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We present a real time algorithm for humanoid 3D walking and/or running based on a
Model Predictive Control (MPC) approach. The objective is to generate a stable gait that
replicates a footstep plan as closely as possible, that is, a sequence of candidate footstep
positions and orientations with associated timings. For each footstep, the plan also
specifies an associated reference height for the Center of Mass (CoM) and whether
the robot should reach the footstep by walking or running. The scheme makes use of the
Variable-Height Inverted Pendulum (VH-IP) as a prediction model, generating in real time
both a CoM trajectory and adapted footsteps. The VH-IP model relates the position of the
CoM to that of the Zero Moment Point (ZMP); to avoid falling, the ZMP must be inside a
properly defined support region (a 3D extension of the 2D support polygon) whenever the
robot is in contact with the ground. The nonlinearity of the VH-IP is handled by splitting the
gait generation into two consecutive stages, both requiring to solve a quadratic program.
Thanks to a particular triangular structure of the VH-IP dynamics, the first stage deals with
the vertical dynamics using the Ground Reaction Force (GRF) as a decision variable. Using
the prediction given by the first stage, the horizontal dynamics become linear time-varying.
During the flight phases, the VH-IP collapses to a free-falling mass model. The proposed
formulation incorporates constraints in order to maintain physically meaningful values of
the GRF, keep the ZMP in the support region during contact phases, and ensure that the
adapted footsteps are kinematically realizable. Most importantly, a stability constraint is
enforced on the time-varying horizontal dynamics to guarantee a bounded evolution of the
CoMwith respect to the ZMP. Furthermore, we show how to extend the technique in order
to perform running on tilted surfaces. We also describe a simple technique that receives
input high-level velocity commands and generates a footstep plan in the form required by
the proposed MPC scheme. The algorithm is validated via dynamic simulations on the full-
scale humanoid robot HRP-4, as well as experiments on the small-sized robot OP3.

Keywords: humanoid robot, model predictive control, legged locomotion, running, variable height inverted
pendulum model

1 INTRODUCTION

Humanoid robots have become more and more advanced in the last decade. Using legged
locomotion, they are in principle able to perform very complex and dynamic motions, such as
those needed to traverse nonlevel terrain and realize running gaits. However, the design of online
walking and running pattern generation algorithms is challenging from a control standpoint, as there
are several hard requirements such as the need to always maintain dynamic balance, whether the
robot is walking or running.

Edited by:
Enrico Mingo Hoffman,

Pal Robotics S.L., Spain

Reviewed by:
Yue Hu,

University of Waterloo, Canada
Johannes Englsberger,

German Aerospace Center (DLR),
Germany

Francisco Javier Andrade Chavez,
University of Waterloo, Canada

*Correspondence:
Nicola Scianca

scianca@diag.uniroma1.it

Specialty section:
This article was submitted to

Field Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 15 February 2022
Accepted: 11 May 2022

Published: 16 August 2022

Citation:
Smaldone FM, Scianca N, Lanari L and

Oriolo G (2022) From Walking to
Running: 3D Humanoid Gait

Generation via MPC.
Front. Robot. AI 9:876613.

doi: 10.3389/frobt.2022.876613

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 8766131

ORIGINAL RESEARCH
published: 16 August 2022

doi: 10.3389/frobt.2022.876613

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.876613&domain=pdf&date_stamp=2022-08-16
https://www.frontiersin.org/articles/10.3389/frobt.2022.876613/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.876613/full
http://creativecommons.org/licenses/by/4.0/
mailto:scianca@diag.uniroma1.it
https://doi.org/10.3389/frobt.2022.876613
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.876613


When walking on flat ground, balance is usually guaranteed by
keeping the ZeroMoment Point1 (ZMP) within the convex hull of
the contact surfaces, that is, the support polygon. To achieve real
time control, a popular approach is to reduce the complexity of
humanoid dynamics using the Linear Inverted Pendulum (LIP)
model, obtained by assuming constant CoM height and
neglecting angular momentum variations around the CoM.
The linearity of the LIP model has allowed to efficiently define
control schemes based on optimization, such as preview-based
approaches for tracking the desired ZMP trajectory (Kajita et al.,
2003), or MPC schemes that encode the balance requirement
through constraints on the ZMP (Wieber, 2006).

1.1 Related Work
Variation of the CoM height is a key requirement for traversing
nonlevel grounds. Removing the assumption of constant CoM
height in the LIP leads to the Variable-Height Inverted Pendulum
(VH-IP) model (Koolen et al., 2016), in which height variations
have the effect of modifying the natural frequency of the
pendulum. The varying natural frequency can be seen as an
additional input of the model, which introduces a nonlinearity
that entails higher complexity in the gait generation algorithm.
Another possibility is to consider it as a time-varying parameter
in the dynamic equation (Herdt et al., 2012), design the vertical
motion offline, and generate the horizontal trajectories with a
linear time-varying MPC. Other approaches (Hu et al., 2014;
Brasseur et al., 2015) aim instead at bounding the effect of the
difference between the VH-IP and LIP on the ZMP, in a way to
guarantee that the latter is always inside the support polygon. It is
also possible to find specific trajectories for which the vertical
CoM motion has LIP-like dynamics (Englsberger et al., 2013;
Zamparelli et al., 2018). This approach can be very effective but it
constrains the CoM trajectories that can be generated.

Regardless of the employed model, gait generation schemes
must necessarily deal with the intrinsic instability of humanoid
dynamics. In the LIP, this instability is reflected in the presence of
an unstable mode. This component is often called Divergent
Component of Motion (DCM) (Takenaka et al., 2009a), or
Capture Point (Pratt et al., 2006), and plays a major role in
the stabilization of gait generation schemes. In the effort to extend
this concept to the VH-IP, if one follows the same approach as for
the LIP, it is hard to enforce stability on the DCM itself as it will
remain coupled with the CoM dynamics (Hopkins et al., 2014).
However, a truly decoupling change of coordinates can be found,
(Caron et al., 2019a), but it is a time-varying change of
coordinates with no available closed-form expression, as it is
implicitly defined by solving a nonlinear differential equation.

A separate line of research has been directed at the generation
of running motions, with early work dating back several decades
(Raibert, 1986). To generate a running gait, the controller must be

able to produce a variable CoM height, but it also needs to
account for flight phases, in which contact with the ground is lost.
As such, none of the aforementioned control schemes for 3D
walking can be directly adopted to generate a running gait.
Biomechanic studies on human running (Blickhan, 1989;
Novacheck, 1998) have consolidated the use of the Spring
Loaded Inverted Pendulum (SLIP) to model running
dynamics, which has frequently been involved in the
generation of running motions for legged robots (Wensing
and Orin, 2013; Secer and Saranli, 2018; Secer and Cinar,
2020). In these works, control is realized by means of a step-
to-step regulation of apex states (flight states with zero vertical
velocity). Xiong and Ames, (2018) derive a spring-mass model
from the robot dynamics to generate hopping motions by
optimizing the second-order derivative of the leg length.
Winkler et al. (2018) perform offline trajectory optimization to
compute dynamic motions, involving flight phases and
locomotion over tilted planes. The method makes use of a
convenient polynomial parameterization to efficiently optimize
phase durations, foot locations, and contact forces while
enforcing dynamic consistency through Centroidal Dynamics.
More recently, Li et al. (2021) propose an optimization-based
CoM trajectory planning using a SLIP model during stance
phases for quadrupedal hopping on two legs. SLIP dynamics
are highly nonlinear and thus unsuitable for predictive control
unless considerably approximated.

Although the ZMP is not defined during flight phases due to
the loss of contact with the ground, balance during support
phases can still be enforced by means of a ZMP criterion.
ZMP-based approaches for running are proposed with VH-IP
modeling of the dynamics during support phases and a free-
falling mass model during flight phases (Kajita et al., 2007;
Takenaka et al., 2009b; Tajima et al., 2009). The vertical
motion is generated independently, the ZMP trajectory is
preassigned and the CoM trajectory is obtained by numerically
solving the dynamics in order to meet the next step boundary
conditions. Englsberger et al. (2016) generate running gaits aimed
at approximating natural human behavior, using measured data
and a spatially independent polynomial encoding of the CoM
trajectory. More recently, Ahn and Cho, (2021) proposed an
MPC formulation for executing jumping motions where the
vertical trajectory is generated offline. Also, Sugihara et al.
(2021) introduced another ZMP-based MPC approach to
generate 3D walking and running; constraints are enforced
approximately in order to obtain closed-form solutions to
speed up the execution.

We recently proposed an Intrinsically Stable MPC (IS-MPC)
with an explicit stability constraint embedded in the formulation
(Scianca et al., 2020). This constraint is in charge of dealing with
the unstable character of humanoid dynamics, by guaranteeing
that the CoM trajectory is always bounded with respect to the
ZMP. Since the LIP is used as a prediction model, the DCM
dynamics can be decoupled by using a simple change of
coordinates, and a closed-form condition on the long-term
evolution can be found. Zamparelli et al. (2018) used similar
ideas and proposed an IS-MPC extension that is capable of
generating 3D trajectories for the CoM. This can be realized

1Other studies use the Centroidal Moment Pivot (CMP) point (Popovic et al., 2005)
instead of the ZMP for gait generation and/or push recovery, for example, Griffin
et al. (2017) and Shafiee-Ashtiani et al. (2017). The CMP purely encodes linear
forces and thus does not require to assume the derivative of the centroidal angular
momentum to be zero.
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by constraining the allowed CoM evolution to a specific set of
trajectories that present LIP-like dynamics along all three axes.
While this approach is very effective in many circumstances, it
limits the number of trajectories that can be generated and it is
thus not applicable to every situation. Furthermore, it cannot be
extended to generate running motions.

1.2 Contributions
In this article, we present a unified MPC algorithm that generates
online both 3D walking and running gaits as well as transitions
between them. Motions are generated in such a way to follow as
closely as possible a footstep plan, in an environment constituted
by horizontal patches at different heights, known as world of
stairs.

The main contributions of this article can be summarized by
the following points:

• we describe a scheme for generating a humanoid gait with a
variable CoM height using the VH-IP model. The proposed
architecture uses a two-stage MPC scheme and only
requires solving standard linear-quadratic QP problems
by means of the fact that the natural frequency present
in the horizontal dynamics can be regarded as a time-
varying parameter. With respect to the recent state of the
art methods, our scheme has the advantage of maintaining a
linear formulation without limiting the possible vertical
CoM motions by constraining the pendulum frequency
(Zamparelli et al., 2018; Sugihara et al., 2021);

• by properly shaping the vertical GRF using constraints in
the first MPC stage, we introduce flight phases in order to
allow the scheme to generate running motions;

• we propose a variation of our stability constraint (Scianca
et al., 2020) to extend its applicability to the case of linear
time-varying systems, and discuss how it is included in the
formulation, both in the case of walking with variable height
and running. Differently from Caron et al. (2019a), the
proposed constraint is linear and can be efficiently enforced
in a QP;

• we show how to extend the proposed scheme in order to
allow running over tilted surfaces.

The proposed approach allows to generate gaits involving stair
climbing and running for traversing complex terrain
configurations. Furthermore, thanks to the ability to generate a
CoM trajectory with variable height, it can realize a transition
from walking to crouching (Kamioka et al., 2015), for example, in
order to pass below an overhanging obstacle. The capabilities of
the scheme will be demonstrated in dynamic simulations, as well
as experiments for the case of walking. As a supplementary
contribution, we will also present a simple footstep planner
that, in response to high-level velocity commands, can be used
to generate the required input for the proposed scheme.

The article is organized as follows: Section 2 describes the
dynamics of balance on nonlevel ground. The VH-IP model is
introduced in Section 3. The overall approach is sketched out in
Section 4, and then the MPC is presented in detail in Section 5,
while a simple footstep planner is discussed in Section 6.

Simulations, as well as an experiment on the ROBOTIS OP3
humanoid robot, are shown in Section 7 and Section 8. In
Section 9 we will briefly discuss an extension that allows the
robot to run on tilted surfaces. Section 10 concludes the article.

2 DYNAMIC BALANCE

The ability to maintain dynamic balance is a basic requirement of
any gait generation scheme. On horizontal ground, balance may
be guaranteed using the ZMP criterion, which prescribes that the
ZMP (the point where the horizontal component of the moment
of the ground reaction forces becomes zero) should be at all times
within the support polygon, that is, the convex hull of the contact
surfaces.

When moving to 3D locomotion, where the contact surfaces
are not necessarily coplanar, a support polygon cannot be
defined. At the same time, one needs to consider that the
definition of ZMP is actually satisfied along a line, and
therefore this point is not necessarily located on the ground
(Sardain and Bessonnet, 2004). Based on this, several authors
have proposed extensions of the ZMP criterion to the 3D case; in
particular, Sugihara et al. (2021) require that the ZMP belongs to
a pyramid with vertex at the CoM and base defined as the convex
hull of the projections of the active contact surfaces on an
arbitrary plane, typically chosen as a horizontal plane below
all contact surfaces.

In this article, we are going to consider as admissible ZMP
region for balance the convex hull of the active contact surfaces:

Z � p : p � ∑Nc

j�1
γjvj, with γj ≥ 0, ∑Nc

j�1
γj � 1

⎧⎨⎩ ⎫⎬⎭,

where p is2 the generic 3D point and vj, j = 1, . . . , Nc, are the
vertexes of all active contact surfaces. It is easy to verify thatZ is a
subset of the earlier-defined pyramid. In a world of stairs, where
all contact surfaces are parallel, Z becomes an oblique prism in
double support (see Figure 1, left). On flat ground, Z is simply
reduced to the support polygon.

3 SYSTEM MODELING

In this article, we will use the VH-IP model (Caron et al., 2019a)
to characterize the relationship between the CoM and the ZMP.

Under the assumption of zero angular momentum around the
CoM, the Newton and Euler (with respect to the ZMP) equations
for the humanoid lead to

m €pc − g( ) � f , (1)
pz − pc( ) × f � 0, (2)

where m is the robot mass, pc = (xc, yc, zc) is the CoM, g = (0, 0, −
g) is the gravity acceleration, f is the ground reaction force (GRF
in the following) and pz = (xz, yz, zz) is the ZMP (see Figure 2).

2Throughout the article, points are represented by their coordinate vectors.
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The CoM dynamics are deduced from Eqs (1, 2). In particular,
the vertical CoM dynamics is directly given by the third equation
in (1), namely

€zc � fz

m
− g, (3)

where fz is the vertical component of the GRF. The horizontal
dynamics are instead obtained as:

€xc � λ xc − xz( ) (4)
€yc � λ yc − yz( ), (5)

where

λ � €zc + g

zc − zz
� fz

m zc − zz( ) (6)

represents the (variable) squared natural frequency of the
pendulum.

Together, Eqs 3–5 constitute the dynamic model of our
system. We consider as control inputs the horizontal ZMP
components xz, yz, and the vertical GRF fz, while the profile of
the vertical ZMP component zz is assumed to be uniquely
determined3 once the footstep plan is specified (see Section 5.1).

Note the triangular structure of our model: the vertical
dynamics (3) are independent of the horizontal dynamics
(4–5). Once fz is chosen, the evolution of zc is determined, and
the same is true for λ; at this point, the horizontal dynamics can be
interpreted as a linear time-varying system. We will exploit this
fact when designing our MPC controller.

The assumption that fz is a control input requires that at least
one contact with the ground is active. During flight phases, which
are an integral part of a running gait, the GRF is identically zero.
Setting f = 0 in (1) gives

€pc � g, (7)
indicating that the motion of the CoM is entirely controlled by
gravity. Note that Eq. 7 coincides with (3–5) when fz = 0.

4 PROPOSED APPROACH

For a humanoid robot moving in a world of stairs, we wish to
design a control scheme for replicating as closely as possible an
assigned footstep plan. In general, this plan will consist of a
sequence of candidate footstep poses (3D positions and
orientations) with specified timings. In addition, the plan
also specifies for each step a reference value for the CoM
height relative to the ZMP, and whether the step itself
should be performed by walking or running. A simple
algorithm to compute such a footstep plan will be discussed
in Section 6.

A block scheme of the proposed approach is shown in
Figure 3. The footstep plan is the input to the IS-MPC
(Intrinsically Stable MPC) block, which consists of two
sequential stages. The first is a quadratic program (QP-z)
where fz in (3) is chosen over a certain control horizon to
generate a vertical CoM trajectory which tracks the reference
height as closely as possible. As a byproduct, the corresponding
values of λ can be computed via (6) thanks to the triangular
structure of the VH-IP model. At this point, it is possible to enter
the second stage, which is another quadratic program (QP-xy)
over the same control horizon, where xz, and yz in (4–5) are
chosen and the footsteps are adapted to generate a horizontal
CoM trajectory xc, yc resulting in a gait which is both dynamically
balanced and internally stable. A qualitative representation of the
trajectories produced by each stage is shown in Figure 4, with
reference to a typical example.

FIGURE 1 | Left: In a world of stairs, where all contact surfaces are parallel to the ground, the admissible ZMP regionZ in double support is an oblique prism. Right:
The moving constraint region (blue) is a horizontal slice of Z (yellow) that slides between two consecutive footsteps (see Section 5.1).

FIGURE 2 | The VH-IP model in the x-z plane. Forces acting on the robot
are shown in red.

3An alternative (Zamparelli et al., 2018) is to choose zz as a control input in such a
way that λ is constant. The approach adopted in this article is less constraining in
terms of the CoM trajectories.
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The generated 3D CoM trajectory, along with an appropriate
trajectory of the swing foot4, is sent to a kinematic control block
where joint commands are computed using standard
pseudoinversion techniques.

5 IS-MPC FOR 3DWALKING ANDRUNNING

In this section, we will describe in detail the IS-MPC scheme for
3D walking and running based on the VH-IP model of Section 3.

The scheme works in discrete time over time intervals of
duration δ. A sampled variable at tk will be denoted by the k
superscript, for example, pz(tk) � pkz. The control inputs of
model (3–5), namely the horizontal components of the ZMP
(xz, yz) and the vertical GRF fz, are assumed to be constant over
the duration of a single interval, that is, xz(t) � xk

z, yz(t) � yk
z,

fz(t) � fk
z for t ∈ [tk, tk+1).

To simplify the exposition, we will assume that all footsteps in
the plan have the same orientation, taken without loss of
generality to be the same of the x axis. This has the effect of
decoupling the motion along the sagittal and coronal plane,
making it possible to present the method for the x component
only, with the understanding that a similar reasoning holds for
the y component, except when specified. However, it is relatively
easy to extend the proposed method to the case of variable
orientation. When the orientation of the footsteps is not
constant, the x and y components are coupled by a rotation
matrix. As a consequence, a single QP problem involving
both x and y components of the ZMP must be formulated,
which however remains linear-quadratic provided that the
orientation is not a decision variable in the QP, as shown in
(Scianca et al., 2020).

At each time tk, the IS-MPC block receives the current footstep
plan, that is a sequence of footstep timings (t1s , . . . , tFs ) and
positions (x̂j

f, ŷ
j
f, z

j
f), for j = 1, . . . , F, over a preview horizon

of duration Tp = P · δ (see Figure 5). Each footstep is
accompanied by a reference height hj of the CoM relative to
the ZMP, as well as information on whether the robot must
reach the next footstep by walking or running. Note that the

horizontal footstep coordinates (x̂j
f, ŷ

j
f) are actually candidates

which may be adapted by IS-MPC, while the vertical
coordinates zjf cannot be changed, each being the height of
the corresponding ground patch. The generic step is composed
by a single support phase, starting at tjs and having duration Tj

ss,
followed by a double support or flight phase (depending on
whether the plan specifies walking or running) for the
remaining duration tj+1 − tj − Tj

ss. The number of footsteps F
in the preview horizon will depend on the duration of each step.

On the basis of the current footstep plan, IS-MPC computes a
3D CoM trajectory and an adapted set of footsteps over a control
horizon5 Tc = C · δ, with Tc ≤ Tp (see Figure 5). As mentioned in
the previous section, this is obtained via two sequential stages,
QP-z and QP-xy. Both these programs hinge upon the definition
of a suitable ZMP constraint for balance, which will therefore be
introduced next.

5.1 Moving ZMP Constraint
As discussed in Section 2, the robot is dynamically balanced if the
ZMP is inside the convex hull Z of the contact surfaces, which is
an oblique prism in our world of stairs. Expressing this constraint
in double support would involve products of decision variables,
thus resulting in a nonlinear constraint. In order to preserve
linearity, we employ amoving constraint (Aboudonia et al., 2017):
the ZMP must belong to a fixed-shape region (the footprint)
which slides between consecutive footsteps during double
support and coincides with a footstep during single support.
In other words, this region is a horizontal slice of the prism, see
Figure 1.

The center of the moving constraint region is denoted by
pmc � (xmc ymc zmc)T and is expressed as a linear function of the
footstep positions:

FIGURE 3 | A block scheme of the proposed approach.

4For compactness, we do not discuss in detail the module which provides the swing
foot trajectory. It uses polynomial functions whose endpoints are adjusted in order
to match the footstep positions, for example, see (Scianca et al., 2017).

5Having two different horizons for planning and control is a common occurrence,
as the window over which the planner operates is generally independent of the
window over which the MPC optimizes. In fact, the first can range from a few steps
up to the total duration of the locomotion task, while the second is usually much
shorter in order to make the problem computationally tractable online.
Furthermore, as shown in Scianca et al. (2020), having Tc < Tp is necessary to
achieve recursive feasibility, as the information in the preview horizon is used to
mitigate the effect of the limited control horizon on the stability of the generated
trajectories.
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pmc t( ) � ∑F
j�0

αj t( )pjf, (8)

where the αj(t)’s are piecewise-linear functions of time, ranging
between 0 and 1 and such that ∑F

j�0αj(t) � 1, and pjf �
(xj

f yj
f zjf)T denotes the position of the j-th footstep. For the

sake of compactness, here, we omit the expression of αj(t), but we
report a visual representation in Figure 6.

Note that, in our formulation, the moving constraint region is
planar. Thus, the vertical coordinate zz of the ZMP must at all
times coincide with zmc, which is uniquely determined based on
the footstep plan. In fact, Eq. 8 entails that zmc only depends on
the vertical coordinates of the footsteps, which are fixed and
cannot be modified by IS-MPC.

5.2 Vertical QP
The goal of QP-z is to generate the vertical CoM trajectory. The
prediction model is given by (3), with the decision variable fz
being piecewise-constant over intervals of duration δ:

€zc � fk+i
z

m
− g for t ∈ tk+i, tk+i+1[ ). i � 0, . . . , C − 1.

In order to avoid slipping while walking, the GRF must
satisfy a condition of sufficient friction, commonly expressed
through a friction cone (Ahn and Cho, 2021). Enforcing this
directly as a constraint, however, would introduce a nonlinear
coupling between the vertical GRF and the horizontal CoM

accelerations. To avoid this, we impose the simplified
constraint

fk+i
z ≥fmin

z , (9)
where fmin

z is a value of the vertical GRF that provides sufficient
friction to avoid slipping. During single support, this can be
computed by using the following relationship based on a simple
Coulomb friction model:

fmin
z � m

μ
amax,

where μ is the friction coefficient and amax � max
������
€x2
c + €y2

c

√
is the

maximum horizontal acceleration of the CoM, which can be
computed in a simulated environment over a number of trials. In
practice, it is observed that this value is also appropriate in double
support phases.

In correspondence of flight phases (the robot is running),
constraint (9) is replaced by

fk+i
z � 0 (10)

in compliance with model (7).
Collect all decision variables in a vector

Fk
z � fk+1

z . . . fk+C−1
z( )T

along with the predicted state variables

_Z
k

c � _zkc . . . _zk+C−1c( )T Zk
c � zkc . . . zk+C−1c( )T

and reference values for the absolute CoM height

Zk,p
c � zkz + hk . . . zk+C−1z + hk+C−1( )T. (11)

In the latter, zk+iz is the vertical coordinate zmc of the center of the
moving constraint region (see the end of Section 5.1), while hk+i

is the reference CoM height relative to the ZMP as specified by the
current footstep plan.

QP-z is formulated as

min
Fkz

‖Zk
c − Zk,p

c ‖2 + αz‖ _Zk

c‖2 + βz‖ΔFk
z‖2

subject to:
• constraint(9), for each interval [tk+i, tk+i+1] where the robot is walking
• constraint(10), for each interval [tk+i , tk+i+1] where the robot is running,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩FIGURE 5 | A schematic visualizing the time discretization as well as the
two horizons used in the scheme.

FIGURE 4 | Left: a qualitative representation of the final trajectories after QP-z is solved in an example case. Here, the reference CoM/ZMP distance is kept constant
for the initial 3 steps and then lowered in order to pass below an obstacle. Right: a qualitative representation of the trajectories generated after QP-xy is solved.
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where αz, βz are positive weights. The first term of the cost
function takes care of tracking the reference CoM height,
while the second term penalizes sudden height variations. The
last term is included to reduce the difference between consecutive
samples of the vertical GRF, so as to generate a smoother GRF
profile.

As discussed in Section 4, the vertical GRF produced in output
by QP-z is not directly applied to the system. Instead, the associated
vertical CoM trajectory will be sent to the kinematic controller and
converted to suitable joint commands for the robot.

5.3 Horizontal QP
The goal of QP-xy is to complete the generation of the CoM trajectory
with the horizontal components. Thanks to the assumption that all
footsteps have the same orientation, QP-xy itself can be split into two
decoupled programs QP-x and QP-y. We will present in detail the
formulation of QP-x, with the understanding that QP-y is formally
identical except when explicitly noted.

When the robot is walking, its CoM obeys the horizontal
dynamics (4–5), where the time-varying λ should be computed
via (6) using the vertical CoM trajectory generated by QP-z. In
particular, we can sample-and-hold λ(t) to obtain a piecewise-
time-invariant prediction model:

€xc � λk+i xc − xz( ) for t ∈ tk+i, tk+i+1[ ), i � 0, . . . , C − 1,

(12)
where

λk+i � €zk+ic + g

zk+ic − zk+iz

.

In time intervals where the robot is running, its CoM obeys the
flight-phase dynamics (7), and thus the prediction model
becomes

€xc � 0,

which, as already noticed, is equivalent to setting λk+i = 0 in (12).
QP-x will enforce five kinds of constraints, namely: ZMP

constraints, ground patch constraints, footstep kinematic
constraints, swing foot constraints, and finally a special
stability constraint.

5.3.1 ZMP Constraints
Assume6 the footprints to be rectangular regions with dimensions
dz,x and dz,y. Following the discussion in Section 5.1, in a generic
time interval we guarantee balance by confining the ZMP to a
moving constraint region having the same shape:

−1
2

dz,x

dz,y
( )≤ xk+i

z

yk+i
z

( ) − xk+i
mc

yk+i
mc

( )≤
1
2

dz,x

dz,y
( ), (13)

where the coordinates (xmc, ymc) of the moving constraint region
are given by (8).

5.3.2 Ground Patch Constraint
To maintain linearity of the constraints, we do not allow footstep
adaptations that would move the footstep to a ground patch
located at a different height from that of the candidate footsteps.
For this reason, we enforce the following constraint:

xj
f, y

j
f( ) ∈ Pconv x̂j

f, ŷ
j
f( ) ⊖ Pfoot, (14)

wherePconv(x, y) is a convex region that includes point (x, y) and
is contained in a single ground patch, ⊖ denotes a Minkowski
difference (Montejano, 1996), and Pfoot �
{(x, y): |x|≤ dz,x/2, |y|≤ dz,y/2} is a rectangular region having
the same dimensions of the footprint, see Figure 7. It is clearly
beneficial to choose Pconv(x, y) as large as possible.

In this article, we assume the full knowledge of the
environment and therefore the above computation can
also be performed offline. For algorithmic solutions to this
problem see, for example, (Deits and Tedrake, 2014; Deits and
Tedrake, 2015).

5.3.3 Kinematic Constraints
The third type of constraint ensures that footsteps are placed so as
to be kinematically realizable by the robot. This means enforcing
a box constraint on the step length:

xj
f − xj−1

f

∣∣∣∣∣ ∣∣∣∣∣≤ da,x zj−1f , zjf( )
2

, yj
f − yj−1

f ± ℓ

∣∣∣∣∣ ∣∣∣∣∣≤ da,y zj−1f , zjf( )
2

,

(15)
with da,x(zj−1f , zjf) and da,y(zj−1f , zjf) denoting the dimensions of
the admissible region along x and y, ℓ is an average coronal
displacement between consecutive footsteps, and the plus/minus
signs alternates between left and right footsteps. Note that
da,x(zj−1f , zjf) and da,y(zj−1f , zjf) are assumed to be functions
of zj−1f and zjf because they should depend on the difference
in height between the two corresponding patches. Intuitively,
climbing higher stairs limits the horizontal leg extension; we
encode this idea by letting

FIGURE 6 | The profile of functions αj(t) used to express the center of the
moving constraint region, for a case with F =2. In this example, α0(t) relates the
center of the moving constraint to the position of the current support foot,
while α1(t) and α2(t) relate it to the position of two predicted footsteps.

6The choice of rectangular regions simplifies the exposition, but the reasoning can
be generalized to any convex shape.
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da,x zj−1f , zjf( ) � 1 − σ
|zjf − zj−1f |
Δzmax

f

⎛⎝ ⎞⎠d0
a,x,

da,y zj−1f , zjf( ) � 1 − σ
|zjf − zj−1f |
Δzmax

f

⎛⎝ ⎞⎠d0
a,y,

where σ ∈ (0, 1), Δzmax
f is the maximum height variation that the

robot can realize, and d0a,x, d
0
a,y are the dimensions of the

admissible region on planar ground. Note that (15) is the only
constraint whose expression differs between QP-x and QP-y, due
to the inclusion of the lateral displacement ℓ.

5.3.4 Swing Foot Constraint
To prevent the leg joint speed from exceeding a feasible range
during the swing foot motion, we enforce the following swing foot
constraint (Herdt et al., 2010)

xk
sw − x1

f

∣∣∣∣∣ ∣∣∣∣∣≤ t0s + T0
ss − tk( ) vmax

sw , (16)
where t0s is the starting time of the current step, T0

ss the single
support duration and the quantity (t0s + T0

ss − tk) represents the
remaining time to complete the current single support phase.
This linear constraint prevents infeasible leg motions for the
humanoid by increasingly limiting the distance of the next
footstep x1

f from the current swing foot position xk
sw as the

foot is landing. The velocity bound term vmax
sw can be computed

from the maximum foot Cartesian velocity that the robot can
realize. A similar constraint must be enforced for the y
component.

5.3.5 Stability Constraint
All models of humanoid robot dynamics have an underlying
unstable behavior, due to the balancing nature of these systems.
As a consequence, keeping the ZMP inside the support polygon
is not sufficient to generate a successful gait. In fact, a perfectly
acceptable ZMP trajectory could be associated with a
diverging CoM trajectory, making the resulting motion
infeasible for the robot in practice. The goal of this section is
to derive a constraint capable of guaranteeing the internal
stability of the scheme, that is, keeping the CoM trajectory
bounded with respect to the ZMP.

In previous works (Scianca et al., 2016; Scianca et al., 2020), we
approached the above problem by enforcing a stability condition
for the LIP model, in which zc − zz is assumed to be constant. Let
us consider the same model as a starting point:

€xc � λLIP xc − xz( ), (17)
where λLIP = g/(zc − zz) is constant. Using the new coordinate

xu � xc + _xc���
λLIP

√ , (18)

the unstable dynamics is isolated and expressed as:

_xu �
���
λLIP

√
xu − xz( ), (19)

with
����
λLIP

√
the natural frequency of the equivalent pendulum.

The instability of system (17) implies that, for a generic ZMP
trajectory, xu would diverge with respect to xz, even if the ZMP is
inside the support polygon. However, at time tk, the system can be
initialized in such a way that the free evolution of (19) exactly
cancels the component of the forced evolution that would diverge
with respect to xz, allowing the CoM trajectory to remain
bounded with respect to the ZMP. This special initialization
depends on the future ZMP trajectory, and is identified by the
following proposition.

Proposition 1. Assume that |xz (t′) − xz(t)| ≤ a + b (t′ − t), ∀t′ ≥ t,
for some a, b > 0, and that

xu tk( ) �
���
λLIP

√ ∫∞

tk

e−
���
λLIP

√
τ−tk( )xz τ( )dτ, (20)

then, system (17) is internally stable, that is, xc is bounded with
respect to xz:

∃M> 0: xc t( ) − xz t( )| |≤M, t≥ tk.

Proof. See Supplementary Appendix S1.
The first hypothesis in this proposition requires that the future

ZMP trajectory is bounded by a linear function. This allows the
ZMP to be discontinuous, but it does not allow arbitrarily large
skips. Note that this requirement is in our case always satisfied
due to the presence of the kinematic constraint. In fact, a
bounding linear function for the future ZMP can easily be
derived by considering the maximum allowed step size and
the step duration. We omit however the details of this
calculation as it is fairly tedious, and the specific expression of
this bound offers no additional insight.

This result is not directly applicable to the present setting,
because system (12) is time-varying and therefore the coordinate
change (18) does not actually isolate the unstable dynamics. To
recover a favorable situation, we will assume in our prediction
model that λk+i = λLIP for t ≥ tk+C, consistently with the fact that
the control horizon does not extend beyond tk+C. This is
equivalent to defining a modified prediction model alternative
to (12) given by

€xc � λk+i xc − xz( ) for t ∈ tk+i, tk+i+1[ ), i � 0, . . . , C − 1
λLIP xc − xz( ) for t≥ tk+C,

{
(21)

FIGURE 7 | A visual representation of the convex regions used in the
ground patch constraint.
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with λLIP � g/(xk+C
z + hk+C). Note that (21) is identical to the

time-varying (12) system up to the horizon tk+C and becomes
time-invariant after that.

For system (21) we can formulate a stability condition, as
expressed by the following:

Proposition 2. Assume that |xz (t′) − xz(t)| ≤ a + b (t′ − t), ∀t′ ≥ t,
for some a, b > 0, and that the current state (xk

c , _x
k
c ) satisfies

GΦ tk+C, tk( ) xk
c

_xk
c

( ) + ∫tk+C

tk

GΦ tk+C, τ( )B τ( )xz τ( )dτ � xk+C
u ,

(22)
where G � (1 1/

����
λLIP

√ ), the terms Φ(tk+C, t) and B(t) are
respectively the transition and the inputmatrix for system (12), and

xk+C
u � ���

λLIP
√ ∫∞

tk+C
e−

���
λLIP

√
τ−tk+C( )xz τ( )dτ. (23)

Then, system (21) is internally stable, that is, xc is bounded
with respect to xz:

∃M> 0: xc t( ) − xz t( )| |≤M, t≥ tk.

Proof. System (21) is equivalent to system (17) for t ≥ tk+C.
Hence, Prop. 1 states that if xk+C

u is given by (23), then the
subsequent evolution of xc will be bounded with respect to xz. On
the other hand, it is xk+C

u � G (xk+C
c _xk+C

c )T, with
xk+C
c

_xk+C
c

( ) � Φ tk+C, tk( ) xk
c

_xk
c

( ) + ∫tk+C

tk

Φ tk+C, τ( )B τ( )xz τ( )dτ.

The thesis follows immediately.

Condition (22) is noncausal, as it depends on the entire future
ZMP trajectory. To find a causal condition we proceed, similarly
to (Scianca et al., 2020), by conjecturing an anticipative tail, that
is, a ZMP trajectory ~xz(t) for t ∈ [tk+C,∞), on the basis of the
available preview information from the footstep plan. In
particular, this trajectory coincides with the center of the
future moving constraint region

~xz t( ) � xk+i
mc for t ∈ tk+i, tk+i+1[ ), i � C, . . . , P − 1

xk+P
mc for t ∈ tk+P,∞[ ),{

where xk+i
mc is computed from (8). At this point, one obtains a

causal version of (22) by replacing xz with ~xz in (23), obtaining

GΦ tk+C, tk( ) xk
c

_xk
c

( ) + ∫tk+C

tk

GΦ tk+C, τ( )B τ( )xz τ( )dτ

� ���
λLIP

√ ∫∞

tk+C
e−

���
λLIP

√
τ−tk+C( )~xz τ( )dτ. (24)

To convert this causal condition into a constraint, it is
necessary to express the integral in the left hand side in terms
of the MPC decision variables, that is the samples of the
piecewise-constant ZMP. This requires explicitly stating the
form of the state transition matrix Φ(tk+C, t) and the input
matrix B(t). In particular, it is sufficient to specify these terms
at each sampled time instant tk+i along the control horizon,

recalling that their expression will vary depending on whether
tk+i belongs to a support or a flight phase. The state transition
matrix from tk+i to tk+C is given by:

Φ tk+C, tk+i( ) � ∏C−1
j�i

Φk+j i � 0, . . . , C − 1,

where in support and flight phases we have, respectively,

Φk+j �
cosh

����
λk+j

√
δ( ) sinh

����
λk+j

√
δ( )����

λk+j
√

sinh
����
λk+j

√
δ( ) ����

λk+j
√

cosh
����
λk+j

√
δ( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and Φk+j � 1 δ

0 1
( ).

Similarly, for the input matrix we have, respectively,

B tk+i( ) �
1 − cosh

���
λk+i

√
δ( )

−sinh
���
λk+i

√
δ( ) ���

λk+i
√⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ and B t( ) � 0

0
( )

in support and flight phases.
Substituting these into (24) leads to the stability constraint

G∑C−1
i�0

∏C−1
j�i

Φk+jBk+ixk+i
z � ���

λLIP
√ ∫∞

tk+C
e−

���
λLIP

√
τ−tk+C( )~xz τ( )dτ

− G∏C−1
i�0

Φk+i
xk
c

_xk
c

( ).

5.3.6 QP-x Formulation
Collect the candidate footstep coordinates over the control
horizon in vector

X̂
k

f � x̂1
f . . . x̂F

f( )T
and the decision variables in vectors

Xk
z � xk

z . . . xk+C−1
z( )T Xk

f � x1
f . . . xF

f( )T.
Moreover, define Xk

mc � (xk
mc . . . xk+C−1

mc )T as a vector
containing the x coordinate of the center of the moving
constraint region (8). Finally, define the ZMP increment
vector as ΔXz � (xk+1

z − xkz . . . xk+C
z − xk+C−1

z )T.
QP-x is formulated as:

min
Xk
z,X

k
f

‖Xz −Xk
mc‖2 + αx‖ΔXz‖2 + βx‖Xk

f − X̂
k

f‖2

subject to:
• ZMP constraints (13, x component), for j � 0, . . . , F
• ground patch constraints (14, x component), for j � 1, . . . , P
• kinematic constraints (15, x component), for j � 1, . . . , F
• swing foot constraint (16)
• stability constraint (22).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The first term of the cost function depends on all decision

variables, directly on the ZMP and indirectly on the footsteps
(through Xk

mc); its inclusion keeps the ZMP as much as possible
close to the center of the moving constraint region. The second
term minimizes ZMP variations in order to increase the
smoothness of the resulting trajectory. The third term aims at
realizing the candidate’s footstep sequence as closely as possible.
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An analogous problem QP-y is formulated for the y
component, the only difference being that the kinematic
constraint is given by the second expression in (15). Note that
the ZMP constraints are obviously not enforced in time intervals
belonging to flight phases; for the same reason, no ZMP decision
variables are associated with such intervals. The constraints on
the footstep placement are instead activated or deactivated
depending on the gait type (walking/running) and the specific
phase (single/double support, support/flight). Figure 8
recapitulates this alternation.

The first ZMP sample (xk
z, y

k
z) resulting from QP-x and QP-y

is used in the prediction model to compute the next sample of the
horizontal CoM trajectory (xk+1

c , yk+1
c ). Together with the result

of QP-z, this gives the complete sample of the CoM trajectory.
The first footstep position x1

f, y
1
f is instead used as target landing

position for the swing foot in the next single support phase. CoM
and swing foot trajectories are then tracked by the kinematic
controller.

We conclude this section with a comment regarding the
feasibility of QP-x and QP-y. Even if the stability constraint
impacts the feasibility of the scheme (a detailed analysis for the
planar walking case has been provided in Scianca et al. (2020)),
there can be situations in which other constraints may conflict.
For instance, reaching the assigned ground patch could conflict
with the kinematic constraints if a strong deviation from the
footstep plan has been previously required; in these situations, the
horizontal QP can become unfeasible. This is a limitation that can
be overcome by using a motion replanner rather than just relying
on the local footstep adjustment capabilities of the controller.

6 A VELOCITY-DRIVEN FOOTSTEP
PLANNER

This section describes a possible method for determining the
required inputs for the proposed scheme in response to a high-
level forward velocity command. We assume that the 3D map of
the environment, called “ elevationmap”, is known. In addition to
determining footstep placements and timing, we propose a simple
criterion to decide for each step whether it will be realized by
walking or running, and the corresponding reference CoM height
relative to the ZMP.

The basic idea is that a change in velocity should be reflected in
a change of both the spacing between the footsteps and their
timing (Scianca et al., 2020). The goal is, given a desired velocity v,
to determine a step length L and a step duration T such that L/T =
v. The method assumes that a triplet of cruise parameters (�v, �L, �T)
is available, where �v � �L/�T, with �L and �T denoting the typical step
length and duration for the robot under consideration (for
instance, the parameters of the default walking gait
implemented by the robot manufacturer).

A deviation from �v should have an effect both on the step
length and duration, which is expressed as:

v � �v + Δv � �L + ΔL
�T − ΔT.

By setting ΔL = αΔT with α > 0, one can derive an expression
for the step duration realizing v

T � �T
α + �v

α + v
,

which has to be divided into phases (single/double or support/
flight). Such division can be directly chosen based on typical
values for the ratio between phase durations in human walking
and running. As a general rule based on human biomechanics
(Novacheck, 1998), the double support duration should
constitute the 20–40% of the step duration. Although this
proportion should be inverted for flight phases during the run,
here we will use for simplicity the same proportion in running
gaits. The associated step length is easily calculated as L = vT.

This procedure outputs a larger L if a larger velocity v is
commanded. It stands to reason that shorter steps should be
realized by walking, whereas larger steps require running. In
practice one may identify a step length threshold Lmax and
command the scheme to generate a running step (mode =
run) when L > Lmax, and a walking step (mode = walk)
otherwise. Being this simple planner conceived for reference
forward velocity tracking, the candidate’s footsteps on the y
direction simply alternate with a fixed foot distance with
respect to the initial CoM position.

So far, a triplet (Lj, Tj, modej) has been generated for the j-th
step in the preview horizon, fromwhich it is immediate to compute
the horizontal positions (x̂j

f, ŷ
j
f) of the candidate footsteps. In

FIGURE 8 | Activation of the various constraints during a i) walking and ii) running step.
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order to generate the vertical part of the plan, we need to retrieve
from the elevation map the ground patch Pconv(x̂j

f, ŷ
j
f)

corresponding to each footstep. If the footstep is unfeasible (e.g.,
because it is not completely contained in the patch), it is simply
translated towards the previous footstep until feasibility is
recovered. More sophisticated rules can be introduced, for
example, enforcing a step with zero sagittal strides each time
the two footsteps are located at two different heights7.

Finally, we need to assign the reference CoM height relative to
the ZMP during the step, which will be used in (11). In particular,
we choose a constant reference value hj � �h throughout the gait.
This value can be modified if necessary, for example, to pass below
an obstacle by crouching, as will be shown in the next result sections.

7 SIMULATIONS

In order to validate the proposed approach, we now present
dynamic simulations on an HRP-4 humanoid robot in the
DART dynamic environment. The actual torque limits of the
platforms were not considered, as the primary objective here is
to demonstrate the dynamic stability of a physically simulated
robot performing dynamic gaits generated by our IS-MPC
scheme. It should be noted in the fact that at the time of
conducting this research, just a small percentage of the
currently available humanoid robots would be able to
perform dynamic running in a 3D environment, for example,
Atlas by Boston Dynamics or ongoing projects such as the MIT
humanoid (Chignoli et al., 2021) and Kangaroo by PAL
Robotics8.

In all the simulations the kinematic controller runs at 100 Hz,
while the vertical and horizontal QPs are solved using hpipm
(Frison and Diehl, 2020). The simulations use the following
parameters: sampling time δ = 0.01 s, control horizon Tc = 0.7
s, preview horizon Tp = 1.8 s, fmin

z � 114 N, dimensions of the
moving constraint region dz,x = dz,y = 0.08 m, dimensions of the
kinematically admissible region da,x = 1 m, da,y = 0.12 m, with
lateral displacement ℓ = 0.25 m. The cost function weights of QP-
z, QP-x and QP-y are, respectively, αz = βz = 10–5, αx = αy = 1, and
βx = βy = 104.

Clips of all simulations are included in Supplementary
Video S1.

7.1 Walking on Flat Ground With Variable
CoM Height
For this simulation, the ground is flat and therefore considered as a
single horizontal patch. The candidate footstep positions are equally
spaced by 0.15m along x, and displaced by ± 0.18m on y. Every step
lasts 0.7 s, divided in 0.5 s for the single support and 0.2 s for the
double support. The desired vertical CoM/ZMP displacement h
varies throughout the simulation. It is initially 0.7 m for the first
four steps, then is raised to 0.77m for four subsequent steps. At each
of the following five steps, it is progressively decreased by 0.02m until
reaching the final value of 0.58m.

The simulation results are reported in Figures 9, 10. The
stroboscopic motion of Figure 9 also shows the actual CoM
trajectory; note the tracking of the variable reference height. In
the first plot of Figure 10, we display the CoM and ZMP
trajectory in the (x, y) plane for the first eleven seconds of the
gait. The CoM trajectory is clearly bounded with respect to the
ZMP, proving the effectiveness of the proposed stability
constraint. The second plot reports the vertical GRF computed
by QP-z, which generates the variations of the CoM height. Note
its smooth profile which is due to the last term of the cost function
of QP-z. See the Supplementary Video S1.

7.2 Running on Flat Ground
For the running case, the spacing of the candidate footsteps along
x is increased to 0.3 m, and the step duration is now 0.3 s for the
single support phase and 0.15 s for the flight phase. At the start,
an initial walking step is performed in preparation for running.
The desired vertical CoM/ZMP displacement is kept constant at
h = 0.7 m. The arm swing is enforced by a dedicated arm
controller; its frequency is the same as the gait, while the
amplitude is empirically assigned, similar to what was done in
Kajita et al. (2002).

The results are shown in Figures 11, 12. The vertical CoMmotion
clearly exhibits the typical behavior observed in human
biomechanics (Blickhan, 1989; Novacheck, 1998), consisting
of the alternation between absorption and a generation phase:
absorption is characterized by a horizontal deceleration
and vertical descent of the CoM, while during the
generation phase the CoM accelerates horizontally and rises
in height until reaching an apex. Figure 12 shows that the
ZMP trajectory is discontinuous (consistent with the fact
that the ZMP is not defined during the flight phases) and
the CoM trajectory is bounded. The vertical GRF has a
smooth profile while presenting small jumps when starting
or concluding a support phase, due to constraints (9).
However, the last term in the cost function of QP-z pushes
the vertical GRF at the transition towards the minimum
admissible value, which in itself is quite low with respect to
the GRF peaks during running.

Overall, we were able to reach a maximum forward velocity of
1.25 m/s. In our opinion, this value is due to: i) the simplified
model and ii) the kinematic controller. The effect of the simplified
model could be alleviated by using a stabilizer based on the ZMP
feedback. As for the kinematic controller, this can be improved by
properly addressing the foot impact phase.

7This prevents continuous stair climbing and descending, resulting in a less fluid
but more robust gait. Such choice is quite common for experimental humanoid
platforms (Caron et al., 2019b).
8A practical method to validate the result of our scheme on an actual robotic
platform is to run a set of dynamic simulations. The generated motions can be
evaluated based on the joint torques necessary to realize them, which can be
directly obtained by querying the simulator. If the torques turn out to be excessive,
one can try to modify some of the parameters in order to find a set that allows to
produce a realizable motion (our results indicate that the duration of flight phases
and step length are the most critical).
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The results are illustrated in more detail in Supplementary Video
S1, in which we also included a push recovery simulation to further
show the versatility of the scheme. In this simulation, HRP-4 is
pushed twice by forces lasting 0.1 s of (50, 75, 0) N and (0, 75, 0) N,
respectively. By adapting the footstep positions the robot can
withstand the disturbances and proceed with the running gait.
The same pushes would destabilize the robot if step adaptation
was removed.

7.3 Walking and Running in aWorld of Stairs
In this simulation, the robot moves in a world of stairs. An
additional overhanging obstacle was placed along the path, which
requires the robot to lower its CoM in order to pass below it. The
footstep plan is generated by the planner described in Section 6,
where we have set α = 0.4, �T � 0.9 s, �L � 0.3m, and Lmax = 0.35 m.
The reference velocity v is initially chosen as 0.3 m/s and then
increased to 1.15 m/s after 16 s. The ground patches are assigned
offline based on the elevation map as well as the reference CoM
height, which is locally modified in order to let the robot pass
below the overhanging obstacle.

Simulation results are reported in Figures 13, 14. The
robot starts walking (mode = walk) with a step timing of

0.94 s (divided in 0.74 s for the single support phase and 0.2 s
for the double support phase) and a step length along the
sagittal direction of 0.28 m. When the reference velocity
changes, the step length increases by 0.48 m, triggering a
transition to running (mode = run); the corresponding
durations are 0.24 s for the single support phase and 0.2 s
for the flight phase. The sagittal velocity plot shows a
satisfactory tracking of the reference sagittal velocity, while the
CoM height follows the ground patch profile during both stair
climbing and running.

See the Supplementary Video S1.

8 EXPERIMENT

In order to validate the proposed scheme on a physical platform,
we tested the algorithm on the small humanoid OP3 by
ROBOTIS. The same parameters adopted for the HRP-4
simulations were used, except for the sampling time δ =
0.025 s (used both by the MPC and the kinematic controller),
fmin
z � 5 N, the dimensions of the moving constraint region, that

are set to dz,x = dz,y = 0.05 m, as well as those of the kinematically

FIGURE 9 | Walking on flat ground with variable CoM height: stroboscopic motion.

FIGURE 10 | Walking on flat ground with variable CoM height: CoM/ZMP trajectories (left) and vertical GRF (right).
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admissible region, that have been changed to da,x = 0.3 m, da,y =
0.05 m, with lateral displacement ℓ = 0.1 m.

The environment is composed of two ground patches, that is,
the floor on which the robot is initially standing and slightly
elevated ground. Along its path, the robot will encounter an
overhanging obstacle, which has to be avoided by lowering the
CoM. The footstep plan is generated with the following
parameters: α = 0.4, �T � 0.6 s, �L � 0.07 m, Lmax = 0.15 m. The
reference velocity is chosen as 0.12 m/s. The candidate step length
in the x direction is 0.07 m, while in the y direction the distance
between the footsteps is 0.09 m. The reference CoM height is set
to 0.22 m at the beginning of the experiment, lowered to
overcome the obstacle, and then increased again.

The algorithm runs on the robot onboard computer (INTEL
NUC with Intel Core i3-7100U 2 × 2.40 GHz processor and 8 GB
2133 MHz RAM) in real time. Each QP has a total of 28 decision
variables (Tc/δ = 0.7/0.025), while the number of constraints
varies depending on which are active at a particular time (see
Figure 8): QP-z always has exactly 28 constraints, while both QP-
x and QP-y oscillate around 60.

Snapshots of the experiment are reported in Figure 15. This
experiment validates the proposed scheme on a small-sized

humanoid, demonstrating its practical usability on a different
platform with respect to the HRP-4 adopted for the dynamic
simulations; see also the Supplementary Video S1.

9 RUNNING OVER TILTED SURFACES

The proposed method has been presented in the context of a
world of stairs, where all contact surfaces are parallel. In this
section, we show that it can be easily extended to the case of
running over tilted surfaces. Although it would be possible to
devise an extension for performing both walking and running
motions, considering the case of running simplifies the problem.
The reason is that, in a running gait, the robot is in contact with the
tilted ground with a single foot at a time, and there is no double
support phase. This is convenient because introducing double
support over tilted surfaces would require adapting the definition
of moving constraint to the case of nonparallel contact surfaces.

In Section 5.2 we considered friction by means of a constraint
on the vertical GRF (9). Avoiding slipping on tilted surfaces
requires higher friction because the tangential component of the
GRF must also compensate for the tangential component of

FIGURE 12 | Running on flat ground: CoM/ZMP trajectories (left) and vertical GRF (right).

FIGURE 11 | Running on flat ground: stroboscopic motion.
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gravity. In order to account for this, it is sufficient to increase the
minimum required vertical GRF by multiplying the right side of
(9) by an appropriate coefficient which depends on the maximum
slope of the ground. Since the environment is fully known, this
can also be done on a per-footstep basis, by increasing the
minimum GRF only when the foot is on a tilted surface,
resulting in a less conservative GRF profile.

In order to maintain a formulation that is as close as possible
to that presented in Section 5, we express the position of the CoM
and ZMP in a frame that has the same orientation of the tilted
patch (the z axis is the normal to the patch plane). In this frame,
the vertical CoM dynamics assumes the expression:

€zc � fz′
m

− gz′, (25)
and the horizontal dynamics become:

€xc � λ xc − xz( ) + gx′ , (26)
€yc � λ yc − yz( ) + gy′ , (27)

where gx′ , gy′ and gz′ correspond to the component of the gravity
vector in the tilted plane frame. This choice provides a model that
is structurally equivalent to (25–27), with the addition of the
horizontal gravity terms acting as known disturbances.

Below, we modify the gait generation scheme described in
Sections 5.2 and 5.3 by writing the prediction model based on

(25–27) and performing an indirect compensation of the
disturbance in the stability constraint (Smaldone et al., 2019).

In particular, the prediction model becomes:

€xc � λk+i xc − xz( ) + gx′ for t ∈ tk+i , tk+i+1[ ) i � 0, . . . , C − 1
λLIP xc − xz( ) + gx′ for t≥ tk+C,

{
(28)

while the corresponding stability condition is given by the
following result.

Proposition 3. Assume that |xz (t′) − xz(t)| ≤ a + b (t′ − t), ∀t′ ≥ t,
for some a, b > 0, and that the current state (xkc , _xk

c ) satisfies

GΦ tk+C, tk( ) xk
c

_xk
c

( ) + ∫tk+C

tk

GΦ tk+C, τ( )B τ( )xz τ( )dτ

� xk+C
u − ∫tk+C

tk

GΦ tk+C, τ( )Dgx′ τ( )dτ, (29)

where the disturbance matrix is D = (0 1)T. Then, system (28) is
internally stable, that is, xc is bounded with respect to xz:

∃M: xc t( ) − xz t( )| |≤M, t≥ tk.

Proof. Following the same steps of the proof of Prop. 2 for
system (28) and using (Smaldone et al., 2019)

FIGURE 14 | Walking and running in a world of stairs: reference and actual sagittal velocity (left), reference and actual CoM height (right).

FIGURE 13 | Walking and running in a world of stairs: stroboscopic motion.
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FIGURE 17 |Running over tilted surfaces. CoM/ZMP trajectories (left) and CoM height (right). The plots only refer to the portion of the simulation before and after the
two tilted surfaces (represented as rectangles in the CoM/ZMP plots). The black arrow represents the equivalent disturbance caused by the tangential component of the
gravity when stepping on the tilted patch.

FIGURE 16 | Running over tilted surfaces: stroboscopic motion.

FIGURE 15 | Snapshots from the experiment. OP3 walks forward and steps onto an elevated ground patch then lower its CoM to crouch in order to pass below an
obstacle. The cable attached to the robot’s back is used for power supply only and does not sustain the robot while walking.
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xk
u �

���
λLIP

√ ∫∞

tk

e−
���
λLIP

√
τ−tk( )xz τ( )dτ

− 1���
λLIP

√ ∫∞

tk

e−
���
λLIP

√
τ−tk( )gx′ τ( )dτ,

we get (29).

Condition (29) can be written as a stability constraint as
follows:

G∑C−1
i�0

∏C−1
j�i

Φk+jBk+ixk+i
z � ���

λLIP
√ ∫∞

tk+C
e−

���
λLIP

√
τ−tk+C( )~xz τ( )dτ

−G∑C−1
i�0

∏C−1
j�i

Φk+jDg′ ,k+ix − G∏C−1
i�0

Φk+i
xk
c

_xk
c

( ), (30)

and used in the horizontal QP whenever required in order to step
on tilted surfaces. Recall that the disturbance terms in (30) depend
only on the tilting angle of the inclined planes and this information
is assumed to be available from the footstep plan9.

9.1 Running Over Tilted Surfaces:
Simulation
In this simulation the robot must run in an environment with two
ramps (inclined by ± 8°) placed across the x path. A footstep plan
is generated in response to the input velocity v = 0.35 m/s, which
is switched to 1.1 m/s before the first ramp and then set back to
the initial value after the second. We adopted the following
parameters for the footstep planner: α = 0.4, �T � 0.7 s, �L � 0.3
m, Lmax = 0.35 m.

Results are shown in Figures 16, 17. The CoM/ZMP
trajectories, representing five steps of the running gait, highlight
the typical effect of the proposed form of indirect disturbance
compensation, consisting of a CoM trajectory that leans against the
effect of the perturbation introduced by the tilted surface.

10 CONCLUSION

We presented a gait generation algorithm that extends our IS-
MPC to both the case of 3D walking and running gaits. The
proposed scheme is articulated as a two-stage MPC, and features
a new stability constraint for the VH-IPmodel, ensuring bounded
CoM trajectories with respect to the ZMP. A simple planner
which provides the required input for the scheme is provided, as
well as an extension to the case of running over tilted surfaces.

Dynamic simulation on HRP-4 and an experiment on the OP3
humanoid are presented in order to validate the framework.

The strengths of the presented method can be summarized as:

• the effect of the CoM height is fully accounted for in the
balance condition, without the need to bound height
variations or approximating the horizontal dynamics;

• the resulting scheme is completely formulated as a set of
quadratic optimizations subject to linear constraints, which
allows for a very efficient MPC implementation, as
demonstrated by it running onboard on the OP3
humanoid robot;

• the stability constraint included in the formulation provides
a guarantee of bounded CoM/ZMP trajectories;

• the generated trajectories are very natural and compatible
with what is observed in human walking/running, as
reported by studies in biomechanics.

Future work will be aimed at extending the framework in
order to include features to achieve robustness, as well as the
integration of the scheme with a more sophisticated footstep
planner. Furthermore, the time-varying formulation of the
stability constraint can be abstracted from the specific
setting of variable height gait generation, and possibly
applied to a different scenario modeled as a time-varying
unstable system.
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