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Many robust state-of-the-art localization methods rely on pose-space sample sets that are
evaluated against individual sensor measurements. While these methods can work
effectively, they often provide limited mechanisms to control the amount of hypotheses
based on their similarity. Furthermore, they do not explicitly use associations to create or
remove these hypotheses. We propose a global localization strategy that allows a mobile
robot to localize using explicit symbolic associations with annotated geometric features.
The feature measurements are first combined locally to form a consistent local feature map
that is accurate in the vicinity of the robot. Based on this local map, an association tree is
maintained that pairs local map features with global map features. The leaves of the tree
represent distinct hypotheses on the data associations that allow for globally unmapped
features appearing in the local map. We propose a registration step to check if an
association hypothesis is supported. Our implementation considers a robot equipped
with a 2D LiDAR and we compare the proposed method to a particle filter. We show that
maintaining a smaller set of data association hypotheses results in better performance and
explainability of the robot’s assumptions, as well as allowing more control over hypothesis
bookkeeping. We provide experimental evaluations with a physical robot in a real
environment using an annotated geometric building model that contains only the static
part of the indoor scene. The result shows that our method outperforms a particle filter
implementation in most cases by using fewer hypotheses with more descriptive power.
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1 INTRODUCTION

Localization is an essential part of an autonomous mobile robot system. The absence of global
position sensors and the presence of map disturbances results in challenges that are specific for
indoor scenarios. There is a clear trend of deploying robots in indoor environments where they have
to be able to robustly deal with changing environments, such as restaurants (Shimmura et al., 2020),
hospitals (Cordis, 2020) or nursing homes (Dautenhahn et al., 2015). This raises the expectation of
robotic systems on multiple fronts. First, robots are expected to leverage geometric and semantic
information from existing sources, which are already available for many indoor environments, such
as semantic building information models. This prior knowledge is sensor-independent and can
constitute building geometry (walls, corners, columns, doors) or topological information such as
room numbers. Second, robots are expected to not only track their pose in a building, but to re obtain
their location quickly after failure or reset, without an operator intervening. In prior work, we
explored obtaining maps from industry standard building models which are already used to share
building data (Hendrikx et al., 2021). In this work we focus on global localization, proposing a
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method that deals with the ambiguity and uncertainty in the
environment on an association level. We show that exploiting
local structure first makes the localization outperform a gridmap-
based particle filter, while also making it inherently more
symbolic and thereby semantically insightful and configurable.

1.1 Requirements and Scope
We focus on indoor localization in common public
environments. The following requirements have led to this work:

• An existing global map must be available with high-level
features for the sensor that is being used, which are explicitly
linked to semantic instances of static indoor features.

• The robot system consists of an odometry sensor and a
sensor from which features can be extracted that can be
associated with the global map features.

• The robot must be able to recover its global location in the
environment by making explicit association assumptions,
while being robust against stationary unmapped objects.

The first requirement assumes that feature instances (e.g.,
walls, columns) are linked to sensor representations (e.g. lines,
corners) as described in Hendrikx et al. (2021). In this work we
use a system equipped with wheel encoder odometry and a
conventional 2D planar laser scanning device. We assume that
static environment features are represented well by straight or
circular geometries on an existing feature map.

1.2 Proposed Method
Our method localizes globally by first combining local sensor
features (geometric features such as lines, corners and circles)
from separate scans into a consistent local feature map. These
local features are then associated with global map features using
an association tree. The levels of this tree represent the local
features, and the nodes represent the possible association of the
local map feature with a global map feature. We evaluate
association likelihood based on a moving horizon strategy and
prune unlikely associations based on feature description and
spatial congruency, leading to a hypothesis tracking approach
where the sample space is that of data associations. Note that our
method is sensor-independent and well-suited to function with
different or multiple sensors modalities. Our methods deals with
unmapped objects on a feature association basis and does not rely
on a map containing all visible geometry. We assume that the
features on the global map are geometrically accurate and that

objects that have velocity do not resemble our static features. The
method is graphically depicted in Figure 1.

2 RELATED WORK

Dealing with multiple hypotheses, one can distinguish between
location-driven and feature-driven localization approaches as
remarked by Arras et al. (2003). Location driven approaches
maintain hypotheses using a sample set on a continuous space, or
use an a-priori selected topological graph in which the nodes
represent locations in the environment. On the other hand,
feature-driven approaches explicitly maintain hypotheses on
associations between features that are seen locally and features
on a map. The latter characterizes our method; however, relevant
prior work exists using both approaches which we will now
consider.

2.1 Hypothesis Tracking Methods
A reference work for our method is Arras et al. (2003), in which
the authors perform global localization in an environment
described by geometric (line and point) models. They
maintain a tree of local-to-global data associations together
with multiple extended information filters (EIF) to solve for
the map location of the robot. They employ both binary
constraints to check if feature pairs are metrically consistent
both locally and globally and, when possible, use rigidity
constraints to check the likelihood of a new pairing given the
location based on old pairings. Rather than a Bayesian approach,
they use an approach that designates hypotheses as equally
valuable options, and use a lack-of-fit measure only in their
duplicate removal strategy. They also use an explicit clutter
hypothesis and verify their approach in an experiment. He
and Hirose, (2012) expand on this work by introducing a
relation table that captures the coordinate independent local
structure of a map of line segments in a more efficient way.
They check the correspondence of line segments (congruency
under rotation and translation) on a local and a global map by
introducing a geometric relation comprising two lengths, an angle
and two relative distances between the segments. Using this
relation they propose depth-first constraint-based search in an
interpretation tree to find matching line segments for localization
without a prior pose being available, and account for an
unmapped item option (null features). Their work first applies
pair-wise constraints to balance the complexity of the search in

FIGURE 1 | A graphical depiction of the method we propose in this work. A single hypothesis is shown as an example.
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the tree and afterwards checks an alignment constraint of the total
map based on a least-squares solution. They limit the total
number of null features allowed in order to mitigate search
time, and mention that determining this parameter is
environment-dependent. The authors also use a topological
representation (e.g., hallway, room) of their environment with
annotated visible line segments for each location, in order to
restrict relation matches to simultaneously visible pairs. The
authors mention Multiple Hypothesis Tracking (MHT) but do
not expand on the details of their MHT implementation. They
provide a comparison of their method and Monte Carlo
Localization (MCL) in a lab environment with clutter objects
added and show increased performance. Our method draws
inspiration from certain aspects of the two mentioned works,
as we will elaborate on later. Other works for different sensor
modalities such as (Lutz et al., 2011) provide a camera-feature
based multi hypothesis approach that searches for feature
descriptor matches in a persistent database and then applies a
Kalman update to all possible matches. Matches are
Mahalanobis-distance gated and pruned based on the relative
number of observed landmarks with respect to other hypotheses.
Morris et al. (2014) take an approach using hypotheses on
submaps that are scored against the global map based on the
innovation they provide to the local odometry trajectory. They
use grid based representations and the generation of hypotheses is
not within scope of their work. Hong et al. (2017) use a nearest
neighbour filter and a computer simulation to show global
localization without unique landmarks. However, they assume
that they can initialize hypotheses by inverting the measurement
function to obtain a unique state which is not always possible. A
more recent reference work is (Gao et al., 2019) which focuses on
2D LiDAR global localization using structural unit encoding and
multiple hypothesis tracking. The authors mark certain scans
from their map as key scans and determine endpoint line features.
They then form a set of structural units, containing the relations
between line endpoints and line angles which is rotation
invariant. They then quantize this set using a soft encoding
scheme that does not require training on prior data. An
exhaustive search is then used to find matching poses from
candidate key scans. The authors then use a multi hypothesis
tracking approach where they let the matching poses be the
priors, and use the odometry as a likelihood measure to prune
unlikely hypotheses from the tree. They compare with the well-
known Adaptive Monte Carlo Localization (AMCL (Fox, 2003;
Thrun et al., 2005)) method and find improved results. However,
their method pre-processes the map based on existing scans,
while our method does not require existing scan data.

2.2 Data Association for Simultaneous
Localization and Mapping
Data association methods are important for Simultaneous
Localization and Mapping (SLAM), where they are required
for reliable loop closures. One method to deal with finding
associations is Random sample Consensus (RANSAC)
(Fischler and Bolles, 1981), which randomly selects pairings
and evaluates whether the resulting model parameters lead to

an acceptable amount of inliers. A large disadvantage is, however,
the limited control it provides over the search effort and the fact
that it is not guaranteed to find a set of hypotheses in acceptable
time. A more structured method is Joint Compatibility Branch
and Bound (JCBB) (Neira and Tardós, 2001; Shen et al., 2016). It
searches the so-called interpretation tree for the best
correspondence between a set of features extracted from
sensor data and the map. The method is more reliable than
nearest-neighbor association or pair-wise consistency evaluation,
as these methods do not take the correlation into account between
different observations from the same robot pose. JCBB is shown
to be more precise because it evaluates the compatibility of all
features seen from a current pose. While the tree structured
search of JCBB is similar to our approach, JCBB is not a
hypothesis tracking approach and as such does not evaluate
compatibility over a horizon of motion while maintaining
multiple viable pairings. This makes it unsuitable for global
localization where different locations appear similar. The use
of hypotheses over data associations has also been researched
extensively in the context of graph optimization frameworks, see
e.g., (Latif et al., 2014; Cadena et al., 2016a,b). In early works such
as (Thrun and Montemerlo, 2006) the authors discuss for a large
scale SLAM approach how earlier data associations can be
evaluated based on the error they induce on later data
associations. They provide a greedy correspondence test to
deal with the correspondence problem, but note that other
methods may be favourable. Other works such as Davey,
(2007) and Olson and Agarwal, (2013) focus on methods that
either use expectation maximization methods to iteratively search
for the data associations or they focus on back-end heuristic
methods such as switching variables and robust error models,
which allow recovery from false associations. These methods do
however generally not provide the multi-hypothesis output on a
semantic association level or are only applicable to tracking with a
good initialization. Another important work in robust
localization that also focuses on existing floor plans is
(Boniardi et al., 2019), where the authors show how to use
these floor plans as priors for localization and maintaining an
updated map based on a pose graph framework. However, the
authors do not focus on global localization in their work.

2.3 Particle Filter Methods
Particle filters deal with the problem of global localization by
covering the location state space with a discrete set of samples
(hypotheses) generated from a proposal distribution. They are
currently a popular method for representing hypotheses in the
pose space (see, e.g., Fox et al. (2003); Elfring et al. (2021); Thrun
et al. (2005)). The combination of particle filters with LiDAR
sensors is often considered a state-of-the-practice solution to
robot navigation in indoor scenarios. Not in the least because
easy-to-use reference implementations exist. A recent work on
global localization is (Aycard and Brouard, 2020), where the
authors add an initialization step to a particle filter that uses
indexes generated on the map to find suitable initial positions for
the particle filter. They show that this initialization step greatly
reduces the initial number of particles needed to let the robot
localize itself. The authors pre-compute a set of laser readings in a
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grid map for over a million positions and use a two-level index to
retrieve initial positions and orientations that are likely to match
the sensor reading.

2.4 Place Recognition Methods
Some of the methods mentioned such as Aycard and Brouard,
(2020) incorporated ideas from information retrieval. These
methods are often used with cameras and reference image
databases (see e.g., Barros et al. (2021)) and may be used to
speed up association initialization but are not exhaustive, and
may not work well with existing maps and LiDARs because of
lack of unambiguous local context. Furthermore, they often
require training on large data sets that are processed to
determine a vocabulary, and this is not readily available in
every environment. The methods also do typically not include
the motion of the robot to gather context or exploit the online
recursive nature of the localization process and are therefor
significantly different from our proposed method.

2.5 Contributions
The contributions in our work to the state of the art are the
following:

1. We group measurements into local features of type line, circle
and corner, resulting in a sparse and accurate local map that is
associated with the global map.

2. We assess the lack-of-fit using a horizon of these features that
includes the new candidate association, without resolving the
robot pose to a belief distribution.

3. We perform an experimental comparison with a commonly
used particle filtering method and discuss the trade offs.

In contrast to the works (Gao et al., 2019; Aycard and Brouard,
2020), which also perform global localization using 2D LiDAR,
we do not rely on grid maps or raw sensor data as a prior and as
such do not leverage data-driven heuristics. We specifically aim to
use object-based prior representations that can be obtained from
other sources as well (e.g. Hendrikx et al. (2021)) in the form of
vector maps. This makes or work more similar to Boniardi et al.
(2017); however, the authors do not focus on global localization
in their work. Finally, our work draws inspiration from Arras
et al. (2003); He and Hirose, (2012) as we consider similar map
representations and features. However, their work hypothesizes
on individual measurements and Arras et al. (2003) attaches
information filters to individual hypotheses. Furthermore, He
and Hirose, (2012) uses only line features and does not elaborate
on their hypothesis tracking mechanism. Our approach reduces
the data association space by first associating features locally, and
is more in line with how humans reason about localization (e.g.,
we merge local context from different viewpoints into local
features before deciding to relate observations to a map).
Furthermore, our framework employs a Bayesian strategy to
keep track of hypothesis likelihood. Finally, we compare our
work to a often used grid map based particle filter, where the grid
map only contains static geometry. The rationale behind this
comparison is that grid maps can be easily generated from prior
maps as well and provide access to the static geometry without

relying on features to be detected, which brings an important
trade-off to light. In addition to quantification of our method, we
also show conceptual advantages in the form of increased insight
in the associations of the method when compared to traditional
approaches. Our implementation is available in our repository.1

3 PRELIMINARIES

In this section we introduce preliminary concepts and explain the
rationale and assumptions that underlie our method. We
approach localization from a data association point-of view.
Our goal is to have correct associations from local
(i.e., sensed) feature measurements to features on the global
map. In general, these associations are dependent on the
global pose, and obtaining one from the other is straight
forward. We argue that the benefit of data associations is that
they form a finite discrete sample space that can indirectly
represent pose distributions efficiently that must otherwise be
approximated by samples. It is possible to calculate the belief over
global pose from associations (or vice versa) from the general
probability distribution:

max
Dz,M,Xm

P Dz,M,Xm|Z( ). (1)

Where Dz � {Dz
1 . . .D

z
nz } are the data associations of the nz

individual measurements Z � {z1 . . . znz } (for instance, bearing
measurements) with the nm features on the global map
M � {m1 . . .mnm }. This general representation allows to solve
over the data associations, robot poses in the map frame (Xm �
{X1 . . .Xnx}) andmap features simultaneously (assuming that the
global map is probabilistic). Evaluating (1) over both the
continuous variables and the association space Dz

1 ×/× Dz
nz is

generally unnecessary because of conditional independencies. In
our method, we first reduce the data association space by forming
a local feature map Y, exploiting the fact that measurements can
be combined locally into features first and are correlated.
Furthermore, we assume that the global map that is available
is accurate and that the relative local map coordinates are
accurate enough over short horizons of measurements to be
independent of the global map, given the measurements. Let Y
be the local map features (e.g., the coordinates of point
landmarks) corresponding to multiple measurements, and X
be the local robot poses. We assume that the maximimum
a-posteriori (MAP) estimate:

Xp,Yp � arg maxP X,Y|Z( ), (2)
in a local frame ℓ, can be used to estimate the data associations Dy

of the local features with the global map. Here we assume that the
data associations in the local map can be reliably made. The
resulting space of Dy is much smaller than Dz. The remaining
problem then becomes to estimate the data associationsDy given
the local map estimate:

1https://gitlab.tue.nl/s135700/semantic_graph_localization
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max
Dy,Tm

ℓ

P Dy, Tm
ℓ
|Yp,M( ). (3)

Where the local map estimate horizon is chosen small enough
and Y* is recomputed for different evaluated patches, such that
the assumption of local metric accuracy is met. The pose Tm

ℓ

denotes the registration of the local map with the global map,
which may be of interest depending on the type of motion
control that is used (i.e., local feature-based motion control or
global path following). Because we focus on global localization,
we explicitly choose to solve a local factor graph only, and do not
introduce the global priors in the estimate. This results in only a
single factor graph having to be solved as opposed to multiple.
Furthermore, when global localization is the current robot task,
motion actions and local sensing can (and should) be performed
in such a way as to achieve reliable local estimates (e.g., slow
driving and conservative detection policies).

3.1 Local State Estimation
The state of the local feature map is represented using primitive
features which are estimated together with robot poses using a graph-
based optimization, as is common in SLAM literature. We denote the
robot pose at time t as xℓt � [xt,yt, θt]T in a local frame ℓ. The pose of
this frame is arbitrary (usually the starting location of the robot), and is
only used for intermediate representation of numeric coordinates.We
represent the state of local landmarks by the variables yℓi which are
measured by feature measurements zj from the robot poses. If we
denote the current optimization horizon of robot poses and landmarks
by the setsX andY, and the relevant set ofmeasured variables byZ, we
can write the maximum a-posteriori estimate of the these variables
given the measurements as:

P X,Y|Z( )∝P Z|X,Y( )P X( )P Y( ) (4)
Where we have assumed independence of measurements. The

measurement likelihood P (Z|X, Y) in the above equation is
encoded by factors in a factor graph. These factors take the form of
nonlinear measurement functions hj of the state where the
uncertainty is represented by additive zero-mean multivariate
Gaussian error, taking the form:

P zj|Xj,Yj( ) �‖ hj Xj,Yj( ) − zj‖Σj (5)
Where ‖ ·‖Σj denotes the Mahalanobis distance, using the

measurement covariance matrix Σj. A nonlinear least-squares
problem is obtained by taking the log of the product of factors,
leading to the formulation:

logP X,Y|Z( )∝ −∑K
j�0

eTj Σ−1
j ej (6)

where we use ej = hj (Xj, Yj) − zj for all K measurements. The
resulting problem is a minimization over the negative log
likelihood, resulting in the non-linear least squares formulation:

min
X,Y

∑K
j�0

eTj Σ−1
j ej (7)

where we assumed uninformative priors, leaving only factors in
the optimization. The resulting maximum a-posteriori (MAP)

estimate contains the most likely local map and robot poses
given the measurements. Here we assume that all data
associations between local features and their measurements
are correct and can be reliably made. It is often possible to
design features and feature detectors with enough saliency and
discrimination such that this assumption holds locally, given
proprioceptive sensing that is relatively accurate over short
distances. We use the GTSAM library to perform the
optimization.

3.2 Geometric Primitives
We use the term measurements to describe the primitive sensor
features that are extracted from raw sensor data and that are
associated with features on the local map. We refer to the latter
as local map features which can be associated with multiple
measurements, and their geometry must be consistently
inferred from the sensor features belonging to the
measurements. An example of a local map feature can be a
circle, which is associated with multiple circle sensor features
from different LiDAR scans. Measurements also contain
spatial information about the location of the features with
respect to the robot. These are in the form of range/bearing/
pose measurements. In this work we use three geometric
primitives that form the basis for landmarks in our
localization approach: line segments, corners and circles.
Note that these features resemble three general geometric
constraints on the state of the robot given the
measurement, by reducing the likely state to either a line
segment, a pose or a circle around a point measurement. These
feature types can therefore be generalized to other sensors as
well. A line segment is parametrized by two points which

FIGURE 2 | A small locally consistent map of line and corner features,
that has been obtained by locally associating and merging feature
representations and solving the factor graph optimization problem after each
new LiDAR scan is obtained. The robot poses are shown in blue with the
current pose in black. measurement associations are shown as grey lines and
current LiDAR points in red. The line measurements include a normal to
indicate their visible side. A corner detection is shown in translucent red when
not enough measurements have been associated with it (candidate
detection). The features get assigned unique string identifiers.
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represent the begin and end of the line segment. A partial line
segment is any combination of two points that are contained
within a line segment, as is often the case for
LiDAR measurements. A corner is modeled by a polyline
consisting of three points, i.e., two line segments sharing a
common point. Note that a LiDAR allows to detect
approximate end-points of lines, by evaluating whether the
neighboring range extends beyond the line segment or is
visually obscured by something closer. Finally, a circle is
modeled by a center point and a radius. An example of a
local map created from sensor data can be seen in Figure 2.
We will now proceed while assuming that such a local map is
available. A more detailed discussion on the mechanisms used
to create the local map has been deferred to Appendix A.

4 LOCALIZATION APPROACH

In this section we will explain our global localization method. We
will first elaborate on how we maintain our local map in relation
to our global objective and then introduce the global association
approach using a hypothesis tree.

4.1 Local Mapping
The map that we maintain locally is updated for each new
sensor feature. Once a new sensor feature is extracted, the
map is updated using the approach described in
Algorithm 1.

Algorithm 1. The algorithm used to update the local map
features when a new set of sensor features has been extracted
from a laser scan.

The sensor feature extraction is triggered by a distance
monitor based on wheel odometry and the latest available
sensor reading is combined with a time-stamp interpolated
version of the odometry encoder reading. The updating
routine (Algorithm 1) shows how a sensor feature is first
checked for existing associations with the local map. Here, the
functions eq_type () and eq_dim () check if the feature has the
right type and dimension (e.g. a circle with similar radius). The
function within_thres () checks if the feature is close enough to be
associated, where we use a Euclidean distance. If no such

association exists, a new local map feature is instantiated. For
this purpose, we introduce the notion of a measurement set Gi

which contains a local map feature and all measurements
associated with it2.

4.2 Global Association Tree
We maintain hypotheses over the space of data associations
between the local and global map. These hypotheses will be
maintained based on explicitly configurable assumptions, while
a Bayesian approach is used to update scores for hypotheses.
Consider a snapshot of a given local map with a feature yi ∈ Y. We
define the association variable Di as follows:

Di �
d1
i , yi originates partly( ) from m1

. . .
dn
i , yi originates partly( ) from mn

dp
i , yi originates from unmapped object

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

Here, unmapped object refers to something that is not on the
global map. We explicitly mention partly because we allow cases
where the global feature mj is responsible for only part of the
geometry of yi, as long as the effective constraints is the same
(e.g. a wall that appears extended by an object from a certain
viewpoint). We will now consider how the association variables
form the association tree that we will refer to in the remainder of this
work. Having a local map available, we evaluate Eq. 3 by starting
with the first feature and expanding the tree for each consecutive
feature. The levels of the association tree coincide with the local map
feature indices, i.e., nodes hij on level i pair yi with a global map
feature. The leaf nodes of the tree represent an association
assignment of all local map features up to yi, obtained by
following the parents par (hij) of the nodes upwards. The leaf
nodes thereby form the hypotheses under consideration. Each
node is thus associated with a local feature and its measurement
set, a global feature associated with it and a parent node3. Nodes on a
single level i can associate a local map feature yiwith the same global
map features, if their parents are different. We can require a
measurement set to meet certain constraints on the measurement
set and local features before an association is made or revisited. For
example, we can require a certainminimal number ofmeasurements
fromdifferent poses. The structure that we describe naturally forms a
hypothesis tree T and the current sample space is formed by the leaf
nodes, which all represent a unique set of data associations between
local map features and global map features. Note that because of the
inclusion of unmapped object associations, this sample space is
exhaustive when no pruning has been applied. An example is
provided in Figure 3. As the robot drives, it detects a circular
feature, and a set G1 is created. Based on the shape and size of the
feature, a pairing can be made with possible features on the map.
Alternatively, it can be something that is not on the map (*).When a

2While a measurement set is technically a redundant notion, since measurements
are already associated with a single feature, it makes bookkeeping and
implementation more clear.
3Except for the root hypothesis, which only serves as a placeholder for the first layer
of children, and may hold optional prior information supplied by the user
regarding location.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8872616

Hendrikx et al. Association-Based Global Localization

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


next line segment feature is spotted, a new set G2 is formed and new
leaf hypotheses are formed for each old leaf hypothesis. Based on the
old hypothesis, we will now consider when associations are feasible
and when they are not. Feature shape is used first to select plausible
candidates, after which we assess whether the spatial structure for a
small horizon of recent features is congruent with the spatial
structure obtained from the map (Figure 3C). This amounts to
assessing the spatial likelihood of the local map (Figure 3B) given the
data associations. Depending on the specific representation of the
map, features and uncertainty, the likelihood can take many forms
(e.g. topological, semantic or spatial). But we choose to do a spatial
registration step and assess whether the resulting spatial mismatch
is small enough to refrain from rejecting the pairing hypothesis. At
this stage, making as little feasible hypotheses as possible and
pruning unlikely leaves becomes necessary to avoid a
combinatorial explosion. For hypotheses marked in grey, a
unique maximum likelihood pose on the map can be
determined based on the feature pairings. However, for
assessing the geometric lack-of-fit of local detections, such a
pose is in general not necessary (e.g. in the case of parallel line
segments). In Figure 4, a simulation example shows four likely
hypotheses on a global map given the detections on a local map.

4.3 Hypothesis Likelihood
Having a window of local map features available, the problem
under consideration is to determine which association

FIGURE 3 | A basic example showing the global association tree. As the robot drives in the real world (A), it builds a local map of features (B). The local
measurements are associated with these local features, and added to their set. Nodes are then used to represent an association between a local feature and a
feature on the global map in (F). In this example, the robot first spots a circular feature. After spotting it multiple times, the consecutive measurements are added
to a set and a local feature is instantiated. Possible pairing hypotheses with the global map are generated based on feature type and dimensions. When a
new line segment is detected, a second layer of hypotheses is added to the tree based on spatial consistency between the circle and line feature on the local
map and the global map. Finally, an unmapped object is spotted which has similar geometry to a column, highlighting the importance of allowing for a
unmapped object option in the association tree, although these levels are not visualized anymore. In sub figure (C–E) the spatial congruency is visualized, which
is used together with the feature’s descriptive component to accept or reject association hypotheses.

FIGURE 4 | The global map hypotheses (bottom) corresponding to a
local map (top). Based on the local features in that figure, four possible
map poses are shown (not all hypotheses permit showing a unique pose).
Note that walls have been modeled by double line segments with
visibility normals visualized by small purple segments. The labels of the
global map have been omitted in this example.
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hypotheses are likely and which are not. The main mechanism
to keep a small set of hypotheses is to prune unlikely
associations immediately from the tree. Scoring hypothesis
likelihood recursively is not a strict necessity to achieve this in
our method, as we rather use more direct approaches for
rejection. However, maintaining likelihood is useful for
three reasons: 1) it allows to keep the most likely hypothesis
when hypotheses are similar (e.g. they share recent
associations), 2) it allows to prune the least likely
hypotheses when the number grows too large to maintain
efficiently and 3) it would allow a planner to optimize actions
taking relative uncertainty into account. Regarding the second
remark, we note that our method guarantees a qualitative
distinction between hypotheses based on their data
association, making rigorous pruning possible while still
keeping enough descriptive power in the remaining set.

In general, localization does not reduce to merely a lack-of-
fit evaluation problem, because the likelihood of the
associations we make with local map features (including the
unmapped object pairing) is also dependent on the local
structure of the feature (e.g. shape, size, semantics) which is
independent of position. Furthermore, the nature of
disturbances in the real world and the feature density on
the map play a role in determining prior likelihood for a
global association. We now explain our Bayesian strategy
for maintaining a breadth-first expansion of the tree,
allowing us to express confidence using models of both
spatial and descriptive likelihood. We employ a gating or
constraint procedure based on feature description and
spatial error, leaving us with only a certain subset of
hypotheses that should be considered likely. In general, we
can evaluate the association probabilities using the product
rule:

P D|Yp,M( ) � ∏ny
i�1

P Di|Di−1: 1,Yp,M( ), (9)

followed by Bayes rule to evaluate in terms of spatial likelihood
and prior:

P Di|D1: i−1,Yp,M( )∝P Yp|D1: i,M( )P Di|D1: i−1,M( ). (10)
Where the spatial likelihood allows us to evaluate whether the
local map that we observe is coherent with the global map
given the data associations. In other words, once we evaluate a
new feature pairing Di for a local map feature yi, we evaluate
the spatial likelihood P(Y*|D1: i,M) of the local map, given the
feature pairing and its parent pairings up to a horizon Nd

resulting in a recursive evaluation. We can also incorporate a
prior P(Di|D1: i−1,M) for this pairing, expressing confidence
based on feature description (e.g. semantics, shape, size). In
practice, this prior will be assumed independent of prior
associations D1:i−1. The resulting hypothesis likelihood is
then obtained by multiplying with the likelihood of the
parent node as expressed in (9). We evaluate the spatial
likelihood by taking a small set Nd of recently added local
features that together are enough to determine a pose
registration including the current feature yi and data

association Di. This pose registration is obtained by
minimizing the squared error between the local and global
map on that horizon:

Lp � min
1
Nd

∑Nd

k�1
wke

2
k, (11)

where the error term is either the Euclidean or the projected
distance:

e2k �
∑

s∈ 1,2{ }
‖nk · mk − Rys

k + t( )( )‖2, for lines

‖ mk − Ryk + t( )( )‖2, for points,

⎧⎪⎨⎪⎩ (12)

With R and t the rotation matrix and translation vector that
together form the registration pose. The upper expression in
(12) is used for matching line segments to lines using the
normal nk for both line endpoint y1

k and y2
k. The lower

expression is used for matching regular point positions. The
feature set used in (11) includes the current candidate feature,
allowing us to evaluate the lack-of-fit with the new feature
influencing the registration. The errors are illustrated in
Figure 3. We treat corner points as points in this
registration and disregard their orientation in obtaining the
registration. The unnormalized likelihood is now determined
by considering the error distance of the points, either
Euclidean or projected, after aligning them using the
obtained registration:

p e( ) � ∏Nd

i�1

1����
2πσ2i

√ exp − e2i
2πσ i

{ } (13)

lnL Yp;Di: 1,M( ) ≈ − 1
Nd

∑Nd

i�1

e2i
σ2
i

(14)

where σi is the error covariance of feature i on the local map.

4.4 Implementation
We use the well-known singular value decomposition (SVD)
approach to obtain the solution to (11), since correspondences are
already provided by the hypothesis under consideration. Figure 5
schematically shows how we use a pre-alignment step based on
line intersection points to first determine an approximate
registration. This allows to then project the line segment
endpoints onto the infinite line extensions on the global map
and incorporate them into the registration as points, resulting in
an iterative solution. We employ a very coarse gating procedure
for hypotheses based on the global pose to avoid pre-aligning and
registering features unnecessarily.

For the weights in (12), a covariance estimate can be used from
the local mapping. However, we supply simply unit weights
because the covariance matrix obtained from the local map is,
unlike the maximum a posteriori estimate, not necessarily an
accurate estimate due to linearization and assumption of
measurement independence. The method we propose should
not be overly sensitive to these kind of modeling decisions.
Some special attention has to be paid to the instances where
the features do not permit a unique registration. In these cases, we
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evaluate a similar error metric for the feature distance that can be
obtained without considering a registration. We distinguish
between the following cases:

• The initial feature; in this case we only consider the
descriptive prior likelihood for the data association.

• Parallel line segments; in this case we evaluate the distance
between the segments.

• The unmapped object option; We use a heuristic probability
that is small, but data driven estimates may provide better
results that reflect sensor and environment characteristics.

• Any other case; where we can evaluate the likelihood as
explained previously.

4.5 Pruning
We will now introduce the mechanisms we employ to remove
unlikely hypotheses from the tree. When considering a new
local feature, first a gating step checks for every global map

candidate whether the shape and size of the feature
correspond and—if a pose estimate is available—whether
the feature is roughly at the correct location. The latter
gate is to prevent unnecessary evaluation during the spatial
congruency check. For the congruency check, a small horizon
of features including the new association candidate is
registered according to criterium 12 and checked for errors
that exceed a spatial threshold, as shown in Figure 6.

If any of the features exceeds this threshold the
pairing hypothesis is rejected. Early pruning will limit
the tree growth and prevent combinatorial explosion.
However, it will not stop an existing hypothesis from
expanding, even if there are no new local features
supporting it. This is due to the explicit not-on-map option
that is always expanded to allow delayed evidence4. To this end,
we remove redundant hypotheses by checking whether
hypotheses make similar associations in their history
(excluding not-on-map) and keeping only the maximum
likelihood hypothesis among them. Formally, for every leaf
node (i.e., hypothesis), we recursively evaluate the parent nodes
up to depth Nsim and consider leaf nodes similar if and only if
they do not contain *-associations and all associations are the
same. We then only keep the leaf node that has the highest
likelihood. We also limit the number of consecutive not-on-
map associations allowed for any hypothesis to γ* to prevent
unbounded tree growth. This parameter balances recovery
potential with computational effort. Finally we have a
pruning step that reduces the number of hypotheses to a
fixed maximum Nmax, either based on likelihood or amount
of not-on-map associations. The latter keeps at least Np

hypotheses, by choosing the smallest n* where any
hypothesis with more then n* not-on-map associations is
removed. This procedure is applied after convergence of the
hypotheses to leave only a small set of back-up hypotheses
remaining to recover locally from a false association.

FIGURE 5 | (A) Two (partial) line segments in the local map. (B) A pre-alignment step based on the virtual intersection point (blue) allows to acquire an initial
estimate. We also use two point-correspondences or a single corner to obtain this pre-alignment, depending on which is most recently available. The segment endpoints
are projected onto the global map line segments (green) to include them in the registration. The blue point is not used because it is only measured by extension. (C)
Corners are treated as points in registration, similar to circles.

FIGURE 6 | The thresholds that are checked to decide if a hypothesis
should be rejected.

4Note that we never refrain from making a not-on-map option, because erroneous
pairings can appear confident due to error. The delayed-evidence mechanism is the
major reason for robustness against this.
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Algorithm 2. The algorithm used to evaluate the hypotheses
once a new set of local map features is available. It assumes that
the tree already contains one or more levels. If the tree is
empty, only feature shape is considered for the first local map
feature.

4.6 Implementation Considerations
In our work we do not explicitly represent probability
distributions over a global pose. This sets our method apart
from pose-based filtering methods. However, determining a
maximum likelihood pose using our methods is straight
forward given the data associations, and the registration
obtained by (11) can be used for this purpose. A consequence
is, furthermore, that we have access to a locally accurate,
association-labelled map which may be used by motion
planners. This is valuable, for instance, in a hallway where two
parallel sides are annotated and permit a driving actions without
relating to a pose. A consequence is that we need to determine the
length of the local horizon we consider. The local map is chosen
sufficiently large to enable considering a horizon of features for
global association, but should not be seen as a means of closing
large loops, i.e., loops that require a substantial drift to be
corrected. Because this process is potentially error-prone and
unnecessary for our localization objective.

Finally, if the objective under consideration changes to
metrically accurate tracking, it may be favourable to replace
our breadth-first expansion approach to depth-first tree
expansion. In that case, one can provide the local graph with
global metric priors obtained from the associations to obtain a
more accurate estimate of the map position under the assumption
that the map is of reasonable metric accuracy in the first place.
backtracking in this depth-first approach based on feature
monitoring to recover quickly from false associations is a topic
for future work.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate our approach in an indoor
environment for which a map is available. We use this map to
localize a teleoperated robot and we compare our method to the
well-known AMCL (Fox, 2003) particle filter implementation.
AMCL is openly available and uses a different paradigm for
localization based on grid maps and beam-hit sensor models,
which can be applied to global localization. We will validate
and compare our method using criteria for success ratio,
convergence speed and metric accuracy for different starting
locations and different degrees of disturbance and prior
knowledge. The real world experiments allow us to assess
the performance qualitatively in scenarios with varying
levels of uncertainty that we can add or remove in the form
of prior knowledge and clutter. We use a custom-made
platform equipped with mecanum wheels, wheel encoder
odometry and a Hokuyo UTM30-LX 2D LiDAR scanner
mounted upside down, close to the floor (Figure 7). Due to
its mounting position, we have a 180° field of view consisting of
720 scan points. We choose this sensor type for evaluation
because it is often encountered on mid-range existing robot
platforms in real world applications.

5.1 Indoor Environment
We use a part of the Atlas building on the campus of the
Eindhoven University of Technology for the experimental
evaluation. Items that are moved often such as chairs, tables,

FIGURE 7 | (A) The robot platform in the Atlas environment, the position is indicated in the map in Figure 9 position 1 (oriented towards the left). The situation
shown is used as scenario A, where unmapped items are on the map in the form of chairs, tables and carts. (B) Some of the disturbances added to a part of the map to
purposely obscure or mimick features for scenario (C) A close up of the robot platform with the planar LiDAR sensor.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 88726110

Hendrikx et al. Association-Based Global Localization

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


carts and dustbins are not represented on the map that we use
(sized approx. 20 × 41 m) and form the unmapped object that our
method should be robust against. Furthermore, in part of our data
set, bystanders disturb the view of the robot and we place objects
in the scene that either obscure or resemble the static features that
our method uses, which are likely scenarios. The map of the
environment together with the initial starting positions, and a
sub-imposed grid map is shown in Figure 8. Note that this is a
SLAM-generated map that is only used for illustration. Based on
the static vector geometry in Figure 8, we will generate a new grid
map containing only the static parts used for our comparison. In
Figure 7 we show the environment, some added disturbances for
the final scenario and the robot platform.

5.2 Evaluated Scenarios
We consider the following scenarios labeled A-C:

1. This scenario considers two initial positions in the map, that
are all within a starting region (sized approx. 15 × 15 m)
known to the robot, shown in Figure 8.

2. This scenario considers ten different initial positions all over
the map, where the starting region is unknown to the robot,
containing only encountered disturbances in case of the real
environment (including people).

3. This scenario considers added disturbances to the
environment, in both simulation and real world, in the
form of deliberately obscured features.

The scenarios are evaluated for a total of 12 different starting
positions. The final scenario (C) is evaluated for two initial
positions, accounting for a total of 14 evaluated global
localization challenges. Our localization method exploits the
initial knowledge in scenario (A) by transforming the starting

FIGURE 8 | Amap of the environment, with the trajectories driven by the robot indicated as paths and their starting locations (in different colors for clarity). The map
contains line segments, corners (blue points) and visible normals indicated in purple. The world contains unmapped objects that are encountered during every day use of
the environment. To show how these unmapped items influence the LiDAR readings, an occupancy grid map has been aligned to the map for visualization purposes
only. The features shown are linked to semantic object instances, but these are omitted in the figure for clarity. The starting region for scenario A is shown in red.

FIGURE 9 | (A) The grid map containing the static geometry as generated for AMCL localization. (B) The initial particle spread in AMCL, consisting of 50,000
particles.
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position of the robot in the local map to the global map and
rejecting hypotheses that were not started within the indicated
region. For AMCL, the initial sample set is confined to the
region.

5.3 Comparing With Monte-Carlo
Localization
We compare the performance of our global localization
approach with the monte carlo localization (MCL) approach
based on grid maps. The reason is that in this localization
paradigm, the robot has access to all geometry in the
environment, due to the grid cell decomposition and pose
sampling approach. In contrast to our proposed method,
AMCL uses random (re-)sampling of hypotheses. We will
run AMCL five times for every trajectory to account for this
randomness (leading to a total of 70 AMCL runs). We choose
the ROS AMCL implementation as it is a very commonly used
software package using an adaptive sampling scheme. For this
comparison, we generate the grid map for AMCL based on the
vector representation of the static geometry in the
environment. This vector map was made manually by
referencing the actual environment and only includes
objects on the map that do not move (i.e., no moveable
furniture, tables, carts, trash bins). The grid map is shown
in Figure 9 and was generated automatically from the vector
representation in Figure 8, by setting grid cells to occupied if
they cross the vector geometry. This way, both our approach
and AMCL rely on a representation of the environment that
can be obtained from a sensor-independent source that does
not contain all the move-able geometry (unmapped objects) in
the environment.

5.4 Configuration of the Approaches
In our feature-based approach, we select a minimal length of
0.2 m for corners and 1.5 m for line segments before taking
them into account as features. The latter is heuristically chosen
to avoid the detection of open doors as line segments. No circle
shaped features are present in this environment, so they are
not used. We trigger a perception update after every 0.05 m of
driving and 0.05 radians of rotation (which in practice is
higher because of loop time constraints, which we will
consider later). We only trigger association tree evaluation
when new features are available on the local map with at least
three measurement from different poses. The tree evaluation

parameters are given in Table 1. We show the grid map that
was generated for AMCL in Figure 9, with a discretization of
0.05 m. For the AMCL configuration, the parameters that we
used are in Table 2. We choose the likelihood field sensor
model over the beam-based model because it showed better
results by allowing to simulate more particles. We increase the
initial particle count to 50,000, which is found to be the
maximum reasonable amount of particles that our system is
able to process. The particles are spread evenly over the map by
uniform sampling.

5.5 Performance Metrics
We will run the algorithms real time on a laptop with an Intel
Quadcore i7-7700HQ CPU @ 2.80 GHz × 8 processor. We
evaluate the following performance metrics:

• Succes: We define success as the maximum likelihood
hypothesis reaching and maintaining an error of less
than 1.0 m within the 60 s time frame of the run.

• ML dist: We define the maximum-likelihood (ML) distance
as the distance driven in which the previous succes criterium
is met.

• Self-rep. distance: We define self-reported distance as the
distance in which our method reports no hypothesis that
exceeds the maximum deviation of 1.0m from the weighted
average of all hypotheses that permit a pose location. ForAMCL,
we use a threshold of 2m on the x and y pose covariance.

• ML error: We report the error after the particles have
converged to the right location, to indicate error in
tracking mode.

• Max Hyp: We report the maximum number of hypotheses
before and after the particles have converged to the right location.

TABLE 1 | The configuration parameters used in our method for evaluating the
hypothesis tree.

Param Value Descr

Nmax 200 max. # hypotheses
Nsim 2 similar associations before prune
γ* 3 max. consecutive not-on-map assoc
σe 1 error covariance
p (*) 0.1 probability not-on-map assoc
δo, δn, δc, δp 0.5 error tolerance before prune
αc 0.5 error angle tolerance before prune

TABLE 2 | The configuration parameters used for running AMCL.

Param Value

Nmin_particles 100
Nmax_particles 50,000
Nkld_err 0.01
Nupdate_min_d 0.10
Nupdate_min_a 0.20
Nresample_interval 2
Ntransform_tolerance 0.1
Nrecovery_alpha_slow 0.0
Nrecovery_alpha_fast 0.0
Nlaser_max_range LiDAR value (30)
Nlaser_max_beams 30
Nlaser_z_hit 0.95
Nlaser_z_short 0.1
Nlaser_z_max 0.05
Nlaser_z_rand 0.05
Nlaser_sigma_hit 0.2
Nlaser_lambda_short 0.1
Nlaser_likelihood_max_dist 2.0
Nlaser_model_type likelihood_field
Nodom_model_type omni
Nodom_alpha1 0.2
Nodom_alpha2 0.2
Nodom_alpha3 0.2
Nodom_alpha4 0.2
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For AMCL, the indicated values are the average over all
successful runs for that initial positions. We will also show
some selected results regarding semantic associations and CPU
usage for our approach.

6 RESULTS AND DISCUSSION

The results of the localization are shown in Table 3. For the
smaller initial region, our method achieves localization within 1.7

TABLE 3 | Results of the localization using our method and AMCL. The predicate succesfull is yes when the robot localizes accurately with respect its ML hypothesis error
stays localized for the remainder of the path. The distance needed to acquire localization is both expressed as actual localization of ML and as self-reported localization
(by assessing convergence). Note that self-reported localization can be reported erroneously (i.e.,. false confidence). The average ML error after localization is also reported
and the average number of hypotheses used both before and after self-reported localization has been achieved.

Scenario A B C

Descr Init Region Total map Clutter

Path A1 A3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C11 C12

ours succesfull yes yes yes yes yes yes yes yes no yes yes yes yes no
actual dist ML 1.7 4.9 1.7 8.3 4.9 5.3 1.1 7.2 n/a 5.5 7.1 10.3 16.4 n/a
self-rep dist 13.2 4.9 16.3 22.0 8.4 24.1 15.7 20.9 16.9 5.5 4.0 6.0 2.9 9.1
ML avg er aft con 0.05 0.33 0.07 0.23 0.28 0.36 0.13 0.25 n/a 0.24 0.51 0.16 0.08 n/a
max # hyp bef con 200 200 200 200 200 200 200 200 200 200 200 200 200 200
max # hyp aft con 7 9 7 10 7 5 33 11 n/a 8 7 5 6 n/a

AMCL succesfull 5/5 5/5 2/5 0/5 5/5 0/5 0/5 0/5 3/5 4/5 4/5 3/5 2/5 5/5
actual dist ML 5.2 6.2 3.9 n/a 9.3 n/a n/a n/a 6.5 10.3 1.2 6.3 13.1 8.0
self-rep dist 5 6.9 6.4 n/a 13.3 n/a n/a n/a 8 12.2 2.9 7.4 12.9 8.7
ML avg er aft con 0.19 0.32 0.18 n/a 0.29 n/a n/a n/a 0.2 0.17 0.25 0.36 0.42 0.22
max # hyp bef con 5e4 5e4 5e4 n/a 5e4 n/a n/a n/a 5e4 5e4 5e4 5e4 5e4 5e4
max # hyp aft con 5e4 44217 5e4 n/a 5e4 n/a n/a n/a 17378 28235 13527 5e4 5e4 5e4

FIGURE 10 | The top left map shows the global hypotheses that are created based on the local map at the top right. The correct hypothesis and feature pairings are
indicated by red squares. The local map shows the LiDAR points in orange and the local map in green. The bottom figures show the global and local map after localization
is achieved. The ML hpyothesis is show in black a number of back-up hypothesis in grey. One of them is significantly drifted because of a different assumption made
recently. The others are covered by the ML hypothesis.
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and 4.9 m for A1 and A3 with a maximum number of 200
hypotheses, which reduces to only resp. 8 and 7 hypotheses
after self-reported localization. AMCL also achieves

localization successfully when the initial pose is confined to
the smaller region. When we increase the possible initial
location to the entire map (scenario B1-B10), we see that our

FIGURE 11 | The AMCL method failing to converge, and providing a number of wrong hypotheses while including a maximum likelihood estimate that is incorrect
and intersects with occupied geometry. The red square in the center is the robot position estimate and the green arrows are particles. The LiDAR points are shown in red
as well.

FIGURE 12 | The CPU time, error and hypotheses shown for B3. The middle figure shows the error for both the maximum-likelihood hypotheses and the average
over all hypotheses that permit a pose registration. The moment where our approach marks itself as localized is shown in red. Below, the number of hypotheses is
shown, together with events that indicate that a new association is evaluated. The association for the ML hypothesis is shown in text (* indicates unmapped object). The
top figure shows CPU cycle time (milliseconds) for session B3. Within a cycle, the local map is always updated and the associations are only updated if a new stable
local feature is available. The latter causes the distinct peaks in processing time.
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method still achieves localization in 9/10 runs, with distances
ranging from only 1.1 m for B5 to 10.3 m for B10. The output of
our method before and after localization is shown in Figure 10.
The symmetries occurring from the feature associations are
evident. The pattern shown here by two line segments with
visible normals shown is already a very strong indicator of
location. After localization, the figure shows the back-up
hypotheses that enable to recover from wrong associations
during tracking. Self-reported distances are usually
significantly longer because alternative hypotheses still exist
that offer alternative explanations of the local map. In some
cases, such as B9, the self-reported distance is too low. This is due
to only pose-enabling hypotheses being evaluated for
convergence, and many hypotheses that do not permit a pose
are present and appear to be correct in light of later evidence. For
AMCL, we see that for some runs, such as B3, B8 and B9,
successful localization is consistently achieved. In the case of
B9, AMCL is very fast to converge to the right location. In B9, as is
difficult to see in Figure 8, the robot rotates in place for a full
round first, then moves to a second location and rotates again,
exposing significant geometry of the environment without many
disturbing elements present in the environment. Our method
takes longer to localize in this scenario, because we rely on
detecting stable features first from the geometry. In scenario
B7 our method is not able to localize whereas AMCL is able to do
so in 3/5 runs. Our method, in this scene, had trouble with the
people and furniture in the open space to the left of the robot,
which caused drift in our local map. In run B2, B4, B5 and B6, we
see that AMCL is consistently not able to localize the robot. An
example of this localization error is shown in Figure 11.

Especially in the right half of the map (as can be seen in
Figure 8), there is clutter present in the B-scenarios. While
our method does localize, it results in erroneous hypotheses
taking longer to be removed. Finally, in the C-level scenarios
we see that AMCL is able to localize successfully (5/5 runs) in
scenario C12 and sporadically in scenario C11. For our method,
C12 is problematic because most of the objects mapped locally are
actually clutter objects that have been placed to disturb the
environment. This is shown in Figure 7B and in the left
image of Figure 13. The middle and right image also show
scenarios in which clutter appears in the local map that has to
be dealt with (i.e, a dustbin and a open door appearing as a
corner).

6.1 Associations and Computing Time
Figure 12 shows the number of hypotheses and error in time
and illustrates an attractive property of our approach. We
maintain a smaller number of hypotheses on the basis of
symbolic associations, especially after convergence.
Furthermore we make the associations very explicit. The new
associations made by the ML hypothesis are indicated in the
graph as events. The hypothesis tree is only evaluated at these
instances for the new evidence. The resulting CPU cycle time is
shown in Figure 12. The distinct peaks are caused by evaluation
of the tree, whereas the local map update is usually between 100
and 200 ms. Note however that our current C++
implementation was written as a prototype with extendability
in mind and has not been optimized for execution time. We
expect that computation times of less than half the current times
are obtainable.

FIGURE 13 | Three situations in which the local map contains objects that are not on the global map (marked by red circles). The camera images from the robot’s
camera have been logged for verification purposes. The first situation is scenario C12 where disturbances have been added on purpose. The second scenario is B5
where the scene is disturbed by pedestrians walking in front of the robot. The third scenario is B10, where the robot leaves a room and spots a dustbin and an open door
as corner features. Both are not on the global map and require sufficient not-on-map assumptions to survive the pruning process.
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6.2 Limitations
The amount of hypotheses needed was determined by
considering that we have 154 concave corners on our map. If
the first detection would be a corner, we can evaluate all of them
in light of the next pairing. This, however, shows a clear limitation
in terms of hypotheses needed to cover larger maps in terms of
feature count. One way to deal with this is to postpone evaluation
and favor the evaluation of more unique features first
(i.e., temporally out-of-sequence) such as large line segments,
which we currently do not do. Furthermore, maintaining

hypotheses on actual object-level or even spatial object patterns
might significantly reduce the amount of hypotheses and
computation time. Of course this computation time has to be
balanced with the increased localization success that our method
can achieve. Another drawback, in our experience, is the added
complexity of our method over, e.g., Monte Carlo approaches. Our
method requires bookkeeping of a local map, a feature detector and a
hypothesis tree. Each step introduces possible failure points both
inherent to their underlying assumptions and due to programming
complexity. Furthermore, because we use features, we cannot localize
when all features are obscured. For some environments, that are very
cluttered this would be a likely scenario and describing the
environment in terms of our feature shapes may not be feasible.
Some of these drawbacks are handled more effectively by scan-
based approaches that match features extracted specifically for
the purpose of quick association retrieval from the same
scanning device. However, these methods do not offer the
same abstract notion of localization and cannot deal with
existing geometry, suggesting possible complementary
strengths in for example the area of keeping maps up to
date. Our method provides the most opportunities in cases
where prior existing maps are available and multi modal
perception based semantic feature information has to be
fused to localize a robot both effectively and in a semantically
explainable way. This allows the robot to update which (semantic)
features are salient and which should not be used in order to keep
long term localization reliable and effective.

7 CONCLUSION

We showed a localization approach that uses a local feature map
and a hypothesis tree to solve the localization problem in the
association space. We compared our method with a grid based
particle filter and showed that our method is able to localize in
more cases, while in some cases the particle filter is more
successful. The grid based particle filter does not represent
hypotheses on a feature association level and requires a large
amount of particles in order to localize successfully in larger
environments. The results are dependent on the initial
sampled distribution, which causes varying results in more
difficult cases. Because the environment contains unmapped
clutter, convergence can not be guaranteed. In theory,
increasing the initial particle count could improve results,
however with the current 50,000 particles we already run
into the limits of processing capabilities. On the other hand,
the method that we propose, association-based localization,
does not rely on such an initial sampling and performs better
in some of the scenarios that we investigated, if the amount of
clutter is again limited. A benefit of our method is a significant
decrease in the amount of hypotheses necessary to represent
the robot’s belief about its location. And while our hypotheses
are more expensive to maintain individually than the particles
in a particle filter, the conceptual advantage of needing much
fewer of them is promising. We foresee benefits when we
consider the interpretation of the hypotheses by other parts
of the motion stack (e.g. active localization planners) and the

FIGURE 14 | (A) The robot measures a sensor feature locally in the form
of a line segment. The line segment gets added to the local map and a range-
bearing measurement is added as well. (B) When a new sensor feature is
associated with the same line segment on the local map, it is merged to
form updated end points. The new range bearing measurement is also added
between the robot pose and the line (but not shown).

FIGURE 15 | When the line segment is updated in the state estimate
optimization, first a temporary range-bearing parametrization is generated in
the local map as well to simplify calculation of measurement error and error
Jacobians.
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insight that our approach generates into the assumptions
underlying the localization effort.

8 FUTURE WORK

Our work aims to provide robots with semantically explainable
autonomy in environments for which prior maps are available. The
next step is to include the robot’s actions into a task-based
framework for fully autonomous navigation and recovery. We
see two possible directions for extending the current work: 1) Pre
process the map and use higher-level salient feature combinations
(e.g. on object level) to improve performance and robustness and
scale up to larger environments. 2) Use the association space of
hypotheses in an explicit action selection policy. The first direction
considers exploiting semantic and topological relations on the local
map first, and creating indices into the global map to efficiently
search for feasible locations based on these relations. These
relations can also incorporate free space (e.g. a single column
surrounded by a large area of free space) as this provides a very
strong indication of feature location when seen in the LiDAR
sensor. The second point is complementary, in the sense that
actions of the robot can help to first gather this feature context
(active sensing) before deciding to expand the hypothesis tree. In
conclusion, our work provides a step in the right direction towards
recoverable and semantically insightful robot navigation that can
exploit information from multiple sensors locally first.

A Local map Building
A.1 Measurements and Factors
In this appendix we provide a more detailed explanation of how
line measurements are used locally in our approach. To extract
lines we use the implementation found in Gallant (2014); Pfister
et al. (2003). A line sensor feature is represented by the point-pair
coordinates (pstart, pend) with respect to the robot and is extracted

from a LiDAR scan (Figure 14). This line gets added to the local
map (in frame ℓ) as a point-pair.A second partial line segment
sensor feature can be associated with the same local feature. This
association is made when both points of the new sensor feature
fall within a distance dn1 from the infinite line extending from the
line on the local map and one of the points is within the segment.
To solve for the most likely position of the line in the local map
given multiple measurements, the point-pair representation is
temporarily converted to an infinite line with range-bearing
parametrization (Figure 15).In order to optimize over both
the robot pose and the line parameters, we create a factor for
the measurement error, which is the difference between expected
and measured (ρ, ϕ), given by:

eρ � ρ − s + x cosψ + y sinψ
ρ + s − x cosψ − y sinψ

{ (15)

eϕ � ϕ − ψ + θ
ϕ − ψ + θ + π,

{ (16)
where the latter case needs to be used when the robot is in the
halfspace of the line that does not contain the local frame origin.
To optimize over the robot pose and line parameters, we obtain
the following jacobians:

ze
zx

�
0 0 1

cosψ sinψ 0
[ ]

0 0 1
−cosψ −sinψ 0

[ ]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(17)

ze
zy

�
−1 0

−x sinψ + y cosψ −1[ ]
−1 0

x sinψ − y cosψ 1
[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ,

(18)

again depending in which halfspace the robot is located. The
implementation in GTSAM requires a custom implementation of
the 2D line type with manifold traits and a custom factor. The

FIGURE 16 | The local map of features (green) aligned against the global map, which serves as a prior using nearest neighbor data associations. The resulting robot
trajectory is the MAP estimate of the robot poses in the global map. We used this method to obtain the ground truth estimates for our trajectories to verify our hypothesis
approach. The robot trajectory is indicated by the blue line and the green and red circles and lines indicate features.
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type needs to have the interfaces retract () and localCoordinates
() implemented to move between the group element and local
coordinates. The retract () interface adds an increment in local
coordinates to the line, and contains logic to always return a
parametrization with a positive range ρ. The line factor
introduced here, together with range-bearing factors for point
measurements and relative pose factors for the odometry form
are used to form a factor graph which is locally consistent around
the robot. The result can be seen in Figure 2, where a number of
lines, corners and circles have been measured multiple times and
given unique id’s on the local map. The measurements taken
from a certain robot pose are shown as grey lines.

A.2 Improving Odometry With Local ICP
To improve local odometry in the presence of drift and time
synchronization inaccuracies, a local Iterative Closest Point
matching is used to obtain improved odometry by using two
consecutive laser scans. The rationale behind this is that the true
odometry is the one matching two scans perfectly, which is
slightly different from the encoder odometry due to drift,
timing mismatch and mounting position error. It must be
noted, however, that ICP in environments where the static
assumption is violated may possibly yield worse results than
exclusively using odometry.

B Tracking Mode
In this section we explain the tracking mode that was used to
obtain the ground truth trajectories against the accurate map of

the building. In tracking mode, the local graph as explained in the
previous section is related to the global frame by making nearest-
neighbor data associations with the global map, after an initial
pose estimate has been provided by the user. These associations
are then incorporated in the graph as location priors for the local
features expressed in the global map, resulting in robot poses that
are also valid with respect to the global map. This is visualized in
Figure 16. The tracking mode can be started in our
implementation by simply providing an initial pose estimate in
RVIZ. For our ground truth, we manually supplied the starting
position of the robot for each trajectory and verified the data
associations that were made. The resulting robot poses at sample
intervals were then used in Table 3 as ground truth.
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