher force capability
in the front and middle of the workspace than in the back. So
we measured the maximum force output in each of these
locations. Note that the ‘forward’ direction is defined by �ux in
Table 2.

2. Experiment 2 was to verify the competing relationship
between average payload and dexterity seen in Figure 8A.
As the dexterity metric of a leg design decreases, we expect its
payload capability to increase. To accomplish this, we compare
the maximum force output in the middle of the workspace of
two different designs: one with a higher dexterity score and
one with a higher payload score.

For safety, we limited the working pressure range from 0 to
275,790 Pa (40 psi) which is about half of the joint’s maximum
pressure range. We define the maximum force output of a leg as
the applied downward force when any actuator is near
saturation for more than one second [i.e., the pressure in any
joint chamber reaches 13,789 Pa (2 psi) or 262,000 Pa (38 psi)].
We define maximum force output this way because once an
actuator saturates the continuum joints have lost control
authority and may become unstable or deform in
unmodeled ways.

We used a configuration estimator, a joint controller, and a
force controller during the experiments. The configuration
estimation uses orientation data from HTC Vive virtual reality
trackers by applying the general method of estimating joint
variables using orientation sensors presented in Hyatt et al.
(2019). The joints are controlled with a PI controller acting on
the joint angle error signal. The force controller is a PI controller
with feedforward control. Each controller is used during different
parts of the experiment.

Since wemodel the leg as having four-DoF, the force controller
can only actively control forces and torques in four of the six
dimensions of a given wrench (generalized vector of forces and
torques on a rigid body). Therefore, we command forces in all
three directions of the Leg Base Frame and a torque along the y
axis in the Foot Frame (see Figure 10 for the frames). Controlling
a torque about the y axis in the Foot Frame helps to mitigate the
loss of adequate contact with the ground. To measure the force
between the foot and the ground, we use an ATI Mini45 force-
torque sensor. This force torque sensor is mounted on top of a
rigid stand and beneath a carpeted rectangular platform as shown
in Figure 10. During an experiment the leg presses downwards
on the carpeted platform while the sensor measures the reaction
wrench. The carpet simulates an environment in which the foot
may operate and for which we optimized given the estimated
coefficient of friction in our lab. However, this could be changed

or adapted for different expected friction in different operating
environments.

We adhered to the following experimental protocol to measure
the maximum force a given leg design can apply:

1. Command the leg to 138 kPa (20 psi) in each bellows to ensure
the same starting conditions for all the tests.

2. Command the leg to the joint configuration corresponding to
the desired workspace location using the PI joint controller
and wait until error is ≤ .01 rad for all joint angles.

3. Stop the PI joint-configuration controller, but continue
commanding the last pressures from the PI controller to
maintain the configuration.

4. Adjust the height the force torque stand until the carpeted
platform is barely touching the foot. Verify that the platform is
within the walking region W as defined in Table 2.

5. Set the current force-torque sensor readings to zero. This
ensures that the forces measured at the foot are due to joint
torques.

6. Start the force controller. Command zero force in the x and y
axes of the Leg Base Frame and zero torque about the y axis in
of the Foot Frame. This will keep lateral forces low and
maintain good contact with the carpeted platform.

7. Increment the force command along the z axis of the Leg Base
Frame by 1 N every second until any of the pressure chambers
are near saturation for longer than one second.

5.2 Validation Designs
For Experiment 1, we chose a design (referred to as Leg4) that was
closest to the 95th percentile of the dexterity in walking region and
average static stability metrics. For Experiment 2, we choose a
design (referred to as Leg66) closest to the 95th percentile in the
average payload and average desired velocity metrics. This design
is theoretically capable of applying higher forces than Leg4 but is
less stable and less dexterous. For reference, both of these leg
designs are labeled in Figure 8B and their design variables are
given in Table 4.

5.3 Results
Table 5 shows the results for Experiment 1 run on Leg4. Note that
we run 5 trials at each workspace location and report summary
statistics to demonstrate repeatability. We see that the expected
trends over the workspace are indeed validated. The maximum
forces are higher near the front and middle of the workspace and

TABLE 5 | Experimental results from Experiments 1 and 2. Experiment 1 tests
across the workspace of Leg4 to observe force capability that can produce a
desired velocity during a step. Experiment 2 compares force outputs in the middle
of the workspace between 2 different designs to observe differences in payload
capability.

Leg4 Leg66

Max Median Mean Max Median Mean

Front 306.19 N 301.54 N 298.48 N - - -
Middle 277.10 N 267.61 N 267.98 N 367.25 N 349.38 N 351.64 N
Back 173.85 N 160.79 N 152.75 N - - -
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drop in magnitude in the back when the foot will lift for another
step. This implies that the average desired velocitymetric used for
the optimization produces physically meaningful results. Recall
that the optimization did not have the pressure safety limits that
we imposed on the hardware, so the actual magnitudes of these
results are less important than the relative values across the
workspace.

Table 5 contains the results of Experiment 2. From Figure 8B,
we expect that Leg66 will be capable of higher force outputs
because of its higher average payload score compared to Leg4.
This is exactly what we observe. On average, Leg66 is capable of
applying downward forces 31.22% higher than Leg4.

While these results are preliminary, they clearly demonstrate
the fact that the design metrics presented in this work are capable
of mathematically capturing complex characteristics that are
desirable for quadrupedal locomotion with compliant
continuum joints. They succinctly represent real-world
behaviors and capabilities despite modeling inaccuracies and
various approximations that we used to preserve numerical
tractability.

6 CONCLUSION

We presented four design metrics for the design optimization of
any walking robot. We also derived and validated
approximations of these metrics, without which a useful
optimization would be numerically infeasible. To validate the
metrics, and the approximations, we used the metrics in a 10-
dimensional design optimization of a 16 degree-of-freedom
quadruped robot.

We solved the design optimization problem using a genetic
algorithm, which is well-suited to multi-objective optimization
problems where understanding design trade-offs via analysis of a
Pareto Frontier is valuable. We also included a discussion of these
trade-offs for our soft robot quadruped application.

Finally, we built two different designs selected from the
optimization results and provided preliminary evidence that
the relationships between design variables predicted by the
optimization also occur in real-world experiments.

Future work could include comprehensive hardware tests to
explicitly compare full functionality of different walking robot
designs. This would require the construction of 3 additional legs
and a body which could be adjustable along each of the 10 design
variables to facilitate quick iteration through different designs.
Accomplishing the more general goal of unstructured terrain
traversal will also require the development of new large-scale soft
robot gait controllers, force controllers, and path planning
algorithms tailored to a pneumatically-actuated compliant
quadruped. The results presented in this paper show that leg
designs optimized for specific metrics are indeed more
performant in those metrics. For this reason, we expect that
designing a full quadruped robot with these metrics and trade-
offs in mind will accelerate the development of robots and
controllers towards these general locomotion goals. This
expectation is supported because of similar work where we
have already shown improvements in related soft robot
manipulation due to relevant optimization design work [see
Bodily (2017)].
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NOMENCLATURE

γmax Orientation tolerance from vertical of a foothold

Ŝpayload Approximation of Spayload

μ Coefficient of friction

τ Joint torques

f Friction force

Fmax Maximum payload weight that a robot can carry

Fmin A possible value of f

Fpayload Payload capability of a robot design in any given configuration.
Defined in Eq. 4

Frobot Weight of an entire robot

g Gravitational constant

JX,i Manipulator jacobian

m Mass

N Average load a single leg is required to bear

nbin,j Number of times a leg reaches the jth bin

nfoot All possible foothold combinations for all legs, used as dexterity in
walking region metric for an entire quadruped

nW,i Number of unique and reachable foot pose bins in W for leg i, used as
the dexterity in walking regions metric for a single leg

Rbody Reaction force from body at Point A in Figure 1B

s Scaling factor on N. See Eq. 6

sC General symbol for the portion of a given metric that depends on the
configuration of the leg

sapprox General symbol for the approximated value of a given metric

sbin,j Total score for an individual bin, i.e. combination of all sC that reaches
the jth bin

scomb General symbol for the portion of a given metric that depends on the
combinations of all the footholds

Spayload Payload score accounting for kinematic singularities. Used as the
average payload in walking regions metric.

W Task space of a leg

Wmin Fmin represented as a wrench
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