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Industrial contexts, typically characterized by highly unstructured environments, where
task sequences are difficult to hard-code and unforeseen events occur daily (e.g., oil and
gas, energy generation, aeronautics) cannot completely rely upon automation to substitute
the human dexterity and judgment skills. Robots operating in these conditions have the
common requirement of being able to deploy appropriate behaviours in highly dynamic
and unpredictable environments, while aiming to achieve a more natural human-robot
interaction and a broad range of acceptability in providing useful and efficient services. The
goal of this paper is to introduce a deliberative framework able to acquire, reuse and
instantiate a collection of behaviours that promote an extension of the autonomy periods of
mobile robotic platforms, with a focus on maintenance, repairing and overhaul
applications. Behavior trees are employed to design the robotic system’s high-level
deliberative intelligence, which integrates: social behaviors, aiming to capture the
human’s emotional state and intention; the ability to either perform or support various
process tasks; seamless planning and execution of human-robot shared work plans. In
particular, the modularity, reactiveness and deliberation capacity that characterize the
behaviour tree formalism are leveraged to interpret the human’s health and cognitive load
for supporting her/him, and to complete a shared mission by collaboration or complete
take-over. By enabling mobile robotic platforms to take-over risky jobs which the human
cannot, should not or do not want to perform the proposed framework bears high potential
to significantly improve the safety, productivity and efficiency in harsh working
environments.

Keywords: robotics, human-robot interaction (HRI), behavior trees (BT), harsh environments, human-aware task
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1 INTRODUCTION

The sector of Maintenance, Repair and Overhaul (MRO) has reached a value of 686.6 Billion USD in
2020, and is expected to grow with a CAGR of 2.3% until 2027, reaching a total value of 787.2 USD
(Expert Market Research, 2020). In this huge and diversified scenario of activities, inspection and
repair, especially offshore, are still entirely human based, since the employed workforce is extremely
skilled in running manufacturing tasks, but also in effectively undertaking complex decisions in very
critical operating scenarios. Men and women executing work tasks in harsh conditions push their
physical and psychological resources to their limits, therefore exposing them to high risks for their
wellbeing. As a result, the world of MRO assists yearly to the death of 3.5 thousand expert human
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operators as a result of accidents and 3.3 million non-fatal injuries
of various nature (Eurostat, 2020). This is neither related to poor
safety measures nor to superficial human behavior: harsh
environment and unforeseen events, including unpredictable
faults and malfunctions, dramatically raise the level of danger.

The recent advances of robotics and artificial intelligence are
suggesting that, in this kind of contexts, the introduction of a new
generation of service and maintenance robots could be the ideal way
to safeguard the health of workers, if they could achieve a
comparable quality in performing maintenance operations.
Nonetheless, this would hardly be enough to substitute a human
worker, as the human decision capacity, especially in unstructured
environments, will still be unreachable for years by AI. The best
trade-off between safety, reliability and decision capacity is nowadays
widely accepted as the human-robot interaction, as testified by the
increasing number of collaborative and environment-aware robots
proposed by manufacturers (Grau et al., 2021).

As mentioned, not only harsh work places are hazardous for
the physical health of workers, but they are also sources of mental
stress and fatigue, which could lead to anxiety, decrease of
attention and mistakes. Moreover, human beings naturally
communicate not only by assertion, but also through their
behavior, attitude, expression, etc.,. Therefore, it is of capital
importance that robots conceived as teammates for harsh
environments are able to detect and to interpret a wide range
of indirect signals from human workers (e.g., voice tone, facial
expression, posture) and their relation to their actual context, to
be able to work with them and to preserve their health. This leads
to the necessity of developing robot assistants that implement
some notion of artificial empathy (AE) (Yalcin and Di Paola,
2018). In this work, AE will be intended as the capacity to detect
in humans feelings of either physiological or emotional nature,
which could indicate or preempt a danger either for their health,
for the success of a task or for the plant functioning, and to
formulate a proper reaction to them.

In addition to understanding some notion of worker status
(health and mental), of course a mobile service robot should
provide a service in the context of an unstructured environment,
like an offshore oil platform, a wind farm or a gas pipeline. Such
operations may be for example the inspection of a difficult-to-
reach surface to identify damages, cleaning and de-rusting, re-
coating, closure of leaks by welding or additive manufacturing,
logistics, and others. Examples of robots with such capabilities are
gradually appearing both in research (Schmidt and Berns, 2013;
Gitardi et al., 2021) and as commercial products (Anybotics,
2022; Eddify, 2022; Rope Robotics, 2022). These operations must
be planned, supervised and validated by a human worker, who
has the necessary experience and decision capacity to guide them
to proper execution, therefore also during this kind of tasks,
empathic communication has a central role. The whole set of the
aforementioned communication and collaboration tasks are
called Human-Robot Interaction (HRI).

Starting from these premises, this work is motivated by the need
of a holistic approach to study the HRI in harsh environments with
the focus on the formulation of adapted robotic behaviors directed
towards the alleviation of the perceived stress factors and human
exposure to dangerous situations.

The main novelty is the use of Behavior Trees (BT) to design a
comprehensive HRI framework that enables the robot to select
and perform actions adapted to the constraints imposed by the
presence of humans with different health and emotional states,
requirements and preferences. The framework leverages an
extended set of functional robotic capabilities (i.e., navigation,
perception of human activities, communication, emotion
recognition, task risk assessment, planning and execution of
shared MRO tasks) to address the complexity of human-robot
joint decision making dynamics during operation in harsh
contexts. The management of the human robot interaction is
considered as an integral part of the high-level robot’s control
architecture aiming to identify human key behavioral factors
affecting the robot’s decisional process.

These factors are tackled in various contexts: the robot
ascertains the current working situation involving the human
“through the eye of an external observer”; the robot grasps
psychosocial factors affecting human health and behavior (e.g.,
in addition to physical difficulties of handling certain tasks, an
excessive human emotional burden could lead to irreversible
losses); the robot takes a task-based perspective to identify,
assess and mitigate potential risks with focus on the
manufacturing human-robot collaborative process; the robot
assigns roles and responsibilities and proposes alternative
courses of actions to alleviate the difficulty of tasks to be
handled by the humans (i.e., through human-robot shared plan).

In order to meet teammates’ needs and requirements in HRI, the
proposed framework provides a BT interface facilitating the
authoring of robot’s behaviors grouped into two main HRI phases:

• The Safety HRI behavior tree has the aim to support a
human agent by observing her/his psycho-physical status,
processing the information and deliberating an immediate
decision.

• The MRO HRI behavior tree determines the main
environmental and situational risk conditions for the
operator, generating an empathy map, and based on an
interdependence analysis processes a task sequence to
propose feasible alternative workload distributions
between human and robot, with the aim of minimizing
hazards and task failures.

The paper is structured as follows. Section 2 regards
methodology: general presentation of behavior trees (section
2.1), main assumptions (Section 2.2), and description of the
considered human-robot interaction modes (Section 2.3).
Section 3 describes the proposed framework, in particular
describing the behavior trees dedicated to Safety (Section 3.1)
and MRO (Section 3.2). Section 4 discusses the main features of
the proposed approach. Finally, Section 5 regards open points
and perspectives on the implementation in a real case.

2 METHODS

This section introduces the main methodological concepts
exploited to develop the framework described in Section 3, as
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well as the underlying assumptions about the environment,
involved human worker, robot, and their relationship in a
collaborative context.

The main tool used to structure the proposed deliberative
framework is the formalism of behavior trees, which are briefly
presented in the following.

2.1 Behavior Trees
Behavior trees (BTs) have been introduced in AI
programming for the videogame industry, obtaining great
success in the last 10 years because of their flexibility and
readability. Nowadays, many of the main environments
dedicated to videogame programming integrate BTs (Unity,
2021; Unreal Engine, 2022), offering also visual interfaces for
designing and automatically implementing them. Their
usefulness has been rapidly acknowledged by researchers
and developers of AI for robotics (Marzinotto et al., 2014;
Ghzouli et al., 2020; Iovino et al., 2020), also recognizing their
effectiveness in generalizing several other formalisms for
coding hybrid dynamical systems (Colledanchise and
Ögren, 2017).

A BT is a directed acyclic graph, which origins from a root
node, splits into several branches through control flow nodes and
is terminated by execution nodes, i.e., are graph leaves. Cyclically,
the root node generates a tick, i.e., an enabling signal that follows
a different path along the tree depending on the states and types
of traversed control flow nodes. Eventually, the tick reaches
execution nodes, which are dedicated to performing actual
operations. When they are reached by the tick, execution
nodes return to the parent node a state variable, which can
have value Success, Running or Failure. In turn, control flow
nodes collect the states of child nodes, and return their own state
depending on them and on their own type. The whole BT is
supported by a set of global variables, called Blackboard (BB),

which are accessible to all the nodes and are dynamically
modified by them.

The node types are described in Table 1. In typical visual
representations of BTs, nodes are laid out from left to right
depending on their priority of execution, so the term
“sequentially” used in the following implies that nodes are
evaluated in a well-established order, which is coherent with
the graph representation.

For a comprehensive introduction on BT, we refer readers to
Colledanchise and Ögren (2018).

Figure 1 presents an example of BT for an inspection task of a
mobile service robot.

The BT root (possibly a parent node from a BT of higher
hierarchy level) ticks at a specific frequency the main inspection
task node 2, which will pass the tick to one of its children,
depending on the type and policy of the root node. In this
example, the evaluation of the children is run sequentially
with a first check on task execution clearance 3 followed by
the actual surface inspection operation 4. The sequence node 2
fails if either of its children returns failure, e.g., an external signal
interrupts the task (pre-condition node 3—continue Task = =
false) or the Surface inspection sequence fails.

The Surface inspection sequence 4 first moves the robot to
the target position, by triggering a low-level routine. While the
robot is planning and/or moving towards the target position
the Move to position node 5 returns a Running state to its
parent node (i.e., Surface inspection). If the robot is unable to
reach the target position (e.g., there is no viable path, the robot
has fallen over) theMove to position will return a Failure state.
Once the position is reached (i.e., Move to position returns
Success) the evaluation of the Surface inspection tree moves to
the next child and the robot checks if a cleaning pre-treatment
is required for that kind of surface (pre-condition 7—Cleaning
Required?); in case it is required (cleaningRequired = = true), it

TABLE 1 | Main BT node types.

Category Type Notation Function Returns

Root Root Ticks its only child The state returned by its child
Control flow Selector Ticks children sequentially until one returns Success or Running Success when it receives a Success from a child

Failure when all children return Failure

Sequence Ticks children sequentially until one returns Running or Failure Success if all children return Success
Running/Failure when a child returns Running/
Failure

Parallel
Sequence

Ticks all of its children simultaneously until a child task returns
failure

Success when all of its children tasks return success
Failure when a child task returns failure
Running otherwise

Parallel Selector Ticks all of its children simultaneously until a child task returns
success

Success when one of its children tasks returns
success
Failure when all child tasks return failure
Running otherwise

Decorator Ticks its only child only if a condition is satisfied Depending on a function applied to a set of variables

Execution Action Green box Performs operations Depending on its purpose
Condition Yellow

ellipse
Applies a function to determine the return state Depending on its purpose
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ticks the Clean action 8, which upon completion will return
Success. If no cleaning is required, the sequence node 6 will
return failure, which will be converted in success by the Return
Success decorator 9. After the optional cleaning, all the
available surface inspection methods (11- Steoreoscopy, 12-
Fringe projection, 13—Profilometer) are tried by the Scan
Methods selector 10, until one succeeds.

Some of the most prominent features justifying the use of a BT
representation are its modularity, reactiveness and deliberative
structure.

Modularity can be easily achieved in BTs by implementing one
activity through an independent BT, i.e., a BT that has no
interactions with other nodes of the parent tree, other than
receiving the tick. This feature of BTs is very important in our
framework, as it allows the reuse of subtrees in other trees
(Colledanchise and Ögren, 2017) to sequence the tasks of a
mission with the support of a mission planner that queues BT
templates and reference tasks under proper control nodes.

Intuitively, the reactiveness of a system means the formulation
of an appropriate response to the various changes in the
environment. In the BT case this is achieved through a
repeated ticking which frequently polls the environment for its
current state to better support the decision making and to make
the behavior transparent and predictable (Sprague and Ögren,
2018; Biggar et al., 2020).

Deliberate action is a central issue in robotics mainly
motivated by the need of endowing autonomous robot with
critical capabilities to cope with a variety of environments,
tasks and interactions (Ingrand and Ghallab, 2017). One such
critical capability is the continual planning and deliberation
addressing the agent’s ability to react to events, to update and
repair its plans based on its contextual perception (Ghallab et al.,
2016). BTs can also be used to create deliberative agents, where
the actions are carried out in order to reach a specific goal. For
instance, BT can be used as control architecture in an automated
planning by enabling a reasoning process that is both hierarchical
and modular and can monitor, update and extend plans while
acting (Colledanchise and Ögren, 2018). Within our framework,
the deliberation is enabled not only by the entire structure of the

tree but also by the feedback given by dedicated deliberative
subtrees (see Section 3.2).

2.2 Assumptions
As anticipated, the proposed behavioral framework has been
developed with a focus on unstructured work places, where
mobile service and maintenance robots can be effectively used
to assist human work activities. The main assumptions regarding
these elements are described in the following.

2.2.1 Environment
The target applications are large work plants (e.g., more than
1,000 m2), potentially laid out on more than one floor,
comprising a multitude of fixed and moving obstacles. The
plant map is known and available to the robot, although
variations from nominal can be present at any time because of
moving obstacles (workers, other robots, transports) or changed
landscape. We consider the environment reachable by the robot
in navigation mode as bidimensional, or at least easily
representable by a multi-layer 2D map, to support multiple
decks and irregular but easily traversable terrains. More
general cases, where considering environments as intrinsically
3Dmay be mandatory also during navigation (e.g., with reference
to drones), could be also accommodated by the proposed
approach, but they are not treated for simplicity.

2.2.2 Human Workers
Human workers considered in this framework are capable of
moving by walking and communicating by speaking and using
gestures. Their phrases are assumed to be fully understandable by
the robot, at least the ones that are of interest for its operations. Of
course, using Natural Language Processing (NLP) to convey
commands to a robot in a general, possibly harsh environment
is an open research branch, but it is considered out of scope for
this work.

The facial expression of a human is considered as an important
indicator of the worker’s health and emotional status, although it
may not be always available to the robot, not only because of
visual impairing, but also due to helmets, masks etc. For this

FIGURE 1 | Behavior tree example. Unless an external signal stops the task (node 3), the inspection sequence executes: motion to the target area (node 5);
evaluation if cleaning is required (subtree of node 9); and, finally, selection of the most effective scanning methods (subtree of node 10).
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reason, it is important to address multimodal agent status
recognition, possibly acquiring additional information from
voice tone, physiological sensors and body language.

The human is considered to have a much superior judgement
capacity, compared to the robot, when in a favorable emotional
condition (e.g., happiness, relaxedness, focus), and can be put into
discussion only when high danger is associated to a heavily
altered emotional or health state (e.g., nervous, unresponsive,
injured, incapacitated).

2.2.3 Robot
The considered robot is mobile and autonomous, i.e. it is able to
navigate between two points on the available plant map without
human guidance, automatically avoiding unexpected and moving
obstacles. To do this, the robot is equipped with a locomotion
system (e.g., wheels or legs) and proper sensors.

The robot is equipped with a vision system, which serves
multiple functions. Other than supporting the navigation, as
mentioned before, it is used to detect humans, identify them
and classify their emotional and health state. Moreover, it is used
in inspection tasks, which consist in commanding the robot to
reach a location, search for damages, leaks or other visual features
that require intervention, and to perform the actual inspection
(e.g., take pictures of the area of interest, measure a crack size).
This can happen either in an unsupervised or supervised manner,
with the operator looking through the robot’s eyes by a screen and
giving directions about where to move. In addition to the vision
system the robot can carry other inspection systems (e.g.,
profilometer, 3D scanner).

The robot is able to understand human vocal commands, at
least within a pre-defined set of phrases, and to speak itself, at
least by a pre-defined set of phrases. If available and allowed by
factory policies, the robot may also connect to health-tracking

devices worn by a nearby operator and read signals like heartbeat
frequency or electrodermal activity.

Internally, the robot stores important information to operate
in an MRO environment: plant map, worker identifiers and
associated features, manufacturing operations programs, and
others.

A remote connection to a base, i.e., a plant operations control
center should always be available: primarily, to send emergency
signals for injured workers; secondly, to update and validate
shared work plans, receive new instructions, ask for
equipment, etc.

Finally, the considered robot is able to perform one or more
MRO activities. This term is used here to describe any
maintenance, repair or worker support operation that requires
a tool and a physical interaction of the robot with the
environment, other than navigation. In this respect, the robot
configuration consists of a mobile platform equipped with a
robotic arm, tool changer and is able to carry several
manufacturing tools.

Table 2 resumes a non-exhaustive list of robotic capabilities
jointly with their enabling technologies, relevant for the proposed
framework.

2.3 Human Robot Team Configuration and
Interaction
Trends in the MRO industry suggest a growing need for enhanced
robotic automation in order to conduct operations in harsh
environments, as well as to improve the safety and efficiency of
workers in existing facilities (Heyer 2010). The aim of using robots in
harsh environments and the need for higher degree of autonomy and
deliberative skills during the interaction with the human promotes a
paradigm shift from seeing the robot as an instrument to seeing it as

TABLE 2 | Required robot capabilities.

Capability Description Enabling technologies

Locomotion The robot moves along a defined path Wheels/crawlers/legs
Autonomous navigation The robot localizes its own position, defines navigation paths and runs them.

Detects and avoids unexpected and moving obstacles
LIDAR, GPS, Time Of Flight (TOF), Stereoscopic vision

Object recognition The robot recognizes object of interest in the surrounding landscape, in
particular humans and mission-critical tools

Stereoscopic vision, TOF, vision processing, machine learning

Remote communication The robot communicates with the control base, either continuously or when
necessary, to receive/send commands, data and calls for support or rescue

5G, Wi-Fi

Speech recognition The robot recognizes speech during human-robot interaction, understands
key phrases and parses them as commands

Microphone, NLP

Face recognition The robot recognizes face expressions and identifies emotions from them Vision processing, machine learning
Posture recognition The robot is able to classify the posture of humans (e.g. as standing, sitting,

lying), and their movement type (still, working, walking, unnatural/injured)
Vision processing, machine learning

Defect recognition The robot recognizes common types of defects (e.g. leaks, rust, bumps,
cracks, abrasions, burning)

Vision processing, 3D scanner/profilometer

Speech generation The robot generates words and possibly speaks with human-like voice in
human-robot interaction

Speakers, NLP

Manufacturing operation # A specific type of manufacturing operation Manufacturing tool, tool selector, vision processing, CAM
engine for repair, force/torque sensor

Environmental conditions
sensing

The robot takes measurements of the outdoor environment Wind, temperature, humidity sensors

Life sign checking The robot can connect with available health-tracking devices worn by the
present work mate and analyse them to assess health and emotional state

Bluetooth/Wi-Fi, heart rate sensor, skin capacity sensor
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a teammate. In this role there are higher expectations for the robot to
provide proactive assistance in the planning and execution of the
work activities. Nevertheless, more work is needed to smoothly
interface humans in different roles and robots toward a joint team
working on a common goal. The robot, seen as an equal peer
complying with the team’s rules, should also be capable of varying its
level of autonomy and involvement depending on environment and
situation. Recently, research has been using the term
Human–Autonomy Teaming (HATs) to describe humans and
intelligent, autonomous agents working interdependently toward
a common goal (O’Neill et al., 2020; Lyons et al., 2021).

Human communication is naturally multimodal, with voice,
facial expression and gestures considered as key channels
supporting its realization. By analogy, these modes can be
considered extremely relevant to achieve a similar natural
exchange between the robot and the human teammates. On one
hand, the robot must be endowed with the capability to not only
accurately capture, analyze and understand the human states and
requests, but also to reply adequately. On the other hand, the human
teammate should provide informationwith a language that the robot
can parse, and should be fully aware of the reactions and capabilities
of the robot. Furthermore, in order to avoid the buildup of mistrust
or frustration, he/she must be aware of any sudden change in the
autonomy level of the robot and the associated behaviors.

One of the main contributions of this work is to elaborate on
the generation of shared working plans relying upon a multi-
modal human robot interaction and on empathy-relevant
behaviors. In this interaction, the actors can have two types of
roles: supervisor/control base and teammate. The human
operator can assume both roles while the robot can assume
only the latter one. As a supervisor, the human is responsible
to define and adapt the ultimate goal of the mission as well as its
main tasks. Furthermore, in this role the human also monitors
and validates the team’s performance towards the team’s goals.

The teammate role implies that both human operator and
robot execute actions and collaborate locally towards the
completion of a mission through the multimodal interaction.
The robot is autonomous in the realization of specific tasks by
leveraging its capabilities to carry out MRO activities, but requires
input from the human teammate and supervisor for the update of
the goals and the planning of the mission. By design, the robot is
not driven by intrinsic motivations and goals, and in this respect
the human will be considered as the final authority responsible to
specify the degree of automation expected for each task of the
mission. However, the robot is capable of exhibiting empathy-like
behaviors by leveraging its manufacturing capabilities to support
the human teammate’s goal.

These capabilities have parallel representations as behavior
tree leaf nodes across two main behavior subtrees of the HRI tree:
the Safety HRI subtree and the MRO HRI subtree, as described in
sections 3.1 and 3.2 respectively.

3 FRAMEWORK

In the proposed framework we draw upon sophisticated levels of
robotic perception and control to create an artificial sense of the

environment and self-awareness, supporting the instantiation of
intelligent robotic behaviors during the interaction with other
entities in the environment. In particular, during the interaction
with the humans the robot will firstly play the role of an observer,
meant to assess the agent’s health status well before any further
interaction (Section 3.1). If this preliminary screening identifies
the human as capable of working, the robot proposes itself as a
teammate for a sequence of scheduled MRO tasks (3.2).

Although far from being capable of displaying a full-blown
empathic response, the robot offers an alternative to bridge the
common empathy gap that characterizes social human interactions,
i.e. the human tendency to underestimate the influence of varying
mental states on our own behavior and to make decisions that only
satisfy our current emotion, feeling, or state of being (Gutsell and
Inzlicht, 2012). In this respect, we can argue that an autonomous
robot can be an effective team player, which can exceed in certain
situations the human capabilities. This is enabled by its greater
information processing capability, the lack of performance
fluctuations due to mood, personality or other psychological
aspects, as well as no hindrance generated by human-like
complications or daily struggles. In turn, a robot has a limited
and very context-specific decision capacity, it cannot perform
abstraction and undertake unexpected tasks, and lacks the
dexterity of a human worker. These considerations can trigger a
cost-benefits analysis of the empathy applied to HRI (Section 3.2.1),
and a consequent estimation of risk levels for health, operations
success and equipment condition (Section 3.2.2). With the support
of its cognitive system, the robot evaluates each required operation
and its capability of performing it (Section 3.2.3) and proposes itself
to take over difficult tasks bearing high risks for human health
(Section 3.2.4). This promotes a culture of safety in the workplace as
the main benefit but without neglecting the cost associated with the
risk transfer to the robot.

Starting from the premise the robot should support a human
teammate (TM in the following) to carry out anMROactivity, the first
behavior to be deployed by the robot is to establish the contact
(Figure 2). This will be triggered by the satisfaction of the human in
sight precondition. In case this returns Failure, the Seek TM actionwill
be instantiated in order to localize the teammate. The detection of the
human teammate triggers the activation of different communication
channels (e.g., speech recognition, text to speech) followed by the
implementation of a preliminary behavioral sequence.

This sequence, assuming the availability of autonomous
navigation and the sensitivity to strategic affordances of
interaction with humans, includes the following steps:

• Initialize TM: instantiates the teammate’s identity (ID
property) and Position vector.

• Approach TM: assume a socially cognizant trajectory with
adapted posture and slowing down as it nears the human.

• Maintain distance: the robot approaches the teammate
always adhering to common conventions of what
constitutes people personal space (e.g., social distance
3 m, personal distance 1.5 m, intimate distance 0.5 m).

• Enhance Attention: the robot’s operative system focuses
resources on the sensors required to evaluate the health state
of the human.
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The last action of the HR Contact tree is to initiate the HRI
sequence. The whole HRI behavior tree exploits information
coming from the robot’s own sensors and from the control
base by wireless connection. It includes the Safety HRI
sequence followed by the check of a set of preconditions and
finally theMROHRI sequence, which will be described in detail in
the subsequent sections.

3.1 Safety Subtree
Within our framework, the safety concept is addressed across
different dimensions, which extend beyond the boundaries of the
Safety BT. A first dimension is related to risks that have a physical
impact on a person’s safety, such as collision risks. These risks are
kept at bay through the execution of the Approach TM and
Maintain distance sequence of activities under HR Contact BT.
Secondly, the consideration of psychosocial measurements within
the Safety HRI subtree contributes to the in-the-moment
assessment of the health state and cognitive overload of the
human teammate. It is assumed that if the robot is perceived
to be dangerous, then the TM affective state would be tense. This
can be addressed by the robot with an adapted questionnaire
during the verbal interaction with the TM (i.e. Safety HRI/
Interaction subtree). Overall, the robot promotes a safer
workspace by indicating or preempting a danger either for the
human health, for the success of a task or for the plant
functioning and formulating a proper reaction to them

(i.e., Safety HRI/Deliberation subtree). Furthermore, the
integration of the human behavioral factors into the planning
of the human-robot shared activities aims to safeguard the human
health status by assigning high-risk tasks to the robot (i.e. MRO
HRI subtree) if potential dangers are detected in the current plan.

In particular, the Safety BT contains the conditions and
actions carried out by the robot to assess the health state of
the actively engaged human teammate and subsequently to
deliberate on alternative courses of action. The Safety HRI
sequence consists of three subtrees (Figure 3):

• Grounding: determines the teammate’s health state by
processing information acquired by sensors.

• Interaction: tries to obtain further information by explicit
verbal interaction with the teammate.

• Deliberation: takes an action consequent to the determined
HealthState of the teammate.

Moreover, the tree’s blackboard includes the following objects:

• The data structure TM (Teammate) of type Human, which
collects information about the human worker presently
involved in the human-robot team.

• The MROrequired Boolean variable, which enables the
execution of the MRO HRI subtree, based on the
mission goal.

FIGURE 2 | Root of the behavioral framework: human-robot contact and HRI sequence. The HR Contact subtree is executed only if a human teammate has been
found and communication has been established. TheHRContact sequence initializes the data structure regarding the engaged teammate, approaches her/him, ensures
safe and comfortable distance, and activates attention functions before starting the two main functions (Safety and MRO).

FIGURE 3 | Phases of Safety HRI and related blackboard variables. The blackboard variables allow to store human teammate identity and health/emotional state,
supporting the execution of the Safety HRI sequence.
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• The MROenabled Boolean variable, which is turned off if
the conditions for proceeding to the MRO HRI after the
Safety HRI are not satisfied.

3.1.1 Grounding (Sequence Node)
The Grounding sequence (Figure 4) is composed by two subtrees:

• Feature extraction: uses all the available sensors to extract
features related to health state expression. The following options
exemplify commonly analyzed aspects, but others can be included
within the same framework:

o Facial expression (happy, focused, nervous, sad, inexpressive,
eyes open/closed).
o Posture (lying, standing, sitting, squatting, hanging).
o Gesture (pointing, typing, standing relaxed, walking,
climbing).
o Physiological signals (heartbeat rate, EEG spectrum, other
features computed from time series signals).

In this case, the action nodes that execute feature extractions
return success at the end of the operation, both in case of successful
and unsuccessful feature recognition. The availability of features to
analyze is managed by the following sequence:

• Multimodal state classification: if at least one feature has
been found in the feature extraction phase (the check is managed
by the Features found? condition), the health state classifier uses
all the available ones to determine two labels: the HealthState of
the teammate and whether he/she is paying attention (isAttentive
variable) to the robot or not.

3.1.2 Interaction (Sequence Node)
After the first phase of HealthState determination, the robot tries
to collect further information by directly communicating with the
teammate (Figure 5). This is achieved by the following sequence:

• Grab attention: is the teammate attentive (isAttentive?
condition), the robot tries to obtain her/his attention, for
example by calling her/him by TM. ID.

• Dialogue: a series of questions and answer collection phases
aims at narrowing the HealthState uncertainty by direct
comments (e.g., “How are you?” followed by an acceptable
answer by the human teammate).

• VoiceTone analysis: another pre-trained classifier, focused
on voice tone recognition, enriches the multimodal
information.

• Answer analysis: the answers received in theDialogue phase are
parsed by Natural Language Processing methods, potentially
modifying or adjusting the provisional HealthState.

3.1.3 Deliberation (Selector Node)
The Deliberation node (Figure 6) evaluates the teammate’s
HealthState, and determines the action to take. The proposed
criterion is a proof of concept, easily customizable to the policies
that the employer implements in the target plant. In this example,
three cases are managed (notice that the evaluation is managed by
a selector between three sequences):

• TM.HealthState≥Injured: if the HealthState corresponds to
Injured or a more severe estimated condition, rescue is
directly called for the human worker in danger.

FIGURE 4 | Grounding subtree. Feature extraction uses multiple signals (e.g., vision, ECG) to generate inputs for the Multimodal state classification model.

FIGURE 5 | Interaction subtree. After ensuring the human’s attention, a dialogue sequence allows to enrich the emotional state by voice tone, and to obtain direct
information from verbal communication.
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• TM.HealthState == Fatigued: if the is able to proceed but
her/his state is evaluated as fatigued, the situation is signaled
to the control base, and the robot asks directly to the
teammate if he/she feels that the manufacturing phase (if
required) can be undertaken.

• TM.HealthState == Normal: if the worker is healthy, the
clearance is signaled to base and if there is a request to
support MRO activities then the variableMROenabled is set
to true. In case no request for such activity is needed the
robot can, for instance, sets the target position towards
which to navigate next and the Safety HRI subtree can be
exited with a Success status.

3.2 MRO HRI Subtree
The MRO HRI subtree, whose main phases are illustrated in
Figure 7, contains the conditions and actions required to address
several key decisional issues that support the planning of shared
MRO tasks with the human teammate. It is executed next to the
Safety HRI subtree only if a number of pre-conditions evaluate to
true (see Figure 2).

The MRO HRI subtree has been designed with the aim of
achieving the following objectives:

- Relieving operators from executing tasks associated to high
risks for health;

- Relieving operators from stressful working conditions and
promoting their involvement in high added value tasks;

- Reducing the complexity of on-site preparatory and post-
intervention activities, whenever the robot requires less

preparatory measures before and after performing a MRO
operation;

Recent studies emphasize how mental state of the workers and
job-related risk factors are affecting productivity (Di Maria et al.,
2020) and safety (Choi et al., 2019) in the workplace. For this
reason, the proposed approach to shared human-robot task
planning aims to include also aspects of human affection, like
emotional dispositions and sensitivity. This builds upon affective
grounding concept (Jung 2017), i.e., the sequential evaluation of
the health and emotional state of the human teammate while
grasping also his/her intention with respect to the MRO activities
to be carried out. For instance, the prior execution of the Safety
subtree may return a Normal health state for a human teammate,
who nonetheless exhibits a stressed attitude, sensed from his/her
voice. This will trigger further investigations into possible
emotional barriers that might hinder the satisfactory
completion of the planned MRO tasks.

The psychosocial measurements made available through the
Safety HRI are an essential starting basis not only to enhance the
human safety but also to foster the empathic capabilities of the
robot. Empathic capabilities are triggered by human behavioral
cues and have a compelling influence on the outcome of the
deliberative process of the robot. Generally, these capabilities can
be analyzed under two main categories, the ones that are more
emotional and the ones that are more cognitive. Emotional
empathy can be defined as the ability to experience and
understand another’s person affective experience by sharing
the same feelings, whereas the cognitive empathy refers to the

FIGURE 6 | Deliberation subtree. The determined health state is used to decide whether the teammate needs urgent medical assistance or if it can and must be
engaged for a collaborative MRO activity.

FIGURE 7 | Main structure of MRO HRI tree.
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ability to represent and understand the internal mental states of
someone and to be able of perspective taking.

In our framework, the empathy concept is limited. The
definition of feelings does not need to be comprehensive for
what concerns the human experience: it just needs to be a
collection of worker conditions that are relevant to our
reference setting. The capability to attribute mental states is
linked with robot’s relevance to adapt its behavior in order to
accommodate teammate’s interaction involvement. In this
respect, the robot’s actions deployed across both Safety HRI
and MRO HRI trees promote a shift from thinking about
empathy as an emotional process to thinking about empathy
as a behavioral decision system. The focus of this system is on a
dynamic, iterative process of robot’s goal prioritization to
improve the occupational health and welfare and to relieve the
human teammates from unpleasantly feeling or difficult tasks.

To account for the emotional and physical involvement, as
well as the sensory perceptions of the human teammate in
relation to contextual conditions, we propose the use of an
empathy map, as described in the following section.

3.2.1 Build Empathy Map
The empathy map is used as a representation of the MRO
personnel’s mindset, actions and risks in relation with specific
use case scenarios and associated tasks. Such data structure allows
to collect valuable insight for the practical implementation of a
shared human-robot work plan.

Empathy maps are tools that are neither chronological nor
sequential (Campese et al., 2019). Nevertheless, we propose a
slightly different interpretation to the definition of the
conventional dimensions, by introducing a task sequential index
(from 1 to N) and by including in-the-moment emotionality. The
proposed empathy map is therefore composed by the following
dimensions, represented and exemplified in Figure 8:

• Do—encloses the sequence of actions the human operator is
supposed to execute in order to complete a MRO activity.

The sequence may be communicated directly by the
teammate during the current human-robot interaction or
made available previously by the control base; the latter case
will be considered, for simplicity.

• Think—provides risk baselines based on aggregated
heuristics learned from MRO personnel, using
historical data (e.g., incident statistics, operator
interviews, qualitative research) and capturing the
experiences and opinions of workers in terms of
feelings and risks (human health, process, equipment
associated with the tasks).

• Sense—information collected on-the-job by the robot, to
enrich the active context (e.g., measurements from
anemometer, thermometer, vision, GPS, weather forecasts).

• Say—collects contextual information provided by the
human teammate during the actual human-robot
interaction (e.g., “task T2 is very long and requires
additional equipment and human resources”).

• Feel—captures the human teammate feelings about the job
at hand during the actual human-robot interaction (e.g.,
overwhelmed, worried, stressed, calm). The emotional
measures can be based on the circumplex model of
emotions, which is a widely used bidimensional model
used to capture a wide range of positive and negative
affect encountered in common HRI scenarios (McColl
et al., 2016; Cavallo et al., 2018). According to this
model, the human emotional states represent different
levels of intensity (arousal) and pleasantness/
unpleasantness (valence). The focus can be directed
towards fundamental emotions like happy, stressed,
relaxed, sad, alert prior to the definition of the shared plan.

These five dimensions contribute, for each task i � 1, . . . , N,
to the determination of risk values in three categories, which
we have identified as the most relevant for industrial contexts
that could benefit from the support of human-aware mobile
robots:

FIGURE 8 | Empathy map. “Static knowledge” dimensions (Do and Think) regard conditions known before considering contextual factors. “In-the-moment
knowledge” dimensions (Sense, Say and Think) regard factors that depend on the present state of the environment and of the involved human teammate.
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• Health Risk RH
i : represents the risk for the safety of the

human worker e.g., of being injured or getting in contact
with hazardous materials.

• Operational Risk RO
i : represents the risk of compromising

the quality or the success of the task in progress, e.g.,
performing an invalid defect inspection scan, performing
a faulty repair operation or compromising work schedule.

• Equipment Risk RE
i : represents the risk of damaging assets or

equipment, including the robot itself.

3.2.2 Risk Assessment
Demanding cognitive and physical tasks are more prone to error-
producing conditions, and an inadequate psycho-physical state of
the human could increase the likelihood of risk modes. The aim of
the proposed framework is then to mitigate these risks thanks to
the support of human-aware robotics.

Before engaging into direct interaction with the human
teammate, the robot plays the role of an external observer.
The starting point is the identifications of possible human
errors and at-risk behaviors, which could possibly lead to
accidents, or affect reliability, productivity and efficiency of
operations and equipment.

For what concerns the errors, they can be classified in two
types: endogenous and exogenous. Endogenous errors are defined
as caused by negative personal performance shaping factors, such
as anxiety, stress, fatigue, fear, sensory processing disorders and
other psychosocial factors. Performance in the workplace is also
challenged by the role of the endogenous circadian rhythm
(Pilcher and Morris, 2020). Exogenous errors, on the opposite
side, are caused by negative environmental performance shaping
factors, such as low light conditions, fatigue and distraction
patterns, technology glitches, weather condition, the absence of
adequate tools and equipment, and others.

At-risk behaviors are different from human errors. They can be
described as behavioral choices that are taken when the
perception about the risk of a task is mistakenly interpreted as
insignificant or justified. The incapability to see the risk in these
situations might have different causes, such as the development of
unsafe habits or a natural drift from compliance with specific
working procedures. These factors are accentuated by the
accumulation of experience in realizing a specific job, which
promotes tolerance towards at-risks behaviors and ultimately
induces failures in recognizing risky situations.

Quantitative risk evaluation is an essential step to enable
automated decision making about the formulation of
improved human-robot shared plans. In particular, calculated
risk values can be used to select candidate sub-tasks for being
supported or completely taken over by the robot teammate. To
this aim, we suggest an approach that is compliant with the
standard definition of risk given in International Organization for
Standardization, (2018), where risk associated to a task is
characterized by a consequence value C and a likelihood value
L. Consequence quantifies the seriousness of the potential
accident and can be defined on an arbitrary severity scale, e.g.
ranging from 0 (no consequence) to 5 (highest severity), while
likelihood indicates the “chance” that the accident occurs. The

commonly used formula for taking into account these two
measures quantitatively in a global risk assessment is

R � C · L.
Aust and Pons (2021) suggest an extended framework for risk

assessment that involves the use of cofactors, which are risk
modifiers based on situational conditions, like weather, human
health and affective status, equipment condition, etc. In
particular, they propose the use of multiplicative cofactors xj,
j � 1, . . . , Q, with risk taking the form

R � C · L ·∏M
j�1

xj.

This formulation is well suited for the approach proposed in
this work: in particular, the baselines of consequence and
likelihood for each subtask can be defined within the Think
dimension data structure, while the Sense, Say and Feel
dimensions define the situational cofactors that modify the
total risk. However, instantiation of such cofactor values from
historical data and expert opinions is difficult, since likelihood is
defined on an arbitrary, subjective scale, which in (Aust and Pons,
2021) is defined from 1 to 5, while cofactors are scaling factors
ranging from 0.5 (halved risk) to 2 (doubled risk). For this reason,
we propose a slight modification to this approach, adopting the
natural mathematical interpretation of likelihood L as a
probability. To stress this aspect, we will denote now
likelihood as p. In this way, risk R can be interpreted as the
expectation of consequence on a large number of executions of
the same task. For example, referring to the health risk category, a
value of 0 may be achieved only when the potential for injury is
impossible, while a value of 0.4 can be reached if the severity of an
occurred accident is 4 out of 5 (e.g. serious physical injury) and
the frequency of the accident, based on historical data, is p � 0.1.
Notice that risk must be evaluated on a different scale with respect
to consequence, although they both have equal minimum and
maximum values: in the aforementioned example, a 10%
likelihood of class 4 consequence could be considered
unacceptable, even though the calculated risk is 0.4.

In this framework, instead of using each cofactor as a
multiplier to the baseline risk, we associate an additive
likelihood offset Δpj to each possible cofactor j � 1, . . .Mi,
where Mi is the number of relevant cofactors for the i-th task.
This formulation simplifies the implementation of cofactors from
historical data of task outcomes, by tabulating accident
frequencies for each previously observed combination of
cofactors in field operations; moreover, cofactors that can be
considered task-independent can be estimated from accident
historical data, since their effect on total risk does not depend
on the value of likelihood itself, as in the multiplicative case.
Therefore, the three global risks for a subtask i can be formulated
as follows:

RH
i � CH

i ·⎛⎝pH
i +∑Mi

j�1 Δp
H
j
⎞⎠,
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RO
i � CO

i ·⎛⎝pO
i +∑Mi

j�1 Δp
O
j
⎞⎠,

RE
i � CE

i ·⎛⎝pE
i +∑Mi

j�1 Δp
E
j
⎞⎠,

where apices H, O and E identify the terms related to Health,
Operational and Equipment Risk respectively. If the
decomposition of a task in subtasks is available, its total risk
severity can be estimated as the maximum value across all
associated subtasks.

Specific thresholds will be imposed for each risk category, with
a particular focus on guaranteeing low health risk RH

i for each
task i. In either case, a task with unacceptable risk value will be
flagged as a candidate for potential execution by the robot,
following the sequence described in Figure 9. The execution
of the Evaluate Risk sequence aims to assess the risk for each task
within the as-is task plan and to identify the potential candidates
for being taken-over by the robot.

For a better understanding of the framework, relevant
activities are selectively exemplified in the subsequent sections
considering as use case the in-situ inspection, maintenance and
repairing of the leading edge of a wind turbine blade. The
capabilities of the robotic platform considered for this use case
fit the description of section 2.2.3.

Example 1. Initially, the robot is transported by car to the wind
farm location; after its start routine and the execution of the Safety
HRI subtree it evaluates the health state of the designated
teammate as normal. Next, through the execution of the Build
EMAP subtree, the robot engages into a dialogue with the
teammate, during which it receives the mission information
(goals and list of tasks). In particular, subtask k, reaching a
damaged blade by climbing down a rope, has consequence C =
3 (the worker oscillates on the rope and gets injured by hitting it)
with likelihood p = 0.05 (i.e., the frequency of such accidents in
normal conditions). Moreover, it senses a form of hesitation in the
teammate’s voice with respect to the execution of the blade
inspection via rope access, due to the windy weather
(ΔpH

1 � 0.1). The robot activates its anemometer and detects a
wind speed exceeding 10 m/s (ΔpH

1 � 0.05). The total risk level for
health related to this subtask is then
RH
k � CH

k · (pH
k + ΔpH

1 + ΔpH
2 ) � 0.6. Upon the completion of

the Evaluate Risk subtree for all tasks, the inspection and
repairing of the blade are identified as candidates for take-over,
on the grounds that they are characterized by high health risk levels

due to exogenous factors (working-at-heights, adverse weather
conditions and exposure to dangerous chemicals, e.g., epoxy,
paints).

Some additional examples are proposed in Table 3, where risk
quantification is detailed considering two cofactors. The next step
consists in verifying the robot’s fitness for the updated task list,
i.e., checking if the capabilities of the robot match the task
requirements.

3.2.3 Interdependence Analysis
Humans and automated systems have been traditionally assigned
to separate functions, but recent advances permit a more fluid
relationship approximating human-robot teaming paradigms
(Lyons et al., 2021). Ideally, a well-functioning team relying
upon the human-robot interaction to solve problems in real
industrial settings needs an appropriate approach to enable the
synchronization of their skills and capabilities. Generally,
human-human and human-robot teaming comes in many
forms with different characteristics, but the most fundamental
concept consistently addressed in literature is interdependence
(Johnson et al., 2018). In our formulation, the interdependence
analysis, as described in Figure 10, can be extended beyond pure
task dependency, and is aimed at designing workflows consisting
of a mix of joint and independent activities.

The tasks considered for a different human-robot workload
distribution are mainly the potential candidates defined in the
Evaluate Risk sequence, i.e. the ones with a high intrinsic health
risk. The Interdependence Analysis relies upon a child sequence
subtree designed to iteratively assess the robot’s ability to perform
for each task from the candidate list. Firstly, a hierarchical
decomposition based on the human-aware task planning
formalism (Lallement et al., 2014) is carried out, aiming to
structure a high-level task representing a manufacturing goal
into subtasks which must be executed by the members of the
HAT. Secondly, a mapping between the requirements of each
subtask and the capabilities of the robot is realized. Following
upon the outcomes of the mapping activity, a decision is made
regarding the robot’s fitness for the job, considering three possible
scenarios: 1) the robot has full work capability to solve the task
(i.e., the working state of the robot is updated to Performer role),
2) the robot needs support to solve the task (i.e., the working state
of the robot is updated to Support role) and 3) the robot cannot
provide any form of assistance to solve the task (i.e., the working
state of the robot is updated to Observer role). By default, a task
considered critical for the human health can be fully subsumed by
the robot only if the required capabilities are available, i.e., the
robot has the sensing, locomotion and working skills required to
fully perform the task reliably. In other cases, the human
assistance might be required due to either a lack of robot
capability or to simply enhance the reliability of the process.
In this respect, the Design Shared Task activity aims to identify a
suitable distribution of the subtasks of any shared human-robot
task by defining the structure, process and nature of the potential
interactions between them.

Example 2. Before starting any inspection or repair operations,
the robot needs teammate assistance to reach the blade surface.
The conventional setup approach used by human workers,

FIGURE 9 | Evaluate Risk subtree. The sequence uses known risk
baselines to calculate a risk value for each task, so to identify tasks that could
be assigned to the robot in a revised task list.
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containing the subtasks ST1-Climb inside the windmill tower, ST2-
Access the nacelle, ST3-Lock the rotor and ST4-Hang the rope,
cannot be executed autonomously by the robot. This setup task is
redesigned for a human-robot interaction, considering two
additional subtasks: ST5-Hoist the robot (teammate) and ST6-
Attach robot to the blade (robot and teammate). For the last
subtask, the teammate operating the rope attached to the robot gets
access to the images transmitted by the robot’s camera, to facilitate
its precise positioning on the blade (the teammate is the performer
of the subtask, while the robot assumes the support role).

If the robot is unable to provide any form of support towards
the completion of a task, it can assume an Observer role, to enable
a learning from demonstration process based on the observable
human’s routines and working environment.

The completion of a subtask can involve a particular sequence
of actions which promote interactions between the teammates at
various levels of abstraction. At this stage, additional metrics
suitable for the manufacturing environments need to be defined.

These metrics are supposed to complement the risk values
calculated previously for each task, to support the definition
of appropriate cost functions for a holistic assessment of the
possible task plan alternatives and eventually for the selection
of the best fit plan for a specific scenario. While in the
manufacturing field time efficiency and quality are crucial
expectations, other metrics capable of giving an indication of
the human wellbeing based on ergonomic considerations are
recently gaining momentum (Busch et al., 2018; Gualtieri
et al., 2020; Cardoso et al., 2021).

Once all tasks from the candidate list are processed, an
Interdependence Map will be generated, reporting the role of
each teammate together with the adequate timeline, context-
dependent cost function and associated risk. This centralizes the
role of each teammate, the capability to either directly perform
the work or to ensure a supportive function, and the nature of
interdependences, with indication of possible limitations and
reliability levels across all tasks.

TABLE 3 |Risk computation for different events within the wind turbine blade example. Type labels H, O, E represent Health, Operational and Equipment risks respectively.C
and p are consequence and likelihood. CFk stands for “cofactor number k”.

Event Type C p CF1 CF1 Value CF2 CF2 Value Risk

Swing on rope - injury H 3 0.05 Nervous operator 0.1 Strong wind 0.05 0.6
Swing on rope - tool crash O 5 0.1 Nervous operator 0.1 Strong wind 0.05 1.25
Swing on rope - tool crash E 4 0.1 Nervous operator 0.1 Strong wind 0.05 1
Swing on rope - injury H 2 0.03 Nervous operator 0.1 Strong wind 0.05 0.36
Swing on rope - tool crash O 5 0.1 Nervous operator 0.1 Strong wind 0.05 1.25
Swing on rope - tool crash E 4 0.1 Nervous operator 0.1 Strong wind 0.05 1
Self-injury with tool H 4 0.1 Nervous operator 0.03 Unexperienced operator 0.2 1.32
Brush wearing O 1 0.3 Unexperienced operator 0.4 Tool malfunction 0.01 0.71
Brush wearing E 1 0.3 Unexperienced operator 0.4 Tool malfunction 0.01 0.71

FIGURE 10 | Interdependence Analysis subtree. The Repeat Until Failure decorator node allows to scan each task from the candidate task list. For each subtask,
the robot’s capabilities for performing it are considered (Map robot skills to subtasks requirements node), and a task-dependent metric is used to assign a score to each
possible subtask assignment.
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3.2.4 Alternative Workflows
The Alternative Workflows sequence (Figure 11) aims at defining
the final Shared Plan to be executed, based on the Interdependence
Map. The first step is the generation of multiple alternative
workflows to accomplish the mission goal. Each workflow
gives full consideration to the emotional status, preferences
and capabilities of the human teammate, as well as to the
robot’s capabilities to encode the sequence of actions necessary
for task completion. The degree of optimality of each generated
workflow is computed by a cost function, tailored to the end user
and the specific task, which considers not only the risk
dimensions but also the selected metrics across the entire
sequence of tasks. The total costs of each workflow is
employed to generate a ranking of the alternatives, based on
which they will be proposed to the human teammate.

The plan validation is deployed with the support of a
negotiation-based platform enabling multi-turn, bidirectional
communication between the robot and the teammate, which
allows the human to review each plan proposed by the robot
and to either accept it or ask for a different proposal. At the end of
the process, the robot will establish a direct communication
channel with the control base and will leverage its feedback as
the ultimate decision authority to validate the plan by overriding
any other teammate.

The last activity within the Alternative Workflows tree consists
of the generation of a list containing the complete execution
sequence of the constituent tasks of the shared plan
(i.e., operations-to-tick queue).

Example 3. As a result of the successful completion of the
Interdependence Analysis and Alternative Workflow subtrees,
the operation-to-tick queue for the automated leading-edge
repair of the turbine consists of the following sequence of
behaviors: BT1-Setup (as previously described in Example2),
BT2-Inspection (detailed blade inspection before repair), BT3-
MRO Prep (surface preparatory operations before repair), BT4-
Setup (descend to the ground, unload the cleaning tools and load
the repairing tools, hoist back to the repairing area on the blade
surface), BT5-MRO Repair (actual repairing of the damage), BT6-
Inspection (detailed blade inspection after repair), BT7-Setup
(descend to the ground once the repairing is complete). The
robot and the human teammate are deploying either individual
or collaborative behaviors to complete the mission.

3.2.5 MRO Shared Plan
In contrast to theAlternativeWorkflows subtree, theMRO Shared
Plan subtree, depicted in Figure 12, is not only responsible for
decision-making but also for monitoring, execution and
adaptation of behaviors to carry out MRO activities. This
relies on the development of behavior libraries consisting of
reusable, parametric behavior trees, which selectively deploy
adapted operational behaviors to cope with diverse
manufacturing scenarios.

Starting from the root (MRO Shared Plan sequence), the
operations-to-tick queue is loaded from the blackboard and
with the support of a repeater node the corresponding
operations are initialized and executed in the given order.
Further down, a selector defines which behavior subtree needs
to be expanded and instantiated for execution. The tree exploits
logical pre- and post-conditions as well as sensory data to
monitor the execution of each behavior.

Five behavior types are currently exposed in the
aforementioned tree, namely setup, inspection, diagnosis,
preparatory MRO and repair MRO. Some of them may have
precedence constraints, assumed to be linked with the
instantiation of re-usable behaviors that the robot carries out
to complete the overall goal of an operation, if adequate
conditions are met. The reuse of a behavior is enabled by a
behavior reference task. This reference task enables the running
of another behavior tree within the current behavior tree aiming
to overcome limitations of simple planning scenarios and to
extend the behavior of the robot to accommodate the deployment
of various scenarios. Upon the reload of an external behavior tree
a new instance of the operation data structure is created
considering the elements provided by the associated operation
template.

Example 4. As part of its initial blade mission, the robot needs to
deploy twice the detailed inspection behavior (as described in
Example3): 1) the first inspection (BT2) consists of a laser
scanning, used to generate a 3D model to assess the blade
condition and to adjust the tools required before the repair
operation; 2) the second inspection (BT6) consists of a laser
scan of the blade after the repair, to validate the results and to
guarantee the highest quality. Both inspection behaviors employ
the same BT structure but with differently parametrized templates
based on teammate’s input.

FIGURE 11 | Alternative Workflows subtree. Alternative subtask assignments are proposed to the human teammate, based on their total cost, and agreed with the
teammate and with the Control Base.
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FIGURE 12 | MRO Shared Plan subtree. The subtask queue is processed to perform each scheduled operation. In this framework, the possible operation
templates are Setup, Inspection, MRO Preparation, MRO Repairing and Diagnosis.

FIGURE 13 | Inspection subtree. Inspection checkpoints are provided in a stack, from which they are extracted for processing. For each checkpoint, the robot
navigates to its coordinates to capture images (leftmost subtree). When a defect is detected, the local Deliberation subtree is activated, and the human teammate is
requested to provide further instruction on what to do (Detailed Inspection,Defect Diagnosis,MROOperation). If a Detailed Inspection is needed, it is executed based on
a sequence of actions designed ad-hoc for the used measurement system.

Frontiers in Robotics and AI | www.frontiersin.org June 2022 | Volume 9 | Article 89836615

Avram et al. Mobile Robots Teaming with Humans

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


A possible configuration of an Execute Inspection subtree is
proposed in Figure 13.

We define the inspection behavior with the support of robot’s
capabilities to navigate to a specific location and to deploy an
inspection method that can function independently of lighting
conditions, contrast, reflection and position. A list of checkpoints
to be visited consecutively by the robot can be provided initially
by the teammate. As long as the next checkpoint is not reached,
the behavior of the robot is driven by a parallel sequence
controlling the navigation along the predefined trajectory,
while continuously taking images of the surface and checking
for defects. If there are any signs of surface defects, a Deliberation
sequence is triggered, since the robot needs to decide to either
carry out further investigations or to continue its navigation. In
the former case, an adapted form of communication with the
teammate will accompany the unfolding plan, leading to the
translation of her/his feedback into a sequence of additional tasks
to be performed in place (e.g., repairing of the defect after a prior
detailed inspection, diagnosis and surface preparation). This
sequence will fail if at least one of the child conditions is not
satisfied, i.e., if no further operation is required by the human at
the present position; in this case, the robot will resume the
navigation towards the next checkpoint. As soon as this is
reached, the planned inspection operation can take place. The
robot employs adequate operation templates selected from a
predefined library based on the outcomes of the previous
phases of the MRO HRI subtree, including human teammate’s
feedback.

Practically, an inspection template collects the minimum set of
requirements needed to organize, plan and keep track of the
entire sequence of activities to implement the inspection
operation (e.g., which type of inspection systems/methods
needs to be used? which type of defects are supposed to be
found on the inspected surface? how to setup the operation to get
the best outcomes?). These will be followed by data processing
(e.g., cloud to mesh), and a documentation activity addressing the
reporting and transfer of the acquired data to the control base.

The priority shift from a sequence of detailed inspections to an
unplanned task is handled by the Deliberation node and can be
implemented exclusively after a dialogue with the teammate, i.e.
execute the Ask TM behavior.

Example 5. While navigating towards the next inspection
checkpoint, the robot detects the presence of a damage on the
blade surface. It stops and establishes a communication channel
with the human teammate, which confirms the need to perform a
detailed inspection and diagnosis. Next to inspection, the diagnosis
task is deployed across the following behaviors: BT1-Identify
damage scenario (robot): leading edge erosion through
laminate; BT2-Assess damage criticality (robot): critical
damage, an immediate action is required to prevent turbine
failure; BT3-Deliberation (robot): the confidence level with
respect to the damage assessment is not high, therefore the
robot ask human support; BT4-Validation: the teammate
analyzes the robot’s report and recommends immediate
repairing of the damage (after evaluating the damage category,
its location, the impact and time required for repairing activities),
to ensure safe turbine operation; at the end of this subtree, the

robot sets the variable MROenabled to true (teammate and robot).
This validation outcome puts on hold the current navigation
towards the next target checkpoint until the damage situation is
cleared by the MRO behavior of the robot.

The diagnosis supports also the selection of the appropriate
MRO scenario considering both preparatory and repairing
operations (Figure 14).

Example 6. In order to prepare the damaged surface for repair,
the robot instantiates and executes sequentially three preparatory
MRO behaviors: BT1-Sanding to remove the damaged layers
(sander tool); BT2-Cleaning to remove any remaining dust
from the sanding (brush tool); BT3- Degreasing to remove all
surface contaminants (spray tool). After each preparatory step, a
tool change is required (realized by the robotic arm installed on the
platform).

Example 7. Based on the diagnosis outcome and teammate’s
feedback, the robot selects the surface coating behavior to carry out
the repair of the leading edge of the blade. The following subtrees
will be sequentially deployed: BT1-Sense environmental conditions
on the blade surface (robot): wind, temperature and humidity;
BT2-Ask teammate (robot and teammate): the robot provides a
report on the environmental conditions and checks the status of the
repairing material and tool, while the human uploads the correct
process recipe (robot and teammate); BT3-Filler application
(robot): apply the exact amount of filler material; BT4-Profiling
(robot): create a smooth finish by following the leading-edge
contour with a dedicated tool.

4 DISCUSSION

Some key industrial sectors (e.g., energy, aerospace, construction,
oil and gas), well known for their high capital investment and
long service life, rely on various postproduction treatments (e.g.,
inspection, maintenance, repair) to sustain their businesses. Most
of the time, due to scale constraints, it is imperative to perform
the postproduction operations in situ (Dong et al., 2019). The
constrained or dangerous nature of this working environments
(e.g., work performed at high altitude or under water, with
chemical exposure, in restrained spaces or in explosive
environments) raises serious health and safety concerns and
calls for some form of robotic service support. This work lays
the groundwork for the development and implementation of a
deliberative framework aiming to orchestrate the automation of
the behavioral process of robotic platforms to be deployed in
harsh environments, considering an extended set of functional
capabilities (navigation, perception of human activities, HRI,
emotion recognition, planning and execution of MRO tasks).

Three underlying behavioral dimensions could be further
addressed when considering the functional capabilities
instantiated with the support of the Safety and MRO HRI
behavior trees: ascertaining the current working situation
involving the human, in particular to identify potential
hazards; grasping the emotional state of the human (in
addition to physical difficulties of handling certain tasks, an
excessive human psychological burden could lead to
irreversible losses); reasoning and proposing alternative routes
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to alleviate the difficulty of tasks to be handled by the human,
through shared human-robot plans.

4.1 Understanding Dangerous Situations
Involving Human
Robotic solutions capable of performing common field operator
tasks in hazardous and unpleasant working environments can bring
significant benefits towards the improvement of the health and safety
in the workplace environment. However, when it comes to operation
in harsh environments, a substantial lack of robotic system
autonomy has been noted, either due to the complexity of the
problems to be solved or as a consequence of an insufficientmaturity
level of involved technologies and systems, lacking reliability and
robustness where tasks demand high success rates (Wong et al.,
2018). Furthermore, with constrained spaces and highly-
contaminated facilities, fully autonomous solutions are unlikely to
be considered safe or cost-effective in the near future, although there
is a significant interest in the development of such capabilities
(Bandala et al., 2019). In this respect, the advent of more efficient
sensors, electronics and algorithms enables under certain constraints
the ability of robotic platforms to recognize dangerous scenarios in
harsh environments (Alon et al., 2021; De Fazio et al., 2021). Within
our BT framework, this recognition is enabled through context data
acquisition and interpretation across two channels 1) through the
multimodal health state classification relying upon the output of the
embedded sensors (e.g., evaluate human’s posture, gesture, facial
expression, current emotional state; sense frustration, distress, work
overload or possible injury situation) and 2) through direct
communication with the human (e.g., ask what type of activities
needs to be completed, what type of support is needed, check human
availability to perform specific tasks). Subsequently, an additional
context assessmentmodel is required to put together the information
and decide if the data from both channels is consistent. This task is
partially handled by the compound risk assessment phase proposed
in this work, although a comprehensive evaluation could be carried
out only by implementing a Theory Of Mind (Devin and Alami,
2016) functionality, which would endow the robot with the
capability to simulate the outcomes of a shared plan and to

determine the consequences of the planned actions. This would
promote an enhanced level of confidence about the evaluations
performed to validate both the current situation (e.g., perception of a
non-ergonomic posture of the human which might lead to injuries)
and future scenario.

4.2 Grasping Human Emotional State
One thing that makes us truly human is the ability to empathize.
Since the emotional interactions are a crucial way for humans to
understand each other, it comes naturally to expect the autonomous
technology to adopt the very same human traits in its interactionwith
us. However, designing robotic platforms with our exact emotionality
should not necessarily be the goal (Malinowska 2021) and a more
pragmatic and functional approach is desired for empathymodelling.
In this respect, the underlying principle proposed by our framework
is the understanding of human emotional responses in relation with
various working contexts and the formulation of adapted robotic
behaviors aiming to alleviate the perceived human stress factors and
to reduce the human exposure to dangerous situations.

Recently, the interest in automated human emotion recognition
and its practical implementation in the HRI context is steadily
increasing and finds more areas of application (Dzedzickis et al.,
2020; Spezialetti et al., 2020). The availability of relevant models and
methods with various maturity levels provides a sound background
for the development and implementation of empathy-like robotic
behaviors within our framework. The occurrence of such states during
HRI might arise at specific points in time during a mission, in
particular associated with the deliberative nodes of the proposed
BT structure. In this respect, the timely evaluation of the current
situation guides the subsequent robot’s behavior and its actions across
the following tasks. Two different semantics could be associated with
the behaviors deployed by the robot to complete amission: aware and
non-aware. For instance, if the robot is programmed to execute an
MRO task with a particular teammate, it means it is aware of the ID of
the teammate and it will adapt its navigation, grounding, interaction
and deliberation behaviors, i.e. follow and execute the Safety HRI
routine, with respect to the identified teammate. A non-aware
behavior occurs for instance when the risky working behavior of a
human, not related with the robot’s initial mission, might catch the

FIGURE 14 | Examples of Preparatory and Repair MRO subtree selectors. In each case, the proper preparation or repairing technology is selected among the ones
available to the specific robot.
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attention of the robot if their trajectories intersect themselves. In this
respect, further ground needs to be covered to endow the deliberative
nodes with the capability to seamlessly handle the arising conflicts
between the aware/non-aware situations.

4.3 Reasoning and Re-Planning
Robots can be repaired, but people cannot, when serious injuries
occur. We can argue this statement alone is strong enough to justify
the takeover of all hazardous activities by robots. However, in order
to accommodate this role change, we need to shed some light on the
autonomous reasoning and planning skills of the robot. The
enhancement of these capabilities in harsh environments relies
on the fulfillment of two major requirements: 1) the robot is able
to receive mission goals and to automatically sequence skills to
achieve them, and 2) the robot is able to update its initial plans in the
presence of unknown events based on its contextual perception.

In order to address the first requirement, an initial understanding
and a comprehensive planning of the activities and procedures
involved in a shared human-robot MRO process is required. The
establishment of an empathy map could significantly contribute to
gainingmore insight into the whole process and amore profound and
diverse problem understanding including also the emotional needs
and feelings of human teammates. The downstream analysis of the
empathymap supports the profiling of the hazardous steps in the as-is
plan, i.e., the conventional approach of completing an MRO task,
exclusively performed by the humans. Next, the identification of
potential candidates relies upon the assessment of the task risk
level imposed on three different categories in the perspective of a
partial or complete transfer of the risk from the human to the robot.
However, the planning of shared activities is not trivial, since the
intrinsic task hazard reduction through robot takeover could lead to a
complete procedural change of the working routine. For instance,
supporting preparation and/or safety surveillance activities related to
repair and maintenance processes, as well as the human resources
required to support their realization, could become redundant
(Heilemann et al., 2021).

In this context, any task configuration activity must be addressed
considering the outcomes of a prior interdependence analysis as well as
the availability of suitable process, control and validation steps.
Furthermore, the redesign of a task for collaborative purposes must
be fully informedwhen it comes to the accurate definition of the course
of action for each agent involved. This can be realized by giving full
consideration to the adopted task planning formalism while
considering the action type, action time-line as well as the
synchronous, sequential or independent execution of the activities
(Tan et al., 2010; Johannsmeier and Haddadin 2017; Buisan et al.,
2020).

As far as the second requirement is concerned, it is worthwhile
mentioning that, depending on the nature of collaboration, minor
execution errors can impact in different ways the performance of the
initial shared tasks planning. If the human teammate works too
slowly or makes mistakes, the timing and successful completion of
the robot’s actions may be impacted. Very much alike, if the robot’s
timing is off or performs outside of its tolerance specifications, a
human teammate or another robot may be required to compensate.
In this respect, the framework must be endowed with interfaces to
facilitate the role switching between the teammates, as otherwise the

team performance might degrade. Furthermore, each teammate
should know the capabilities, needs and weaknesses of others and
should be able to understand and predetermine their actions. From
the robot’s perspective, the integration of several monitoring nodes
aiming to signal sudden changes in the self-state, in the human’s
behavior and on-the-job emotional state, or in the task environment,
could enable the existing BT framework to anticipate next teammate
actions, to suggest a course of action to the teammates or to possibly
ask them for help if necessary.

5 CONCLUSION

During the last years a sheer number of applications formobile robot
systems have emerged across various sectors. Yet the technology has
somuchmore to offer in thematter of human-robot interaction. The
main contribution of this paper is to present a deliberative
framework aiming to orchestrate the automation of the
behavioral process of robotic platforms to be deployed in harsh
environments. The proposed architecture, based on the behavior tree
formalism, enables the organization of an extended set of robotic
capabilities (navigation, perception of human activities, HRI,
emotion recognition, deliberation, planning and execution of
MRO tasks) centered on the provision of adapted behavioral
responses to improve the occupational health and human welfare.

The concept and the initial formulation of the robotic
behaviors are greatly simplified, as many of them are indeed
challenging research problems in their own right. Any complete
solution would need to handle a wider search space of behaviors
as well as a larger collection of robotic platforms. The elaboration
of a first framework for the MRO sector and the employment of
the behavior tree formalism allows us to start with simpler initial
implementations of the individual tasks and then gradually
replace them with more complex models (e.g., through
machine learning) and extend them to other platforms,
without changing the structure of the initial tree, or the
implementation of the prior tasks.
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