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Global navigation satellite system (GNSS) positioning has recently garnered attention for
autonomous driving, machine control, and construction sites. With the development of
low-cost multi-GNSS receivers and the advent of new types of GNSS, such as Japan’s
Quasi-Zenith Satellite System, the potential of GNSS positioning has increased. New types
of GNSS directly increase the number of line-of-sight (LOS) signals in dense urban areas
and improve positioning accuracy. However, GNSS receivers can observe both LOS and
non-line-of-sight (NLOS) signals in dense urban areas, and more NLOS signals are
observed under static conditions than under dynamic conditions. The classification of
LOS and NLOS signals is important, and various methods have been proposed, such as
C/N0, using three-dimensional maps, fish-eye view, and GNSS/inertial navigation system
integration. Multipath detection based on machine learning has also been reported in
recent years. In this study, we propose a method for detecting NLOS signals using a
support vector machine (SVM) classifier modeled with unique features that are calculated
by receiver independent exchange format-based information and GNSS pseudorange
residual check. We found that using both the SVM classifier and GNSS pseudorange
residual check effectively reduced the error due to NLOS signals. Several static tests were
conducted near high-rise buildings that are likely to receive some NLOS signals in
downtown Tokyo. For all static tests, the percentage of positioning errors within 10m
in the horizontal positioning error was improved by >80% by detecting and eliminating
satellites receiving NLOS signals.
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1 INTRODUCTION

Global navigation satellite system (GNSS) positioning has recently been used in autonomous driving,
machine control, and at construction sites. The development of new low-cost multi-GNSS receivers
and the advent of new types of GNSS, such as the Quasi-Zenith Satellite System (QZSS) in Japan,
have increased the potential of GNSS positioning. One of the greatest advantages of GNSS
positioning is the ease with which absolute positions may be obtained, such as in the Earth-
centered, Earth-fixed coordinate system (ECEF). Heights can be obtained from barometers and
precision maps, but there are limited ways to easily obtain horizontal positions, which is another
advantage conferred by GNSS positioning. Additionally, the advent of new types of GNSS has
increased the number of line-of-sight (LOS) signals and improved positioning accuracy in
challenging locations, such as dense urban areas. However, GNSS receivers observe both LOS
signals and non-line-of-sight (NLOS) signals in these areas. NLOS signals have large multipath
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errors, which is the reason for the degrading positioning accuracy
in dense urban areas (Kubo et al., 2020). Under kinematic
conditions, the environment around the GNSS antenna is
dramatically changed and the GNSS receiver is less likely to
track NLOS signals, but under static conditions, the environment
around the GNSS antenna is unchanged and more NLOS signals
can be tracked by the GNSS receiver (Kubo et al. (2017). This can
be a significant challenge, for example, in the case of landslide
monitoring and parking locations.

Classifying LOS and NLOS signals correctly is essential for
improving GNSS positioning accuracy, and various methods of
achieving such improvements have been proposed, such as C/N0,
the use of three-dimensional (3D) maps, or fish-eye view. Kubo
et al. (2020) proposed a method for classifying NLOS signals
using continuous C/N0 time series, where NLOS signals were
detected by analyzing the C/N0 time series and GNSS
pseudorange residual check calculated by the least-squares
method, through which the differential GNSS (DGNSS)
positioning result was dramatically improved. Classification
methods using machine learning have also been proposed
recently. Suzuki and Amano (2021) proposed that the
correlation output of a GNSS signal can be classified using
machine learning. They used the shape of a multi-correlator
for features, and 97.7% of the NLOS signals were correctly
discriminated. However, it is difficult to obtain the shape of a
multi-correlator when using a commercial GNSS receiver. Xu
et al. (2018) proposed a classification method based on machine
learning and using receiver independent exchange format
(RINEX)-based information. They compared various machine
learning algorithms including k-nearest neighbors, neural
network, support vector machine (SVM), and decision tree,
and SVM was most effective for classifying LOS and NLOS
signals. Xu et al. (2020) proposed a classification method
based on an SVM using RINEX and estimated positions using
GNSS shadowmatching after classification, and the mean error in
the cross-street direction was decreased from 10.27 to 1.44 m.
Despite this, 3Dmaps are not suitable for commercial use because
of their uncertain availability and computational cost. For large-
scale commercial use, a positioning method that can be handled
by a single software program, with as little additional equipment
and cost as possible, is preferred. The goal of this study was to
detect NLOS signals using an SVM classifier modeled with unique
features and, thus, to improve horizontal DGNSS positioning
results in an urban area.

2 MATERIALS AND METHODS

2.1 SVM Classifier
An SVM is a supervised learning tool that generates input–output
mapping functions from a set of labeled training data (Wang,
2005). In this study, the SVM classifier outputted LOS and NLOS
signals and defined LOS signals as negative and NLOS signals as
positive. We implemented an SVM classifier using Scikit-learn
(Pedregosa et al., 2011), an open-source machine learning library
for the Python programming language. The SVM classifier
implemented by Scikit-learn requires tuning of the parameters

called “hyper-parameters.” We chose a radial basis function
kernel (RBF), which is generally used for nonlinear
classification, while the other parameters were selected using a
grid search (Min and Lee, 2005).

Xu et al. (2020) previously used four features—the signal-to-
noise ratio (SNR), elevation angle (EA), normalized pseudorange
residual (NPR), and pseudorange rate consistency (PRC). As for
the SNR and EA, it is well known that both are closely related to
the NLOS signal (Tokura and Kubo et al., 2017). SNR can be
obtained by RINEX, and EA can be calculated by the satellite
position estimated by the ephemeris and the approximate user
position.

The pseudorange residual is valid for use with machine
learning (Hsu, 2017). It is calculated by the least-squares
method and usually becomes large for NLOS signals. However,
the positioning result from the least-squares method has large
errors under multipath environments and the pseudorange
residual does not perfectly indicate the difference between LOS
and NLOS signals. For this reason, the pseudorange residual was
normalized at each epoch. The NPR can be expressed as

NPRs � Prs − Prmin

Prmax − Prmin
,

where Prmax and Prmin were calculated by the maximum and
minimum pseudorange residuals at each epoch, respectively, and
Prs is the pseudorange residual of satellite s.

PRC is defined as the difference in the changing rate of
pseudorange from the pseudorange and Doppler shift (Hsu, L.
(2017). The changing rate of pseudorange from the pseudorange
can be expressed as

ΔP � P(ti) − P(ti−1),
where P(ti) is the pseudorange in the i th epoch. The changing
rate of the pseudorange can also be calculated by the Doppler
shift as

Δρ � ( − λsfs)Δt,
where λs is the wavelength of satellite s, fs is the Doppler shift of
satellite s in unit of Hz, and Δt is the time difference of ti and ti−1.
PRC can be expressed as

PRC � ΔP − Δρ

The pseudorange can be estimated by the receiver-code
tracking loop, and the Doppler shift can be estimated by the
frequency tracking loop in the GNSS receiver. For an LOS signal,
the PRC is 0, but for an NLOS signal, the PRC is not always 0
because the receiver-code tracking loop is more affected by
multipaths than by the frequency tracking loop.

Previous studies have shown that there are more methods
other than just these four to characterize NLOS signals. Tokura
and Kubo (2017) proposed an SNR-based satellite selection
method that uses the magnitude of variability in the SNR
(hereafter, the “SNR fluctuation magnitude” or SFM). Because
NLOS signals exhibit large fluctuations in their SNR time series,
the SFM is an indicator of the magnitude of such fluctuations.
Tokura and Kubo (2017) calculated the SFM using the moving
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standard deviation of the difference between the observed and
estimated SNRs, which sets the elevation-dependent threshold of
the SNR (Suzuki et al., 2004; Kubo et al., 2005; Shirai & Kubo,
2012). The disadvantage of this approach is that it is difficult to set
this threshold. Instead, we calculated the SFM in this study by
moving the standard deviation of the SNR, expressed as

SFM(i) �
����������������������������
1
N

∑i

n�i−N(SNR(ti−n) − SNRmean)2
√

,

where N is the window size and SNR(ti−n) is the SNR in the i − n
th epoch and SNRmean is the mean of the SNR. Figure 1 shows a
comparison of the LOS and NLOS SFM time series in a multipath
environment. The window size was set to 120 epochs. The LOS of
the mean residual was 1.56 m, but that of the NLOS was 55.90 m.
These results indicate that SFM can be a good indicator of LOS
versus NLOS signals.

We generated a classifier with five features—SNR, EA, NPR,
PRC, and SFM. For the SFM, the window size for calculating the
moving standard deviation influenced the accuracy of the SVM
classifier. In this study, we set various window sizes (30, 60, 90, 120,

180, and 240 epochs) and considered the best window size for the
accuracy of the SVM classifier. The SVM classifier was then used to
classify all signals that could be used for positioning at each epoch.

2.2 Datasets
Three datasets were used in this study; Figure 2 shows the data
collection locations. The area around Tokyo Station is
surrounded by skyscrapers over 100 m in height, and the
DGNSS positioning error easily reached 100 m. Locations A
and B are marked in Figure 2. For all datasets, a U-blox F9P
and a standard patch antenna (ANN-MB-00–00) installed on the
roof of a parked car (U-blox, Switzerland) were used. In the
reference station, a U-blox F9P was used and the GNSS antenna
was a Trimble Zephyr 2 Geodetic (Trimble, Inc., United States).
All datasets were recorded at 1 Hz.

The upper part of Figure 3 shows detailed images around
location A and the antenna. As can be seen, it was likely that NLOS
signals would be received from the higher buildings at the azimuth
of 290°. There were several high-rise buildings of different heights
and several trees on both sides of the antenna. The lower part of
Figure 3 shows detailed images around location B and the antenna.
As in location A, it was also likely at this location that NLOS signals
would be received from the higher buildings at the azimuth of 180°,
and there were several high-rise buildings of different heights on
both sides of the antenna.

Datasets (1) and (2) were collected at location A but were
50 cm apart when comparing the precise position. Dataset (3) was
collected at location B. All datasets were accompanied by
reference station data obtained at the Tokyo University of
Marine Science and Technology Etchujima Campus located
~3 km from Tokyo Station. Table 1 shows the dates and times
when the datasets were collected. As for the reference position, we
adopted an RTK-GNSS Fix solution outputted by U-blox F9P,
and we confirmed that this position was correct to an accuracy of
approximately 5 cm in post-processing by positioning software
developed by our laboratory.

FIGURE1 | LOS and NLOS time series of the magnitude of fluctuation in the SFM.

FIGURE 2 | Map showing locations A and B relative to Tokyo Station.
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Dataset (1) and reference station data were used for training
the SVM classifier, and datasets (2) and (3) were used for testing
the SVM classifier. For datasets (1) and (2), the locations of data
collection were almost the same, but the collection times differed.
The locations and times of data collection were different for
datasets (1) and (3). Therefore, these datasets were suitable for
evaluating the SVM classifier.

2.3 Labels
In the testing and evaluation of our SVM classification, we
estimated accurate pseudorange residuals and determined the

labels for classification. Kubo et al. (2020) proposed an
estimation of the precise receiver clock error and
pseudorange residuals. Pseudorange measurements include
errors from the receiver clock, satellite clock, ionosphere,
troposphere, and multipath + noise. In pseudorange
positioning, the multipath + noise error is the residual of the
pseudorange

P � ρ + c(dtrcv − dTsat) + ion + tropo +mp + ε,

where P is the pseudorange (m), ρ is the geometrical range (m), c
is the speed of light (m/s), dtrcv is the receiver clock error (m),
dTsat is the satellite clock error (m), ion is the ionospheric error
(m), tropo is the tropospheric error (m),mp is the multipath error
(m), and ε is the noise error (m).

In this study, the predicted geometrical range was set as the
distance between the reference position of the antenna and the
satellite position estimated by ephemeris. The satellite clock,
ionospheric, and tropospheric errors are considered to be in part
eliminated by the DGNSS correction data, which were
calculated at the base station. Additionally, the clock bias of

FIGURE 3 | Environment of location A (upper) and environment of location B (lower). The white circle represents the location of the GNSS antenna.

TABLE 1 | Details of each dataset.

Datasets Location Date and time (GPS
tow [s])

Train or test

(1) Location A 03/04/2020, 461880–463500 Train
(2) Location A 27/05/2020, 540181–541800 Test
(3) Location B 18/04/2020, 277379–279005 Test
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GPS and other satellite systems was eliminated by the DGNSS
correction data. Therefore, a receiver clock was needed to
estimate the multipath + noise. If the receiver clock was
estimated within a few meters, then the multipath + noise
can be estimated with the same accuracy. Usually, the
receiver clock error was estimated by pseudorange
positioning and estimation accuracy if the receiver clock
errors were within several meters under open sky conditions.
However, in multipath environments, the estimation accuracy
of receiver clock errors deviated over tens of meters because of

multipath errors. In this study, we tracked a strong signal from
the Japanese QZSS even near high-rise buildings in Tokyo as at
least one QZSS remained at a very high EA > 80°. In practice, the
accuracy of the pseudorange of the highest satellite is within
1.0 m. Using the receiver clock error estimated with the
pseudorange of the highest EA and reference positions of the
antenna, the multipath + noise could be expected within 1.0 m.
The NLOS signal multipath errors usually exceed 10 m. Here, if
the multipath errors exceeded 10 m, they represented an NLOS
signal.

TABLE 2 | Common analytical parameters.

Item Parameter

GNSS receiver U-blox F9P (rover/base)
GNSS antenna ANN-MB-00-00 (rover)/Trimble Zephyr 2 Geodetic (base)
Mask angle 15°

Minimum SNR 30 dB-Hz
Threshold for residuals 10 m
Satellites GPS/QZSS/GALILEO/BDS/GLONASS
Interval 1 Hz
Minimum satellites 5

FIGURE 4 | Workflow of training (upper) and testing (lower).
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2.4 Analytical Strategy
Multipath errors caused by NLOS signals generally have a greater
impact on the pseudorange than the carrier phase, and the
accuracy of carrier-phase positioning, such as real-time
kinematic, is affected by the pseudorange positioning. In this
study, we adopted DGNSS positioning as it is suitable for
evaluating positioning errors because it is less affected by
tropospheric, ionospheric, and satellite clock errors. Table 2
shows the common parameters of our analysis.

Figure 4 shows the workflow of this study. We extracted
five features (SNR, EA, NPR, PRC, and SFM) and determined
labels for classification during training. To validate the SFM,
we generated two SVM classifiers—SVM classifier (1), which
used four features (SNR, EA, NPR, and PRC), and SVM
classifier (2), which used five features (SNR, EA, NPR,
PRC, and SFM). During the testing phase, signals classified
as NLOS were excluded by DGNSS positioning. There were
five outputs.

・Output (1) was the DGNSS position from satellites that
could be observed and used to assess the effect of
pseudorange residual check.

・Output (2) was the DGNSS position from satellites that were
not excluded by the pseudorange residual check.

・Output (3) was the DGNSS positioning using SVM
classifier (1).

・Output (4) was DGNSS positioning using SVM
classifier (2).

・Output (5) was the DGNSS positioning using SVM classifier
(2) and pseudorange residual check.

For the SFM, we set various window sizes (30, 60, 90, 120, 180,
and 240 epochs) and considered the best window size from the
results of the SVM classifier accuracy across all datasets.

The positioning software developed by our laboratory was
used. As for the pseudorange residual check, the position and
pseudorange residuals were first calculated by the least-squares
method using all satellites. If the maximum pseudorange residual
exceeded the threshold, the satellite with the maximum
pseudorange residual was excluded. This process continued
until the maximum pseudorange residual fell below the
threshold or the number of satellites was insufficient (Jiang
et al., 2011).

3 RESULTS

3.1 SVM Classifier
The parameters of the SVM classifier, the regularization
parameter, and the kernel coefficient were set equal to 10, and
the scales were selected via grid search (Min & Lee, 2005). There
are four types of statistics used to evaluate binary
classifications—true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) (Sokolova & Lapalme,
2009). In this study, accuracy was chosen as the metric for
evaluating the SVM classifier. Accuracy can be expressed as

Accuracy � TP + TN
TP + TN + FP + FN

Table 3 shows the accuracy of the SVM classifier. Using the
SFM, the accuracy of the classifier increased by >15% with the
testing. Regarding the best SFM window size, there was no
significant difference in the accuracy when the window size
was 60 epochs or more. Therefore, we selected 120 epochs,
which maximized the accuracy in dataset (2).

3.2 Positioning Results
We evaluated the horizontal DGNSS error using six statistics:
mean error, maximum error, standard deviation (SD), and the
percentages of positioning errors within 3 m, 10 m, and 30 m.

3.2.1 Dataset (2)
The upper part of Figure 5 shows the time series of the number of
satellites used in dataset (2). The mean number of satellites before
and after classification was 25 and 14.9, respectively, while the
number of TN satellites was 13.1. Therefore, SVM classifier (2)
detected approximately 10 NLOS signals in each epoch.
Additionally, the mean numbers of TPs, FPs, and FNs in each
epoch were 9.0, 1.1, and 1.8 satellites, respectively.

Table 4 shows a comparison of the horizontal positioning errors
in dataset (2). ComparingDGNSS+ SVMclassifier (1) andDGNSS+
SVM classifier (2), the percentage of positioning errors within 10m
was especially improved because the accuracy of SVM classifier (2)
was 25% higher than that of SVM classifier (1) (see also Table 3).
However, it did not exceed the values of the DGNSS + residual check.
For the combination of DGNSS + SVM classifier (2) + residual check,
the percentage of positioning errors within 10m was dramatically
improved comparedwith other results, while themaximumerror was
worse due to the fact that FNs in SVM classifier (2) and pseudorange
residual checkwere incorrect. Tomake it easier to visually understand
the improvement of the horizontal positioning results, the lower part
of Figure 5 shows the DGNSS positioning errors with the DGNSS +
residual check, DGNSS + SVM classifier (2), and DGNSS + SVM
classifier (2) + residual check. The DGNSS + SVM classifier 2) +
residual check yielded the smallest error.

3.2.2 Dataset (3)
The upper part of Figure 6 shows the time series of the number of
satellites used in dataset (3). The mean number of satellites before
and after classification was 17.6 and 12.2, respectively, and the
number of TN satellites was 11.6. Therefore, SVM classifier (2)
detected approximately five NLOS signals in each epoch.
Moreover, the mean numbers of TPs, FPs, and FNs in each
epoch were 4.6, 0.6, and 0.8 satellites, respectively.

Table 5 shows a comparison of the horizontal positioning
errors in dataset (3), and the lower part of Figure 6 shows the
DGNSS positioning error with the DGNSS + residual check,
DGNSS + SVM classifier (2), and DGNSS + SVM classifier (2) +
residual check. Except for the maximum error, all statistics
showed improvements as great as those in dataset (2). In the
case of the DGNSS + SVM classifier (2) + residual check, the
percentage of positioning errors within 10 m was improved by
>80% compared to the DGNSS alone, and >90% of all horizontal
positioning errors were within 10 m.
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3.3 Kinematic Test and Results
To find the limitations of the proposed method, we conducted a
kinematic test. The GNSS antenna was installed in a car that
traveled along the route shown in Figure 7. We collected data and

analyzed the DGNSS positioning. The route included skyscrapers
around Tokyo Station in Tokyo, Japan, and the DGNSS
positioning error easily reached several tens of meters or more
in this area. The total data recording period was 1,811 s, and the

TABLE 3 | Accuracy of the SVM classifier.

Accuracy (%) Dataset (1) Dataset (2) Dataset (3)

SVM classifier (1) 87.61 64.50 76.17
SVM classifier (2)_SFM (30 epochs) 95.38 83.98 91.42
SVM classifier (2)_SFM (60 epochs) 95.90 86.35 90.83
SVM classifier (2)_SFM (90 epochs) 96.18 87.72 90.80
SVM classifier (2)_SFM (120 epochs) 96.23 88.00 91.52
SVM classifier (2)_ SFM (180 epochs) 95.76 87.78 92.54
SVM classifier (2)_ SFM (240 epochs) 95.63 87.59 92.44

FIGURE 5 | Time series of the number of satellites using dataset (2) (upper) and comparison of the DGNSS positioning error in dataset (2) (lower). The “after
classification” period represents the number of satellites determined to be LOS by SVM classifier (2), and the “number of TN” is the number of true negative (TN) satellites
(LOS signals) at each epoch.

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8686087

Ozeki and Kubo GNSS NLOS Signal Classification

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


TABLE 4 | Comparison of the horizontal positioning error of dataset (2).

Dataset (2)
(1,625
epochs)

DGNSS output (1) DGNSS +
residual check

output (2)

DGNSS +
SVM classifier
(1) output (3)

DGNSS +
SVM classifier
(2) output (4)

DGNSS +
SVM classifier

(2) +
residual check

output (5)

Mean error 27.68 m 14.12 m 29.69 m 15.99 m 5.77 m
Maximum error 93.14 m 70.32 m 68.24 m 48.89 m 68.16 m
SD 10.39m 13.10 m 9.42 m 9.70 m 7.82 m
Percentage (<3 m) 1.05% 17.17% 0.00% 8.12% 33.97%
Percentage (<10 m) 5.78% 55.14% 0.49% 27.51% 91.63%
Percentage (<30 m) 59.69% 88.00% 57.97% 89.66% 98.22%

FIGURE 6 | Time series of the number of satellites using dataset (3) (upper) and comparison of DGNSS positioning error in dataset (3) (lower). The “after
classification” period represents the number of satellites determined to be LOS by SVM classifier (2), and the “number of TN” is the number of true negative (TN) satellites
(LOS signals) at each epoch.
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data were recorded at 1 Hz. GPS-703-GGG-HV (Novatel, Inc.,
Canada), which is a survey-grade GNSS antenna, was used for
this experiment. The reference position was obtained using POS
LVX (Applanix, Inc, Canada). The other settings were the same as
in Table 2.

Table 6 shows the accuracy of the SVM classifier in the
kinematic test and dataset (1). Compared to the experiment

under the static conditions, there was no contribution of SFM
to the accuracy. This is because the positioning environment
changes from time to time under the kinematic conditions,
and the signal frequently changes from LOS to NLOS or NLOS
to LOS. Hence, we used SVM classifier (1) in the
kinematic test.

Table 7 shows a comparison of the horizontal positioning
errors in the kinematic test, and Figure 8 shows the DGNSS
positioning error with the DGNSS + residual check, DGNSS
+ SVM classifier (1), and DGNSS + SVM classifier (1) +
residual check. Comparing the DGNSS and DGNSS +
residual check, the pseudorange residual check was as
effective as in the static test. As for DGNSS + SVM
classifier (1), SVM classifier (1) was effective in
positioning. However, it did not exceed the values of the
DGNSS + residual check. For the combination of the DGNSS
+ SVM classifier (2) + residual check, all statistics were better
as compared with the other methods.

TABLE 5 | Comparison of the horizontal positioning error of dataset (3).

Dataset (3)
(1,620
epochs)

DGNSS output (1) DGNSS +
residual check

output (2)

DGNSS +
SVM classifier
(1) output (3)

DGNSS +
SVM classifier
(2) output (4)

DGNSS +
SVM classifier

(2) +
residual check

output (5)

Mean error 51.43 m 18.15 m 17.46 m 7.52 m 4.93 m
Maximum error 263.66 m 198.33 m 121.48 m 74.85 m 89.28 m
SD 33.68 m 26.19 m 14.88 m 9.44 m 3.94 m
Percentage (<3 m) 1.49% 14.44% 7.96% 29.07% 34.57%
Percentage (<10 m) 7.59% 54.32% 34.14% 78.89% 92.35%
Percentage (<30 m) 33.15% 83.89% 87.41% 96.72% 99.94%

FIGURE 7 | Environment of the route in the kinematic test.

TABLE 6 | Accuracy of the SVM classifier in the kinematic test.

Accuracy (%) Dataset (1) Kinematic test

SVM classifier (1) 87.61 86.40
SVM classifier (2)_SFM (30 epochs) 95.38 76.66
SVM classifier (2)_SFM (60 epochs) 95.90 73.86
SVM classifier (2)_SFM (90 epochs) 96.18 70.53
SVM classifier (2)_SFM (120 epochs) 96.23 67.86
SVM classifier (2)_ SFM (180 epochs) 95.76 65.92
SVM classifier (2)_ SFM (240 epochs) 95.63 64.68

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8686089

Ozeki and Kubo GNSS NLOS Signal Classification

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4 DISCUSSION

We conducted two static tests and one kinematic test in this
research study.

In the static test, the pseudorange residual check was
effective, but the results of the DGNSS + residual check were
not improved as compared with those of SVM classifier (2)
based on Tables 4, 5. Additionally, the horizontal positioning

results of SVM classifier (2) were better than those of SVM
classifier (1), as indicated by the higher accuracy. Based on
Table 3, the accuracy improvement of the training data gained
by using the SFM was ~8%, whereas for the test data, the
improvement was >15%. Therefore, SVM classifier (2) was
able to learn more effectively than SVM classifier (1) using
the SFM under static conditions. A mean of 1.8 FN satellites at
each epoch could not be eliminated in dataset (2), while a mean

TABLE 7 | Comparison of the horizontal positioning error in the kinematic test.

Kinematic
test (1,811 epochs)

DGNSS DGNSS
+ residual check

DGNSS + SVM classifier
(1)

DGNSS + SVM
classifier (1) +
residual check

Mean error 36.52 m 12.15 m 16.22 m 5.22 m
Maximum error 413.41 m 232.90 m 208.57 m 160.84 m
SD 43.20 m 21.95 m 23.61 m 11.97 m
Percentage (<3 m) 23.46% 50.80% 33.58% 64.38%
Percentage (<10 m) 35.37% 74.01% 57.10% 87.53%
Percentage (<30 m) 56.67% 86.17% 83.02% 97.72%

FIGURE 8 | Comparison of the DGNSS positioning error in the kinematic test.
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of 0.8 FN satellites at each epoch could not be eliminated in
dataset (3). Thus, we could obtain more accurate positions with
a combination of SVM classifier (2) and the pseudorange
residual check (Tables 4, 5).

In the kinematic test, the pseudorange residual check was as
effective as in the static test, while SFM did not contribute to
the accuracy. The mean of the velocity in this experiment was
3.6 m/s, and if we were to calculate the SFM for 30 s, the
positioning environment would change by approximately
100 m from start to end. Therefore, SFM does not indicate
SNR fluctuations due to the NLOS signal. With a combination
of SVM classifier (1) and the pseudorange residual check, we
could obtain more accurate positions compared with the other
methods (Table 7).

We proposed an SVM classifier and the combination of SVM
classifier (1) and the pseudorange residual check to obtain a
more accurate position. Notably, SFMwas a useful feature under
static conditions, whereas its use was problematic in kinematic
tests. This is one of the novelties in static tests and a limitation in
kinematic tests. The pseudorange residual check is useful in
dense urban areas as evidenced by all tests in this study, whose
effect is, however, limited when many NLOS signals are
observed. On the other hand, the SVM classifier could not
detect NLOS signals perfectly because its accuracy was
approximately 90% in testing. Hence, as newly evidenced in
this study, a combination of the SVM classifier and pseudorange
residual check was the most effective method in dense
urban areas.

Although the features used in this study are indicators of
the characteristics of NLOS signals, it is difficult to
determine from each feature whether or not a signal is an
NLOS signal. It is also difficult to determine the NLOS
thresholds for these features. This is where machine
learning was introduced. The approach used here does
not require other equipment and only requires an SVM
classifier written in the Python code. In this study, we

evaluated three datasets; however, all the data were
obtained near Tokyo Station. To further assess the
generality of the proposed method, it will be necessary to
evaluate the classifications made using data from other
locations. Moreover, we used data recorded for 27 min for
training because there were few candidate locations at which
NLOS signals could be observed with certainty, and it was
difficult to park for long periods of time and obtain data. To
further improve accuracy, we plan to find a place where we
can obtain data for about 24 h and retrain the SVM classifier.
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