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Untethered soft robots that locomote using electrothermally-responsive materials like
shapememory alloy (SMA) face challenging design constraints for sensing actuator states.
At the same time, modeling of actuator behaviors faces steep challenges, even with
available sensor data, due to complex electrical-thermal-mechanical interactions and
hysteresis. This article proposes a framework for in-situ sensing and dynamics
modeling of actuator states, particularly temperature of SMA wires, which is used to
predict robot motions. A planar soft limb is developed, actuated by a pair of SMA coils, that
includes compact and robust sensors for temperature and angular deflection. Data from
these sensors are used to train a neural network-based on the long short-term memory
(LSTM) architecture to model both unidirectional (single SMA) and bidirectional (both
SMAs) motion. Predictions from the model demonstrate that data from the temperature
sensor, combined with control inputs, allow for dynamics predictions over extraordinarily
long open-loop timescales (10 min) with little drift. Prediction errors are on the order of the
soft deflection sensor’s accuracy. This architecture allows for compact designs of
electrothermally-actuated soft robots that include sensing sufficient for motion
predictions, helping to bring these robots into practical application.

Keywords: soft robot control, soft robot sensing, soft robot dynamics, soft robotmodeling, machine learning, sensor
design, shape memory alloy, artificial muscle

1 INTRODUCTION

Some of the most compact and easy-to-design artificial muscles for soft robots are based on
electrothermal actuation (Rich et al., 2018). These actuators are typically composed of a thermally-
responsive shape changing material that can be electrically stimulated with Joule heating. Examples
include coiled polymers that contract when heated (Haines et al., 2014; Pawlowski et al., 2019),
actuators containing shape memory alloy (SMA) wire (Rodrigue et al., 2017), and liquid crystal
elastomers (Yuan et al., 2017; Ford et al., 2019; He et al., 2019; Kent et al., 2020).

However, these easy-to-use designs sacrifice the easy-to-use models of other soft actuators (e.g.,
pneumatics) due to the their internal actuator dynamics alongside time-dependent hysteretic
behaviors (Xiang et al., 2017; Ge et al., 2021). In particular, SMA actuators using popular
materials like Nitinol have dynamics that are dictated by complex interactions at the
microscopic scale. Hysteresis arises in residual stress, strain, material phase, and electrical
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resistance (Zakerzadeh et al., 2011), so first-principles models
necessarily include state variables that can only be sensed
indirectly (Majima et al., 2001). Therefore, most modeling of
SMA and other electrothermal actuators occurs in artificial test
setups with extensive sensing capabilities (Zakerzadeh et al., 2011;
Lee et al., 2013; Ge et al., 2021).

As a result of these modeling difficulties, as well as significant
weight and volume restrictions for sensing and control hardware,
there has yet to be an untethered electrothermally-actuated soft
robot with embedded sensors and associated modeling that
capture actuator states (Rich et al., 2018). In fact, most SMA-
based soft walking robots often focus on designs that do not
include embedded sensors and operate entirely through open-
loop control or dependency on external hardware (Huang et al.,
2018, 2019; Almubarak et al., 2020; Meng et al., 2020; Patterson
et al., 2020; Boothby et al., 2021; Kim et al., 2021; Rehan et al.,
2021; Thomas et al., 2021). In turn, modeling of these untethered
robots, when it has been done, does not include time-dependent
actuator states (Goldberg et al., 2019; Huang et al., 2020).

1.1 Study Overview
This work contributes a framework to bridge the gap between
sensing capabilities and accurate dynamics predictions for a soft
electrothermally actuated robot limb. The limb is actuated using
SMA coils that are activated through electrical current and Joule
heating. We hypothesize that temperature is a reasonable
surrogate for full thermal actuator state due to the prior
successes of Ge et al. (2021) and Wertz et al. (2022) in
tracking the behavior of SMA-based actuators. Our framework
includes a fabrication method to securely and robustly attach a
compact temperature sensor to a highly-dynamic SMA wire,

alongside a neural network-based model that captures
hysteresis in sensor data versus limb pose. Referring to
Figure 1, the prototype limb is actuated by an antagonistic
pair of SMA wire coils, and contains both the temperature
sensors and a dielectric elastomer bend sensor embedded
within a soft silicone rubber. We use pulse-width modulation
(PWM) to apply electrical power.

After detailing sensor construction, we present a neural
network architecture that can predict limb deflections based
on different combinations of PWM and temperature data. We
collect a large dataset of temperature, deflection, and PWM. Then
we train and validate the model using open-loop simulations
(Figure 1C). For comparison, we perform a least-squares fit on
the same data, as was used inWertz et al., 2022, and show that our
neural network makes predictions possible using PWM duty
cycles only. Our validation shows close alignment with
hardware data when measurements from all of the sensors are
included.

Specifically, this article makes the following contributions:

1. A sensor design approach for compactly incorporating
temperature measurements into SMA-based soft robot limbs,

2. A proof-of-concept approach for learning dynamics models of
soft electrothermally-actuated robot limbs using this
sensor data,

3. Open-loop rollout simulations of the robot limb’s angular
deflections, showing low error (RMSE = 5.350°) and no
significant drift over very long horizons (10 min or more).

Combined, our results demonstrate that this type of robot limb
architecture can be constructed to achieve relatively high-fidelity

FIGURE 1 | (A) This article develops a framework for sensing and dynamics modeling of a soft, planar, electrothermally-actuated shape memory alloy (SMA) robot
limb. (B) The prototype soft limb has a single degree-of-freedom, θ, for planar motion. (C) The limb is cast from bulk silicone (C1), and is actuated by two shape memory
alloy (SMA) coils (C2) contained in a ridge along both sides of the limb. Our sensors include thermocouples attached to each SMA (C3) and a soft bending sensor (C4) for
deflection and temperature measurements. Full assembly is detailed below. (D) Our framework consists of data collection of the limb undergoing various motions,
used to train our LSTM neural network, with the outputs validated in simulated rollouts of deflection angle.
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predictions of motion with only in-situ sensing. Results also
demonstrate noticeable improvements of predictions under
bidirectional bending, with two active SMAs, in comparison to
unidirectional bending with only a single SMA, producing design
implications.

Our modeling approach does not make any assumptions
about the underlying actuator technology, since neural
networks and LSTMs are black-box models. We use only
electrical power and temperature measurements to train our
network. Therefore, we expect these results to generalize to
other electrothermal actuators beyond SMAs that exhibit the
same hysteretic characteristics, e.g., liquid crystal elastomer
(LCE) based actuators with embedded liquid metal conductors
for electrically-controlled Joule heating (Ford et al., 2019; Kent
et al., 2020; Kotikian et al., 2021). In this respect, the approach
here has the potential to serve as a framework for modeling a
wider range of compact soft robot limb architectures that
incorporate embedded sensing.

1.2 Modeling and Neural Network
Background
The analysis of our framework focuses on the in-situ sensing and
modeling of our limb (i.e., no external equipment), analyzing the
effects of different sensor data as well as different motions on
learned predictions. In contrast, existing state-of-the-art
hysteresis modeling of electrothermal actuators focuses
primarily on a single type of motion with a fixed set of
external sensors (Xiang et al., 2017; Ge et al., 2021; Luong
et al., 2021). We train networks both with and without that
data and quantify the prediction quality that is possible given
different sensors. This work improves on the approach from
Sabelhaus and Majidi 2021, which demonstrated the need for
explicitly addressing hysteresis.

Prior work in soft and electrothermally-actuated robot
motion has generally eschewed extensive dynamics
modeling in favor of feedback control, intended to
compensate for modeling errors. Feedback has been used
for soft electrothermal and shape memory actuators, but
when performed with embedded sensing only, has been
limited to model-free approaches (Elahinia and Ashrafiuon
2002; Ma et al., 2004; Kent et al., 2020; Kotikian et al., 2021) or
simplistic models without actuator dynamics (Patterson et al.,
2022). However, many benefits to modeling exist in the
context of open-loop motion generation, including a-priori
trajectory optimization (Wertz et al., 2022) that avoids the
artificially-induced stiffness imposed by feedback control
(Della Santina et al., 2017).

For our neural network model, we choose the long short-term
memory (LSTM) architecture to account for hysteresis in
predictions of robot deflection based on actuator state. There
has been extensive successful prior work that uses LSTM
architectures for soft robot sensing (Han et al., 2018;
Thuruthel et al., 2019; Kang et al., 2020), modeling (Zhao
et al., 2021), and control (Luong et al., 2021), as well as many
other options for machine learning applied to soft robots (Cheng
et al., 2019).

As a result, this article does not seek to develop a new neural
network architecture for SMA-based soft robots, nor compare
performance among possible architectures to determined the
highest-performance predictions. Instead, we show proof-of-
concept, demonstrating that it is indeed possible to combine
sensing and dynamics predictions in a compact and robust design
framework. We anticipate that future comparisons of available
architectures, including e.g., hierarchical networks (Han et al.,
2018), would improve our framework’s performance.

2 MATERIALS AND METHODS

2.1 Hardware Platform and In-Situ Sensor
Design
Our proposed framework consists of a sensor design approach
and a machine-learned predictor that uses the sensor’s data. For
the sensor itself, this section details the design procedure and its
application to a specific prototype used in the remainder of the
article.

2.1.1 Robot Platform Overview
We consider the single-segment soft robot limb in Figure 1,
derived from prior work on a legged soft robot (Patterson et al.,
2020). The limb is designed for planar motions only, reducing the
dimensionality of the state space in order to test algorithmic
approaches to modeling and control. An earlier version of this
limb was used in Wertz et al., 2022, and this article extends and
details the fabrication procedure for the in-situ embedded
temperature sensor.

The limb itself consists of a bulk silicone body (Smooth-On
Smooth-Sil 945) embedded with actuators and sensors
(Figure 1C). Two SMA coil actuators extend along the length
of each side of the limb (Figure 1C1) and are composed of nickel-
titantium alloy (Dynalloy Flexinol, 0.020” wire diameter). A soft,
rubbery capacitive bend sensor (Bendlabs, Inc.) is inserted into a
groove in the limb (Figure 1C4).

A temperature sensor is attached to each SMA coil actuator
using our proposed method. The primary challenge in affixing a
sensor to an SMA coil is the stress and strain induced during
motion: A rigid thermal interface (such as a thermally conductive
glue) can easily fracture. As a result, though there are a variety of
options for off-the-shelf temperature sensing, our approach uses a
thermocouple due to its compact size. The specific design here
uses 30 AWG type K thermocouples (Omega Engineering).
Because of its small size, only a small amount of adhesive is
required to attach the thermocouple to the SMA coil, thereby
reducing the region over which stress concentrations and
interfacial failure can occur.

2.1.2 Sensor Fabrication and Prototype
The fabrication procedure for our limb and its sensors is shown in
Figure 2. First, as with our prior work in Patterson et al., 2020, the
limb is cast using a 3D-printed mold (Objet 30, Verowhite) and
released after curing. Next, the two SMA wire coils are inserted
into the limb, crimped to electrical connections at both ends, and
fixed into place at the tip and base using adhesive (Smooth-On
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Silpoxy). Additional turns of wire are left exposed at the base
(rear) of the limb. We cut the wire to leave approximately 2-3
turns exposed.

Our key sensor fabrication step is to then heat the exposed
turns of SMA coil until they fully actuate (Figure 2G). Thanks to
the shape memory effect, these turns of coiled wire will remain in
their retracted state once they cool to room temperature and for
all future thermal cycling which, crucially, prevents any
additional deflection during use. We adhere the thermocouple
tip to the retracted coils using thermally-conductive epoxy (MG
8329TCF), and once cured, apply additional soft adhesive to
secure the thermocouple sheath to the robot body.

Finally, the sensors and SMAs were connected to a similar
circuit as in Patterson et al., 2020 for sensing and actuation. The
thermocouple leads were connected to a digital thermocouple
amplifier (MAX31855), and the SMAs to an N-channel power
MOSFET each. The thermocouple amplifier and soft capacitive
bend sensor communicated digitally with a microcontroller. The
microcontroller actuated the MOSFETS using a pulse-width
modulation (PWM) signal, with a nominal voltage of 7V from
a benchtop power supply. Though our test setup is tethered, these
types of circuitry and power sources have previously been

integrated into untethered robots (Huang et al., 2019;
Patterson et al., 2020).

The procedure presented here is tested with high-deflection
electrothermal actuators (SMA coils) to which epoxy has a
high bond strength. However, we believe that the concept is
generalizable to both straight-wire SMAs and other shape
memory materials. If a design were to leave an exposed
portion of the actuator in a location where no stress occurs
during use, and it were to actuate a single time, then that
portion would remain actuated and not experience further
stress. Any appropriate adhesive may then be used to bond a
thermocouple.

2.2 Robot Modeling Setup and Data
Collection
Our proposed framework uses data from these sensors and inputs
to train a neural network that predicts robot pose (bending angle).
Electrothermally-actuated robot limbs, such as that in this article,
have internal state corresponding to both actuator dynamics and
body dynamics. Actuator dynamics are principally governed by
temperature and the temperature response given a particular

FIGURE 2 | Fabrication procedure for our SMA-actuated soft limb with temperature sensing. (A) The limb is cast from bulk silicone using a 3D printedmold, then (B)
released to form themain body. (C) SMAwires are inserted and sealed in place with adhesive, leaving additional turns of wire extending out the rear. (D)Heat is applied to
the rear of the limb, so that (E) the extra turns of wire fully actuate. (F) Thermocouples are then adhered into the contracted coils with thermally-conductive epoxy, and
experience no further mechanical stress during operation. (G) Fabrication in hardware follows this procedure.
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amount of electrical power input. Body dynamics arise from
applied actuator stress.

In lieu of first-principles models that demand access to many
internal states, we use available sensor data as the inputs to our
predictor. We consider four different usage scenarios: Actuation
with either one SMA (unidirectional) or both antagonistic SMAs
(bidirectional), and with or without temperature data. This allows
us to determine the performance and applicability of our
temperature sensor. The sensor input vector for the dynamics
model of our soft electrothermal SMA-powered limb is denoted
vk(t) ∈ Rn, where n varies with our inclusion of either of the two
actuators and/or temperature measurements, and k denotes the
particular combination of inputs:

v1 t( ) � uA t( )[ ] (1)
v2 t( ) � uA t( ) TA t( )[ ] (2)
v3 t( ) � uA t( ) uB t( )[ ] (3)

v4 t( ) � uA t( ) TA t( ) uB t( ) TB t( )[ ], (4)
where uj and Tj refer to the PWM duty cycle input and measured
temperature of either SMA wire, j ∈ [A, B].

To generate the data for each of the above input spaces, two
series of experiments were performed:

1. One single SMA was actuated, causing unidirectional
counterclockwise bending (+θ direction).

2. Both SMAs were used to achieve bidirectional bending (both
+θ and -θ directions).

To collect this data in a realistic application, we applied a
simple controller to the limb to hold different setpoint angles
as a form of “motor babbling.” Setpoints of �θ were sampled
from a uniform distribution of [0°, 45°] for v1,2 and [−45°, 45°]
for v3,4, with hold times also sampled from a uniform
distribution of [1, 30] sec. We used PI control for
regulation, of the form u = KPe + ∑teΔt, where e � (�θ − θ).

Constants were tuned by hand to be Kp = 0.06 and KI = 1e−5.
The result was then saturated to u ∈ [−1, 1] and mapped to
PWM duty cycles as u+↦uA, u

−↦−uB. This procedure was
performed for approximately 6 h of data, though only 30 min
was used for training. An example of states and inputs
recorded during a test is shown in Figure 3.

2.3 Neural Network Architecture
The framework proposed in this article consists of a neural
network based on long short-term memory (LSTM) to predict
the bending angle of a soft limb, tested both in one-step-ahead
predictions as well as open-loop rollouts.

2.3.1 Long Short-Term Memory (LSTM) Networks
LSTMs are a recurrent neural network (RNN) commonly applied
to time series applications, due to their capability of learning
order-based dependence (Hochreiter and Schmidhuber 1997).
Recursive Neural Networks (RNNs), while able to account for a
short window of relevant information, typically have difficulty
propagating information across long time lags. This is referred to
as the vanishing gradient problem, where error recurred through
the hidden layers of an RNN can decay to zero or grow
unbounded. In contrast, the LSTM architecture ensures
constant error flow. This allows for complex
information—such as the hysteresis in stress, strain, etc. in soft
electrothermal actuator dynamics—to be carried through over a
long period of time-dependence.

A single LSTM node (Figure 4A) takes an input x(t) ∈ Rn,
where n is the number of input features, and outputs the cell
vector ct ∈ R, given the inputs x(t), h (t−1), and c (t−1) with the
following equations:

f t( ) � σ Wfx t( ) + Ufh t − 1( ) + bf( ) (5)
i t( ) � σ Wix t( ) + Uih t − 1( ) + bi( ) (6)
o t( ) � σ Wox t( ) + Uoh t( ) + bo( ) (7)

~c t( ) � tanh Wcx t( ) + Uch t − 1( ) + bc( ) (8)
c t( ) � f t( )◌ c t − 1( ) + i t( )◌ ~c t( ) (9)

h t( ) � o t( )◌ tanh c t( )( ) (10)
where σ is the logistic function, o is component-wise
multiplication, and the functions f(·), i(·), o(·): R ↦ R

represent the forget gate, input gate, and output gate of the
LSTM node, respectively. Wf,i,o,c ∈ Rh×n, Uf,i,o,c ∈ Rh×h, and
bf,i,o,c ∈ Rh are the matrices containing the respective input
weight, recurrent weight, and bias parameters that are learned
during training of the network, where h is the number of hidden
neurons.

Our neural network consists of three layers: one of LSTM
nodes, one fully connected layer, and one output (Figure 4B).
Our model has 300 nodes in the LSTM layer and 300 nodes in the
fully-connected neuron layer, which uses the ReLU activation
function. The fully-connected layer leads into a single node for
the output actuation state: θ(t). This approach is a simpler
sequential network than the hierarchical LSTMs of Luong
et al., 2021, which was used for similar electrothermal twisted-
coil polymer actuators.

FIGURE 3 | Data collection test example, bidirectional. (A) Temperature
of each SMA in the limb during test alongside corresponding limb angle. (B)
PWM input into each SMA during test at corresponding timepoints.
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2.4 Test Setup and Training
Our machine-learned model uses a time window-based
representation for each configuration of sensor/actuation
inputs (v1 to v4, Eqs 1–4). Each of these is supplemented with
the previous deflection angle from our onboard sensor, as per
time series dynamics:

Xk t( ) � vk t( ) vk t − 1( ) θ t − 1( )[ ] (11)
where k ∈ [1, 2, 3, 4] for each respective test using that input
vector. Our predictor therefore models the dynamics function

θ̂ t( ) � g Xk t( )( ). (12)
We used the mean-squared error (MSE) loss metric below to

train the model and used the root-mean-squared-error metric
(RMSE) to quantify the magnitude of the difference between our
predictions for point i, θ̂(t)i, and the ground truth data θ(t)i.

MSE � 1
n
Σn
i�1 θ̂i t( ) − θi t( )( )

2
, RMSE � �����

MSE
√

(13)

The experimental data was split such that the initial 67% of the
time series data was selected as training data while the remaining
33% were chosen as the validation set. The bending angle data
was linearly-scaled so that the maximum and minimum values
lay between 1 and 0. The models were trained using the Adam
optimization algorithm with a learning rate of 10−3 and weight
decay of 0.9. Training was performed for 20 epochs, with
convergence generally observed after 10 epochs for each
model. A batch size of 100 time steps was used; all other
hyperparameters of the LSTM were unchanged from default
values. The models implemented in Python 3.9 using the
Keras API for Tensorflow running on a Google Colab
notebook with a GPU-accelerated runtime environment, and
has been open-sourced (see Data Availability Statement).

2.4.1 One-Step Predictions vs. Open-Loop Rollouts
Once these models were trained, we performed two experiments
each to quantify their performance. First, a single-step-ahead
prediction in time for each of the input vectors was performed
across the test set, i.e., Eqs 12, 13 for all datapoints i in the test set.
This is done to validate that these models have been sufficiently

trained to learning time-dependent information. This test is
useful primarily as a sanity check, since one-step predictions
are only a basic minimum for model use (e.g., in predictive
control).

Second, we use our model in the form of its intended use:
multi-step-ahead open loop rollout simulations. Starting at some
initial sample in the test set, indicated as ~θ(t � 0), our rollout
recursion becomes

~Xk t( ) � vk t( ) vk t − 1( ) ~θ t − 1( )[ ] (14)
~θ t( ) � g ~Xk t( )( ), (15)

FIGURE 4 | Neural network architecture. (A) Visualization of an LSTM block as represented by Eq. 5–10. (B) Our network consists of an LSTM layer connected to
one fully-connected neuron layer.).

FIGURE 5 | Predictions of each model one time-step into the future. (A)
Models trained on unidirectional data using both PWM duty cycle and
temperature as inputs, i.e., v1,2. (B) Corresponding models trained on
bidirectional data, v3,4. Signals are virtually identical, indicating that one-
step predictions are extremely accurate.
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i.e., predictions are fed back into the neural network for successive
timesteps. In this case, we used a measured value from the bend
sensor as our initial value, but at all future points themodel has no
knowledge of the true deflection angle.

Finally, these rollout predictions were compared against a
simple predictor as a reference for improvement gained by
using our neural network. We chose least squares regression
for this task, which was performed on each test in the same
manner with the same input vector vk. It is expected that the
linear regression does not capture hysteresis, and therefore will
not be able to predict the nuanced behaviors of our
electrothermal actuators.

3 RESULTS

Our framework was evaluated by examining the performance of
our neural network predictor. For the one-step predictions, θ̂ lies
very close to the observed values θ in all cases (Figure 5). The best
performing test in this case was Test k = 1 for unidirectional
bending with PWM duty cycle only (RMSE = 0.2091°), while the
worst performer was Test k = 4 for bidirectional bending with
PWM duty cycle and temperature as inputs (RMSE = 2.613°). In
both cases, these tests were well within the manufacturer’s stated
accuracy of our soft bending sensor.

The results of open-loop rollout prediction across the various
input spaces shows different tracking performance using different
input spaces. Figure 6 compares the predicted trajectory of the
limb over time using the models trained with each input vector vk.
In general, the fewer the number of input variables that were
included, the worse the performance. Ultimately, Test 4
performed the best of all the cases (RMSE = 5.350°), while
Test 1 performed the worst (RMSE = 6.296°). It is visually
clear from Figure 6 that the bidirectional tests outperform the
unidirectional tests, and that inclusion of temperature improves

prediction quality. However, all results demonstrate a usable
model depending on the circumstance.

Our model also shows performance improvements over the
naive least-squares fits. Using PWM-only tests, least-squares
predictions are effectively noise, whereas our model shows
reasonably small error in this case (Table 1). This is expected,
since the LSTM network captures internal state. Fits using
temperature are lower error, primarily because temperature
correlates reasonably well with bending angle.

However, the least-squares fit with temperature is artificially
improved due to the density of our data. Figure 7 shows the least-
squares fit for the unidirectional PWM-with-temperature test
(v2). Since our SMAs spend more time cooling down than
heating, the data set contains more cooling points. The least-
squares fit is biased toward this region, and provides a very poor
prediction during heating, which is of higher importance for
modeling and control. In comparison, our LSTM neural network
model attempts to account for hysteresis behavior during heating.

4 DISCUSSION AND CONCLUSION

This article introduces an embedded, in-situ sensor design and
neural network modeling framework for actuator dynamics in
soft, SMA-powered robot limbs. The sensing approach is
inexpensive, off-the-shelf, and robust for extensive data
collection. The learned LSTM-based neural network dynamics

FIGURE 6 | Predicted rollout trajectories over 10 min of actuation using θ(t = 15s) as initial value, for unidirectional (A) or bidirectional (B)motions. Test ~θ1 depicts a
rollout from the model trained only on PWM input data on a single SMA. Test ~θ2 also depicts a unidirectional rollout, but uses the model trained on both PWM and
temperature. Tests ~θ4 and ~θ4 show the rollouts for the bidirectional models trained on PWM and on PWM with temperature, respectively. All tests show extremely little
drift over arbitrarily long time scales.

TABLE 1 | Comparison of RMSE of least squares fit vs. learned model rollout,
bidirectional motions.

Test case Least squares RMSE LSTM rollout RMSE

Test 3 (uj only) 19.01° 6.151°

Test 4 (uj and Tj) 6.372° 5.350°
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models appear to capture the core physics that govern these
electrothermally-actuated soft limbs.

4.1 Neural Network Model Performance
Analysis
Single-step-ahead predictions validate that our model sufficiently
learned the importance of time-dependent behaviors, and open-
loop rollouts produce low-drift predictions over extremely long
time periods (i.e., ~10 min). In the scenario of the most amount of
data—bidirectional bending with temperature
included—predictions are of low error in all regions of the
state space. The RSME error in the resultant predictions were
on the same order of our sensor accuracy. Predictions were
performed 2.4× faster than real-time, which is promising for
feedback control applications. However, improvements can still
be made to reduce error.

When training on only the PWM duty cycles, particularly in
the unidirectional case (Figure 6A), our model consistently
overshoots the expected deflection angle. This could be
attributed to the availability of less data due to fewer inputs,
or more mechanically hysteretic behaviors with single-SMA
motions—i.e., the only elastic restoring force is due to the
soft silicone. However, in the bidirectional case, rollouts
using PWM inputs only show surprisingly accurate
predictions. As a result, it may be possible to model these
electrothermally-actuated soft robot limbs without
temperature sensing. Mechanical designs for untethered soft

thermal actuator robots can therefore be made simpler while
still maintaining our capability for dynamics predictions, and
different components of our framework can be used
independently. Possible future work includes experiments
with more neural network layers and architectures, as well as
tuning of hyperparameters.

Inclusion of temperature is observed to reduce or eliminate
overshoot in the predictions. The RMSE error improvement is
small over the course of the entire test set in the bidirectional case
(approximately 13% lower error); however, visual inspection of
Figure 6 shows qualitative improvements.

4.2 Sensor Design Implications
Our temperature sensor remained attached and showed no visible
fracture or detachment even after our extensive testing. However,
the proof-of-concept fabrication process used here, where
thermally conductive epoxy is applied by hand, often led to
large amounts of adhesive and therefore a large thermal mass
at the junction site. Correspondingly, the neural network’s
response in predicted angle has a slight time delay in
comparison to the test data. Potentially due to this, many of
the results in Figure 6 do not appear to accurately capture sharp
increases in bending angle.

4.3 Future Work and Conclusion
This work contributes an approach for embedded, in-situ sensing
and dynamics predictions of electrothermally-actuated soft robot
limbs. Our proof-of-concept demonstrates accurate predictions
on the order of our soft deflection sensor’s capabilities in a
compact device architecture that can be readily translated to
untethered soft robots. The framework therefore bridges a crucial
gap between hysteretic, difficult-to-model actuators and practical
use in soft robotics applications.

Future directions for this work include improvements to both
the sensor and the model, as well as application in walking robots.
For the sensor, reduced thermal mass may be possible with a
flexible adhesive as opposed to a rigid epoxy. We anticipate
examining materials such as the liquid metal embedded
elastomers in Bartlett et al., 2017 and Malakooti et al., 2019,
which exhibit high thermal conductivity, mechanical compliance,
and fracture toughness (Kazem et al., 2018). The manufacturing
process may also be automated using digital fabrication
techniques like 3D printing to reduce human error.

For the predictive model, more tailored neural network
architectures may be explored, such as those in Kang et al.,
2020; Han et al., 2018. Approaches such as the Preisach model
(Ge et al., 2021), which have seen success in system identification
for SMAs, could also be used. In addition, although LSTMs
inherently incorporate information from multiple previous
timesteps (Hochreiter and Schmidhuber 1997), more
specialized architectures could be developed that take
advantage of higher-order terms of θ in the state vector. We
anticipate implementing our method on a walking robot and
using those results to quantify the need for model improvement
before exploring algorithms beyond our proof-of-concept.

Most importantly, future work can incorporate these models
as part of predictive control or planning algorithms for

FIGURE 7 | Demonstration of improved hysteresis characterization
predicted from ~θ rollout prediction on unidirectional bending trained on u1 and
T1. The LSTM captures some hysteretic effects over time whereas a naive
least-squares comparison does not.
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positioning of untethered soft limbs. Dynamics models are
needed for advanced techniques such as model predictive
control for soft robots (Sabelhaus et al., 2021), which
demonstrate advantages in robustness and safety over model-
free approaches. Whether robot designs include the proposed
temperature sensor, or simply use PWM duty cycle in the neural
network, our results imply that predictions are possible. Robot
designs are under investigation that incorporate our framework
as part of a walking soft robot.

Lastly, we note that the dynamics model tests presented here
utilize ground-truth temperature measurements during open-
loop rollouts. These would not be available during online
prediction scenarios, as would be the case for feedback
control. However, we consider these tests to be valid, since
prior work has shown that the temperature of SMA wires can
be predicted reasonably well from Joule heating models (Wertz
et al., 2022) and that LSTM networks may also be able to predict
temperature itself (Luong et al., 2021). A possible direction for
future work is therefore predicting temperature alongside
bending angle. Our temperature-free models, which do not
have this drawback, can still be used for true open-loop
predictions.
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