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A cyber-physical system (CPS) is a system with integrated computational and physical
abilities. Deriving the notion of cyber-physical collective (CPC) from a social view of CPS,
we consider the nodes of a CPS as individuals (agents) that interact to overcome their limits
in the collective. When CPC agents are able to move in their environment, the CPC is
considered as a Mobile CPC (MCPC). The interactions of the agents give rise to the
appearance of a phenomenon collectively generated by the agents of the CPC that we call
a collective product. This phenomenon is not recorded as “awhole” in the CPC because an
agent has only a partial view of its environment. This paper presents COPE (COllective
Product Exploitation), an approach that allows one MCPC to exploit the collective product
of another one. The approach is based on the deployment of meta-agents in both systems.
A meta-agent is an agent that is external to a MCPC but is associated with one of its
agents. Each meta-agent is able to monitor the agent with which it is associated and can
fake its perceptions to influence its behavior. Themeta-agents deployed in the system from
which the collective product emerges provide indicators related to this product. Utilizing
these indicators, the meta-agents deployed in the other system can act on the agents in
order to adapt the global dynamics of the whole system. The proposed coupling approach
is evaluated in a “fire detection and control” use case. It allows a system of UAVs to use the
collective product of a network of sensors to monitor the fire.

Keywords: multi-agent systems, collective product, exploitation of emergent, phenomenon, interoperability,
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1 INTRODUCTION

Context An agent is an entity immersed in an environment that it can perceive and act on. It is
capable of making decisions and acting autonomously in the environment, in order to achieve the
objectives assigned to it. It has reactive capabilities to deal with the dynamics and uncertainties of the
changing state of its environment. However, it is not only event-driven. It is also proactive and, as
such, it can initiate interactions with other agents. A multi-agent system (MAS) is a set of agents in a
shared environment of which each agent has only a local perception. These agents are endowed with
self-organizing capabilities that allow them to adaptively modify their organizational structure
according to their environment. The local interactions between the agents of the MAS give rise to an
emerging global phenomenon called “a collective product” whose complete representation is not
known to the agents: it can only be observed by an external observer.
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In this article the notion of cyber-physical collectives (CPC)
comes from a social vision of cyber-physical systems (CPS). We
consider the nodes of a CPS as individuals (agents) who cooperate
to overcome their lack of knowledge and competence in order to
achieve goals that they are not able to realize.

Problem Consider two MCPCs that were developed by
different designers. They do not have the ability to interact
because of their functional and technological heterogeneity:
they act independently of each other. Assuming that the
agents that make up the two MCPCs are black boxes because
the source code is not available, the general addressed problem is
“How do we get these independent MASs to interact so that the
collective product of one can be exploited by the other?.

Illustrative scenario In the context of forest fire detection, a
wooded area is monitored. A wireless instrumentation system has
been deployed to measure physical parameters from the
environment. Data are collected and processed by a Local
Alerting Control Unit (LACU). When variations of the
environmental parameters are interpreted as the sign of a fire,
a fire department is then alerted. Firemen must move around the
site to validate the presence of the fire and apply firefighting
procedures.

The fire department wishes to be able to remotely confirm the
suspicion of fire via a real-time video system. This video support
must be maintained during fire fighting. The designer uses a
multiple Unmanned Aerial Vehicles (UAV) surveillance system
which proposes an in-flight visual monitoring of the
neighborhood of its area of deployment.

The wireless instrumentation system: this system is a Wireless
Sensor Network (WSN). It is a group of spatially distributed and
dedicated autonomous sensor nodes for monitoring the physical
conditions of the environment and the transmission of detected
event to a central location.

Sensor nodes have three main functions:

• a measure function: nodes capture data from their physical
environment.

• a transmission function: one node can communicate with
neighbors within range.

• a decision function: nodes are able to process data and
trigger actions.

The system is viewed as a MAS, where sensors nodes are seen
as agents which interact together to:

• make the detection of fire more reliable.
• enable the transmission of risk alert messages to LACU by
agents not directly connected to it (problem of limited
emission ranges).

Because the network coverage area is much larger than the
emission radio range of a single node, agents use a multi-hop
routing. A route is a sequence of directly connected agents
forwarding messages from the source agent to the target. In
order to search routes between a sensor and the LACU, the
wireless instrumentation system uses the MWAC model (Jamont
et al., 2010; Hamani et al., 2018). This model reduces the induced

energy consumption by establishing an organization that limits the
number of active connections during the route search process. For
this purpose, MWAC defines three roles that can be assigned to the
agents. A representative agent manages and routes the messages of
agents that are directly connected to it. To achieve this task, it
broadcasts, relays and responds to route search requests. A link agent
enables message exchange between the representative agents that are
directly connected to it. A simple member agent communicates only
with the representative node to which it is directly connected. It does
not have any routing task to ensure, unless it is the first sender or the
last receiver of a message. Therefore, MWAC route is a succession of
agents with the roles of link or representative (Figure 1). When an
agent whose role is not “representative” decides to send amessage i.e.
it detects a temperature above a given threshold, it shall solicit its
representative agent. To find the route, the representative agent
sends route request messages and receives route reply messages
including the route represented as a list containing only
representative agent identifiers. Once the route is found, the
representative agent sends a message of type
MWACRoutedData. This message contains the temperature
taken by the sensor agent (source of the information) and the
MWAC route to follow. As it is often the case in bit efficient
routing protocol, when the message is repeated by an agent, it
contains only the remaining part of the route to follow.

AMWAC route is created to allow the transmission of the fire risk
alert from an agent to the LACU. The agents do not have a complete
representation of the route followed by the message1: the route is the
collective product of the agents of this system. The observation of a
route induces the following interpretation: a fire is suspected.

The aerial video support system: this system is composed of
several interacting UAVs. It proposes an in-flight visual
monitoring of the neighborhood of their areas of deployment.

Each UAV has three main functions:

• a photograph function: an UAV can take aerial photos.
• a transmission function: an UAV can communicate with
neighbors within range or with an external entity (using two
different communication protocols).

• a movement function: an UAV can move to a given position
and remain in hover flight.

The UAV system (UAVS) is viewed as a MAS. UAVs are
agents which interact together to:

• perform a flight formation: allows the UAVS to cover the
desired area.

• enable the aerial picture transmission: each individual
picture is communicated to the LACU as a part of the
global picture.

Covering the area to be observed requires the UAVs to establish a
mesh. Each UAV positions itself in relation to its neighbours. No

1We do not go into the details of MWAC’s adaptation mechanisms to WSN
topology changes and route QoS (congestion, error rate. . .) which may imply that
the route that is actually followed by the message differs from the calculated route.
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single UAV agent maintains a complete representation of the mesh.
The global mesh is the collective product of the UAVS. The mesh is
formed to allow the LACU to create the overall aerial visual image of
the monitored area by combining individual UAV images.

The WSN collective product exploitation by the UAVS: when a
fire is suspected, firefighters subsequently deploy the UAVS to the
area monitored by the WSN. They want the UAVs to move
themselves to the area where the fire is supposed to be, without
the sensor nodes being able to locate them (no global positioning
system). UAV agents have to (Figure 1):

1) Fly up the route to the critical point.
2) Spread over the area surrounding the critical point.
3) Transmit the pictures to allow a decision making.

The last two steps match the functions offered natively by the
UAVS. The first step requires guiding the UAVs to the fire
without the GPS position of the critical point.

Sensors in the vicinity of the fire are supposed to periodically
generate alert messages that travel the network using a route from
the fire to the LACU. To realize the first step, the UAVS has to
exploit the route i.e. the WSN2 collective product.

A transmitted frame always carries the address of its sending
agent and the address of the destination neighboring agent (the
datalink layer addresses) in addition to the MWAC routed message

(the payload). Listening to these frames will allow an UAV agent to
get closer to the frame sender using a Received Signal Strength
Indication (RSSI) based algorithm. The route will be followed by the
UAV in the opposite direction than the one taken by the message.

Contribution The main contribution of this article is the proposal
of a new approach for coupling two MCPCs. This approach named
COPE (COllective Product Exploitation) allows oneMCPC to exploit
the collective product of anotherMCPC. The approach is based on the
deployment of meta-agents in both systems. Ameta-agent is an agent
that is external to aMCPCbut is associatedwith one of its agents. Each
meta-agent is able tomonitor the agent with which it is associated and
can fake its perceptions to influence its behavior. Another contribution
is the definition and implementation of a meta-agent architecture
based on the use of perception, decision and action rules.

Organization of the article This paper is structured as follows.
In Section 2, the related work with the exploitation of collective
products is presented. Section 3 provides an overview of the
newly proposed COPE approach and presents the meta-agent
architecture. Section 4 emphasizes the key elements for
implementing and setting up the COPE approach in the
context of the illustrative scenario. Section 5 provides an
assessment of COPE implementation.

2 RELATED WORK

We consider that a designer wants a multi-agent system, called a
consumer MAS, to exploit the collective product of another
multi-agent system called a producer MAS. We consider that

FIGURE 1 | Illustrative use case.

2In order to simplify the technical explanations of how MWAC works and the
COPE evaluation, the WSN is considered in this article without mobility.
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the following steps are necessary for a designer to implement the
exploitation of a collective product:

1) Using a model that describes the link between how the agents
in the producer MAS operate and what they collectively
produce. This model helps to understand how complex
high-level behaviors are produced, starting from simple
interactions between agents. In the following, we call such
a model an understanding model.

2) Exploiting the understanding model with information
available in the two MAS to enable the collective product
to be detected.

3) Acting on the consumerMAS in order to allow it to exploit the
collective product of the producer MAS.

2.1 Understanding the Articulation Between
Local Behaviours and Collective Behaviour
Two complementary processes are often used to study the link
between agent individual behavior and collective behavior. The
first one consists in analyzing the available execution traces to
identify global behavior patterns from the observations of low-
level agent behaviors. The other process consists in reproducing
in simulation the analyzed system in order to understand this link
through iterative experiments.

Analysis of execution traces can be used when it is possible to
record information about the evolution of the environment, the
activity of the agents and their interactions by observing the
system.

In many works in the literature, the simulation of the complex
system that produces the emergent phenomenon is implemented.
In order to collect data, event logs are a commonly used solution
(Schecter et al., 2018; Bemthuis et al., 2019; Anastassacos et al.,
2020). The nodes of the system here are not black boxes and the
environment is completely accessible because it is simulated.

The problem is more difficult when working with a physically
distributed system in which the environment and the nodes are
not completely accessible (the nodes of the system are black
boxes). In this case, it is necessary to instrument the system
producing the emergent phenomenon to produce observables/
traces. We have identified few works dealing with this problem,
but one original work (Lamarche Perrin et al., 2014a; Lamarche-P
et al., 2014b), that was used in the context of distributed
simulation, deploys distributed software probes that collect
specific data on the system components called microscopic
information. These probes use distributed computing tasks to
abstract the collected data into “facts”.

Once observables are available, the traces must be analyzed.
Some solutions use algorithms for understanding the emergent
behavior. At this end, in (Mirchevska et al., 2014) the MAS
activity is represented as a graph where graph’s edges correspond
to the performed actions and graph’s nodes correspond to the
environment states at action starts. The paths in the graph with
the highest number of merged actions allow for more traces to be
analyzed, so these paths are labeled as emerging strategic
behaviors. As an illustration of this type of approach, in

(Ramos and Ayanegui, 2008; Aler et al., 2009) the training
behavior of football agents during a game is studied. The
formations are represented by planar topological graphs. The
trajectory of the ball on the graph is studied in order to
understand the different behaviours such as passing, dribbling,
and attack support.

To study the causal relationships between micro and macro
layers, Singh et al. (2017) propose a simulation framework where
the system behavior data are collected from the simulation and
imported into an ontology. This ontology provides support for
both system-level and component-level behavior modeling. It
distinguishes between internal (component) and external (inter-
component) behaviors and aggregates the component behaviors
and their interactions into a single model. A behavior classifier
then automatically infers the type of behavior using the main class
of the ontology named “emergent behavior”.

Serrano et al. (2009) propose an intelligent data analysis
technique to understand the emergent behavior of a MAS
using a three-phase process: a retrieval phase, a pre-processing
phase and a data mining phase. The approach consists of
analyzing and interpreting execution traces containing agent-
specific information, inferring relationships between entities,
making estimates of knowledge under construction and
interpreting the total amount of data.

Process focused on the reproduction of the phenomenon in
simulation adopts an experimental approach, whose principle is to
“understand by reconstructing” the emergent phenomenon. To this
end, it is proposed to assemble “puzzles” using a bottom-up
approach. In (Mataric, 1993), a set of behavioral primitives is
proposed in a mobile robotics context. These primitives are for
example collision avoidance, following, dispersion, etc. In order to
understand the collective behavior of a group of human beings, Will
(2016) propose to define shared behavioral rules called norms. As an
illustration, convergence is a collective behaviour where agents’
orientations are strongly aligned, agents’ positions are spaced
apart and the resulting collective movement follows a linear
trajectory, it then has a link with the norms of oneness and
communication.

The epsilon machines have also been used to understand
emergent phenomena, for example in supply chain networks
(Surana et al., 2005). They work according to a top-down
approach: an epsilon machine starts from observed macroscopic
data and deduces the simplest causal structure, instead of starting
from a microscopic description of the parts and their interactions to
deduce macroscopic phenomena. The epsilon machine generates
observations and describes the intrinsic computation of the system,
i.e., the way it stores and processes information. Based on a
probabilistic calculation of the reappearance of these observations
in the future, it could be able to characterize the macroscopic
phenomenon. The epsilon machines thus represent a special class
of deterministic finite state automata whose transitions are labeled
with conditional probabilities and which can thus also be considered
as Markov chains (Surana et al., 2005).

From a social perspective, dynamical systems analysis can
be used to develop computational models to show how
simulations of individual decisions can create emergent
organization within a group (Reed and Vallacher, 2020).
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The advantages of these models are: 1) the clarity and
objectivity of the interpretations, 2) their ability to provide
intermediate explanations which link individual behavior to
group behavior, and 3) their use of real-world data. These
models help to describe emergent behavior on multiple levels,
without assigning priority to any particular level so as not to
exclude interactions between the different levels. These
approaches have been used to study emergent phenomena
in several systems such as: ants (social insects foraging for
food), traffic jams (automotive transportation system), slime
molds (self-organizing unicellular organisms), segregation
(human social system), and wolf-sheep predation (food web
ecosystem).

2.2 Detecting Emerging Phenomena
Approaches to detect emergence are classified into three
categories (O’Toole et al., 2014):

Approaches based on variables aim to characterize the global
state of the system by using a set of observable variables. It is then
possible to detect the occurrence of an emergent phenomenon
when these variables present particular properties. They are used
when system modeling details are known. An example of a
variable-based approach is the use of system entropy as a
measure to indicate emergence. For example, Mnif and
Müller-Schloer (2011) argue that entropy decreases with the
increase of order whereas emergence should increase with
order thanks to self-organized processes between the elements
of a system compared to a starting condition of maximum
disorder. In their experiments, they use a chicken simulator,
whose objective is to explain the behavior behind the injury of
chickens crowded into cages to avoid a large loss of animals. In
simulating this behavior, order patterns, representing entropy
decrease, appear in the form of swarms of chickens. This is a case
of “negative” emergence, i.e., unwanted, since the overall
objective is to reduce the mortality rate of the chickens. A
controller is then set up to perform actions aiming at
dispersing the swarms and thus increasing the entropy.

Formal approaches attempt to identify and investigate the
underlying causes of emergence in system design using
simulation and formal language techniques. An example is the
use of a formal grammar to define weak emergence (Kubí, 2003).
In these approaches, emergence is defined as a set of properties
generated by interactions between agents but which cannot be
derived by summing up individual behaviors through a
superposition of all individual agent languages on each other.
These approaches are highly centralized and require that all
possible agent behaviors are known and remain unchanged
throughout the systems’ life cycle. They also require, at the
design stage, a detailed modeling of the system using a formal
language. For example, the authors Moshirpour et al. (2012) present
a technique based on formal models to detect emergent behavior at
the time of system design. At this stage, they aim to determine the
cause of the behavior and try to control the emergent phenomena.

Event-based approaches are a hybridization of previous
approaches. They are event-based and therefore require
knowledge of system modeling details to specify the events to be
detected, and at the same time they use events as parameters to detect

emergence at runtime. An event-based approach is best suited to
detect emergent phenomena in complex distributed adaptive systems
(O’Toole et al., 2014; Liu et al., 2018). An example of an event-based
approach is the solution of David et al. (2009), where events are called
emergent facts, and their occurrence is detected by deploying software
probes in the simulation tool. The probes act as an external observer
of the MAS based on these facts. Assuming that emergence is
knowledge at a higher level of description (David et al., 2009), the
detection of facts during the simulation allows the emergent
phenomenon to be represented as meta-knowledge. In (Chen
et al., 2008), the authors begin by identifying two types of events
to be detected according to the level of abstraction, either simple or
complex events. Simple events are agent state transitions seen from a
particular level of abstraction, and complex events are a particular
configuration of simple events where the dimensions of time and
space are included. Once all events are formally described, the
statistical analysis and the understanding model are used to enable
the identification of relationships between the levels of abstraction of
the system that lead to the detection of emergence at runtime. An
original work aims at the suppression of the effect of emergent
phenomena interfering negatively with the objective of the system
producing it (Liu et al., 2018). For this purpose, sensors are added
during the construction of the system that can give rise to such a
disturbance. The role of these sensors is to update a set of parameters
(speed, position, etc.) as soon as an event is detected (movement of an
UAV belonging to an adversary). Subsequently, they use thresholds
to determine whether the system is in phase to detect the collective
behaviour of a swarm of UAVs.

2.3 Adopted Guideline
To the best of our knowledge, there is nowork focusing on exploiting
the collective product of one MAS by another MAS (the third step).
However, this work can be related to studies in which there are
interactions between groups of individuals that can sometimes
implicitly use emergent properties. For example, a team of two
artificial dogs, driven by simple reactive controllers, is tasked with
herding a flock of heterogeneous sheep (Bennett et al., 2021). The
objective of the dogs is to move all the sheep from a starting position
to an objective position in a minimum of time. A two-phase strategy
is used to first gather the sheep into a single group, and then to drive
the flock towards the goal.

Furthermore, from an application point of view, many works
propose collaborative WSN-UAV systems (Popescu et al., 2019).
The vast majority of these works do not consider the problem as
the coupling of two complex systems but as the creation of a
heterogeneous multi-agent system (containing sensor agents and
UAV agents).

The systems we deal with in this work have particular
characteristics which constitute constraints to be taken into
account when realizing the coupling. The first characteristic is
the physical distribution of the system components, which leads
to a lack of overview of the system at the agent level. This means
that any form of centralization in the proposed approach must be
excluded. Another constraint is that we consider the systems to be
off-the-shelf. This leads us to consider agents as black boxes,
i.e., an object that can be viewed only in terms of inputs and
outputs without any modification of its code. Some solutions
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meet this constraint, such as the EAgilla (Lingaraj et al., 2018)
whose deployment consists in introducing a middleware between
the OS of the already deployed agent and the mobile agents. It
allows a deployment without modifying the agents’ code, but
imposes other constraints including a control of the agents’
operating system.

In contrast to other approaches, we will also attach great
importance to non-functional requirements. This is due to the
embedded nature of the systems we are interested in. Thus, we
have to take into account the resource limitations (energy,
memory, etc.) of the system components, as well as the
criticality of the targeted applications which may require to
respect reactivity, liveliness and timeliness (soft real-time).
Note that solutions aiming at coupling a WSN and a system
of UAVs generally take into account these limitations.

Our study of existing work has led us to deploy a set of techniques
that we deemed appropriate to our context, given the satisfactory
results they provide for the understanding and/or detection of
collective product (David et al., 2009; O’Toole et al., 2014; Morris-
Martin et al., 2019). These techniques are the use of probes, meta-
knowledge and external observations. By classifying the proposed
approaches according to their use of the three techniques (Table 1),
we found that none of them exploits their complementarity.

We also classify the approaches according to their
consideration of non-functional constraints. We note
(Table 1) that the proposed approaches do not take into
account in particular the inaccessibility and the real-time
aspect. Therefore, our approach will aim at filling these gaps.

3 THE COPE APPROACH

This section presents the COPE (COllective Product Exploitation)
approach which enables an embedded multiagent system to exploit
the collective product of another one. The approach is based on the
deployment of meta-agents in the both MASs. In the following, we
call producer system the MAS from which emerges the collective
product to exploit and the consumer system theMAS that will exploit
this product. Naturally this has led us to distinguish two roles in
meta-agents (and two sub-systems). The meta-agents deployed in
the producer MAS are called producer meta-agents because their
role is to essentially sense the collective product. The meta-agents
deployed in the consumer MAS are called consumer meta-agents
because their role is to exploit the information perceived by the
producer meta-agents in order to exploit the collective product.

A meta-agent is a software/hardware agent that is external to
the CPCs but is associated with one of their agents. It monitors
the activity of the agent with which it is associated and can fake its
perceptions to make it adopt a specific behavior. Since the agent is
a black box, faking its perception represents a solution to make it
react in favor of the implementation of the exploitation of the
collective product without having to change its native behavior
(which is usually not possible with off-the-shelf systems).

The deployment of meta-agents can be achieved in several ways:

• The meta-agents have their own dedicated hardware
platform. This real autonomous embedded system can be
glued to the chassis of the associated agent. Observing the

TABLE 1 | Work on emergent phenomena exploitation.

Work Phases Techniques System constraints

Understanding Detection Exploitation Probes Meta-
knowledge

External
observations

Physical
distribution

Inaccessibility Resource
limitation

Real
time

Mataric. (1993) • • •

Dessalles and
Phan. (2006)

• • •

Klein et al. (2008) • • •

David et al. (2009) • • • •

Lamarche-P et al.
(2014b)

• • • •

O’Toole et al.
(2014)

• • •

Will. (2016) • • • •

Basso et al.
(2016)

• • •

Jones. (2010) • • • • • •

Serrano et al.
(2009)

• • •

Singh et al. (2017) • • •

Liu et al. (2018) • • • •

Chen et al. (2008) • • • • •
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agent can be done by listening the communication channel
used by the agent’s communication interface. To act on the
agent, it is necessary for example to send it messages.

• The agent’s hardware platform can be used to deploy the meta-
agent. The associated agent is then a host agent. If a framework
like OSGi is used, the meta-agent can then be deployed as an
OSGi bundle. Observing the agent can be done by
eavesdropping on the communications between the agent
software components3. Acting on the agent can then be
done by accessing the components deployed on the framework.

In any case, the system constituted by the meta-agents can be
seen as a distributed and decentralized control system. In the
illustrative scenario, we consider the most general case: the agents
are considered as black boxes and the agents’ hardware platforms
do not host the meta-agents.

The producer meta-agents provide indicators related to the
collective product. The processing of these indicators allows the
consumer meta-agents to act on the agents of the consumer MAS in
order to adapt its global dynamics to exploit the collective product.

3.1 The Components of a Meta-Agent
The collective product emerges from agent interactions in the
producer MAS. The meta-agents allow an external observation of
the collective product in order to enable its exploitation. They use
information on the agents, their interactions, their organization
and their environment. The associated agent of a meta-agent can
be viewed in terms of its message input and output, without any
access of its internal functioning. A meta-agent then must
eavesdrop agent messages to induce its state and its behavior.

The architecture of a meta-agent is built around six main
components (see Figure 2).

The Perception component (P) eavesdrops the agent’s
messages. According to the information encapsulated into the
communication protocol messages specific to the producer and
the consumer MAS, it is possible to extract information about the
state of the agent, its role in the organization, its perception of the
environment, etc. A meta-agent can enhance its representation of
the environment with its own possible physical sensors.

The Knowledge Construction Rules Set component (KCRSet) is a
set of rules for merging this measured information into indicators
which are related to the different dimensions of the system (agent,
interaction, etc.). For the producer meta-agents, these indicators
are about the collective product occurrence and its exploitation by
the consumer MAS. For the consumer meta-agents, the indicators

FIGURE 2 | The components of a meta-agent.

3In this case the agent is a “grey” box rather than a “black” box.
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are essentially linked to the integration of producer meta-agents
indicators into the decision-making aspect of their associated
agents so that they can exploit the collective product.

The Knowledge database (KBase) of a meta-agent includes
knowledge about its environment, its own internal state and the
states of its neighboring meta-agents. The internal state of the
meta-agent includes plans that are currently being executed. The
values of the indicators are also stored in this database.

The Decision-maker component (DM) is responsible for
making decisions about the interactions to be carried out
(with the associated agent or other meta-agents) to allow the
exploitation of collective product. Producer meta-agents share the
individually constructed indicators by interacting together. They
ensure that they do not disrupt the behaviour of the producerMAS.
They also interact with the consumer meta-agents to communicate
consolidated indicators. A consumer meta-agent interacts with the
producer meta-agents to request the indicators necessary for the
exploitation of the collective product. It also interacts with
consumer meta-agents to implement the exploitation of the
collective product.

The Effector component (E) allows the meta-agent to act on the
agent’s behavior by faking its perceptions through the generation of
messages in the specific language of theMAS. The effector component
of the producer meta-agent thus makes it possible to trigger specific
behaviours in order to favour the exploitation of the collective product.
The effector component of the consumer meta-agent modifies the
perception of its associated agent to induce it to act according to its
plan in order to achieve a specific goal related to the exploitation.

The Communication component (C) allows the cooperation of
meta-agents by allowing interaction between them through the
sending and receiving of messages.

3.2 Meta-Agent Activity
The activity of meta-agents is organized around three processes.

Process 1—Updating world representation: the objective of this
process (Figure 3) is to ensure that the representation of a meta-
agent of its environment is consistent with reality. Two tasks run
concurrently for this purpose. The first one relies on using by ameta-
agent of its own sensors or exploiting the measurements of its
neighbour meta-agents. The second consists in exploiting the
messages of the associated agent. The Perception component
interprets listened messages by applying the KCRSet rules. The
collected knowledge is stored in the KBase. It compares the new
knowledge collected to the knowledge already stored in the KBase
database in order to generate an event notifying the change of state to
the decision maker component.

For example, let’s consider an application message sent by an
agent who transmits a temperature to another agent. This
message is listened by the meta-agent who will apply rules
allowing it to i) understand that the message contains a
measured temperature and ii) capture the temperature value.
Another rule will allow to estimate the probability of the presence
of a fire by following the temperature evolution using a
temperature history stored in the KBase which lead to the
generation of a “fire suspicion” event.

Process 2—Authorizing exploitation of collective product: the
objective of this process is to ensure that all the conditions4 have
beenmet to allow the exploitation of the collective product (Figure 4).
The first condition is the ability of the consumer meta-agents to
communicate with the producer meta-agents. To this end, the

FIGURE 3 | Updating the world representation of a meta-agent.

4Possible application-dependent conditions should also be considered here.
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consumer meta-agents send periodically discovery messages (hello
messages) to announce their presence and inform that they are ready
to use the collective product. The second condition is used to check
that exploitation request of the collective product was issued, that the
collective product indicators are significant and that using the product
does not involve a risk to the integrity of the producer MAS. When a
producer meta-agent detects a discovery message, it interacts with
other producermeta-agents in order to know if the exploitation of the
collective product can be operational. To make such decisions, the
DM relies on rules contained in the KCRSet and on the knowledge
stored inKBase. For example, in our scenario, if the indicators relating
to the collective product of the MAS “sensor network” show that no
route is yet found by theMWACmodel, then the second condition is
not satisfied. Producer meta-agents will respond unfavourably to the
exploitation request.

Process 3—Implementing the exploitation: the objective of
this process is to enable consumer meta-agents to influence
the behaviour of the consumer MAS through their agents
(Figure 5). First of all, the producer meta-agents must allow
the consumer meta-agents to follow the evolution of the
indicators (according to an interaction protocol involving

producer and consumer meta-agents). The producer meta-
agents will fake the individual perceptions of the agents of the
producer MAS by applying action rules of the KCRSet which
aim to generate messages in the agents’ medium. During this
process, the meta-agents of both systems shall also ensure
that they do not negatively affect the operation of the
two MASs. For example, in our scenario, when a MWAC
route is exploitable to guide the movement of the UAVs (of
the consumer MAS), a producer meta-agent associated with a
sensor agent belonging to the route will periodically send out
messages5 containing the expected indicators. These
indicators will enable the UAVs to be oriented. Consumer
meta-agents will share this information with each other. By
applying rules of KCRSet, they will act on the behaviour of the
UAVs in order to modify the movement of the UAV system.

FIGURE 4 | Authorizing the exploitation of the collective product.

5Another possible implementation of this solution would have been to send an
application-specific message.
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3.3 Interaction Between Meta-Agents
Meta-agents must interact to 1) determine whether collective
product can be exploited and 2) to implement such an
exploitation. For this purpose, several interactions are
necessary (Figure 6). A meta-agent interacts with its

associated agent to fake its perception and prompt it to
respond as desired. It also interacts with meta-agents
belonging to its own sub-system and to the other sub-system.

Message format The protocols we are going to present use
messages specified according to the BNF notation in Figure 7.

FIGURE 5 | Exploitation of the collective product.

FIGURE 6 | The different interactions of the meta-agents.
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FIGURE 7 | Message specification.

FIGURE 8 | Interaction protocol focused on a producer meta-agent linked to a consumer meta-agent.
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Non terminal symbols are enclosed by 〈 〉 when expansion is
detailed and by [ ] when the specific expansion is out of the scope
of this discussion. Terminal symbols are not enclosed. Optional
fields are enclosed by { }.

Meta-agents Interaction protocol All meta-agents periodically
send hello messages to find out who their neighbors are. A
neighborhood table contains for each neighbor, its network
node address but also the unique COPE subsystem identifier
(COPE-subsystem-id).

When a consumer meta-agent detects a producer meta-agent
from the COPE subsystem it must cooperate with, it will generate
the message COPEStartingMessage (see Figure 8). The
sending of this message can be conditioned by the respect of
an application-dependent protocol A (for example to charge the
consumer meta-agents in connection with the producer meta-
agents to send the request). The messages of these protocols are
transported in messages COPEAppDepData.

Any producer meta-agent who receives a
COPEStartingMessage verifies that it can authorize the
exploitation of collective product (which may require the use
of an application-dependent protocol B). Acceptance or possible
rejection is notified via a COPEStartingReply message. In
case of rejection, the consumer meta-agent applies a
StartingReset procedure (by default a timer).

In case of acceptance, the consumer meta-agent will specify
the list of indicators it wishes to obtain and demand a quality of
service via a message COPEImplementationRequest. The
establishment of this list may or may not require, depending on

the application, interactions in the producer sub-system
(application-dependent protocol C). Several QoS strategies are
proposed (polling, periodical sending, event based) but they can
be customized by the user.

The reception by a producer meta-agent of a
COPEImplementationRequest can lead to the use of a
specific protocol, in particular to adapt the behaviour of
neighbouring producer meta-agents (application-dependent
protocol D allowing, for example, producer meta-agents to
send their own indicators in order to consolidate the
information sent back). The values of the requested indicators
will transit via the messages COPEImplementationReply.

The reception of a COPEImplementationReplymessage
will generally lead to interactions specific to the consumer
subsystem to, for example, share this information, or locally
adapt the behaviour of the MAS (application-dependent
protocol E).

Non-functional constraints modulating the interaction In
embedded systems, many non-functional constraints have an
increased importance in comparison to purely software systems.
The need to save resources such as computing time, memory or
energy leads us to introduce two states of a meta-agent: the
“active” state and the “passive” state.

A meta-agent in the passive state only executes its individual
processes: it keeps its KBase up to date. It does not actively
participate in any interaction. It will exit this standby state if its
activation rule is true or if it has received an activation request
from one of its neighbors.

FIGURE 9 | Meta-agents interactions of producer and consumer MASs.
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The activation rule takes into account several elements such as the
role played by the associated agent in the generation of the collective
product (C1), the capacity of the meta-agent to be reachable by
meta-agents of the other subsystem (C2) and it capacity to operate
without disturbing its associated agent (C3). Other application-
dependent conditions can be defined by the COPE user.

To change the state of a meta-agent, the messages
activationProposal and activationInform must
be used.

4 APPLICATION

In this section, we introduce some elements of implementing
COPE meta-agents in the application context we have presented.

4.1 Identification of Indicators
As soon as a sensor agent detects the fire, it generates a
MWACRoutedData message to be sent to the LACU via the
MWAC route. When a meta-agent of the consumer system
detects a MWACRoutedData message, it can access the included
network layer address to know the alert initiator and the datalink
layer address to know which agent is the transmitter of the frame.
Since the alert is sent out periodically by the sensor agents, if the
consumer meta-agents bring their associated UAVs closer to this
relay agent (by faking their perception to make them decrease the
altitude), they will be able to pick up themessage transmitted to it and
thus discover the predecessor in the route. This predecessor can either
be the creator of the alert or another relay agent closer to this creator.

4.2 Rules Definition
To parameterize the meta-agents, the designer has to define event
driven rules respecting the following format:
ON event
IF condition
THEN action

If the specified event occurs and an associated condition is
fulfilled (at the time of the event occurrence) then the
associated action is launched. The “event” part is
generated by the perception component indicating that
something significant to the system execution happens.
The condition part is a logical test that, if true, will trigger
the action.

Updating world representation To update its representation
of the world, a meta-agent uses observation rules. These rules
interpret the individual level behavior of agent to which the
meta-agent is associated in order to extract the useful
knowledge. In our case study, revealing events to build the
world representation are the frames circulating on the agent
communication medium. Actions consist in updating the world
representation values.

For example, observation rule OR1 allows to observe the
occurrence of the MWAC route from producer system side.

OR1 :
ON RECEIVE agentMsg
IFagentMsg.type==AgentMessage.MWACRoutedData
AND
AgentMessage.isAlertMessage(agentMsg.data)
THEN KBase.MWACRoute = true

FIGURE 10 | Evolution of the different types of meta-agent interactions.
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The observation rule OR2 enables to follow the role evolution
of the associated agent:

OR2 :
ON SEND agentMsg
IF true
THEN KBase.agentRole = AgentMessage.getRole
(agentMsg)

Sharing indicators The so-called decision rules specify how
the indicators should be shared. These rules exploit the available
knowledge on the representation of the world and conclude with
a decision.

In our case study, after initializing the exploitation, the
consumer meta-agents of the UAV system send a
COPEImplementationRequest message to start the

FIGURE 11 | Time to reach the fire by the UAVS.
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collective product exploitation. As soon as the decision-maker
of a producer meta-agent receives this message, it applies the
decision rule DR1 that uses knowledge concerning the role of
the agent to select the action to be performed. The objective of
the producer meta-agent is then to allow the localization of
the previous relay (pr) sensor agent in the route (the one that
it heard the MWACRoutedData message carrying the alert)
and that we will call the pr agent. The consumer meta-agent
then needs to receive the wireless physical signals of the pr in
order to locate it by using a RSSI based algorithm. The
producer meta-agent will therefore fake the perception of
its associated sensor agent to transmit a
MWACRoutedData message to pr with the objective that
pr replies a message to it. It will be the effector component that
creates the message when it has been notified of the decision
by the decision-maker component.

DR1 :
ON RECEIVE COPEImplementationRequest
IF (KBase.agentRole == REPRESENTATIVE OR
KBase.agentRole == LINK)
THEN Decision.act(SEND, AgentMessage.MWAC
RoutedData)

When a consumer meta-agent receives an indicator (i.e., a
message from a producer meta-agent that allow to locate the
previous relay), it applies the DR2 rule in order to move closer to
the previous relay.

DR2 :
ON RECEIVE COPEImplementationReply
IF (KBase.AgentState == MOVING)
THENDecision.act(SEND,AgentMessage.setTarget,
COPEImplementationReply.getNextPosition ())

Faking agent’s perception To fake the perception of its
associated agent, the meta-agent uses action rules. As soon as
the effector component of the meta-agent receives a decision
from the decision-maker component, it infers the action rules
contained in the KCRSet.

For example, rule AR1 guides the effector component to
operationalize the decision to send a data message by luring
the agent’s perception. The effector role is to embody this
requested action by sending a MWACRoutedData message
from the associated agent to the previous relay.

AR1 :
ON NEW decision
IF decision.equals (SEND, AgentMessage.MWAC
RoutedData)
THENEffector.sendAgentMessage(AgentMessage.
MWACRoutedData, KBase.agentIdentifier, KBase.
prevRelayIdentifier).

5 EVALUATION OF THE COPE APPROACH

In this section, several simulations are presented to evaluate our proof-
of-concept implementation of the COPE approach.We illustrate how
COPEworks by analyzing the network traffic. Then we verify that our
approach meets the need to allow UAVs to move to the fire area. To
do so, we measure the travel time of the UAVs from the LACU to the
fire. Finally, we discuss the cost of using COPE.

Experiments were performed with the Multi-Agent Software
Hardware simulator (MASH) (Jamont et al., 2013; Jamont and
Occello, 2015), dedicated to the design and deployment of cyber
physical systems.

In order to have a comparative study, COPE is compared for
these criteria to a state of the art solution named EAgilla (Lingaraj
et al., 2018). EAgilla is a middleware specialized in the
development of applications using information coming from a
WSN. EAgilla is not designed to exploit collective products but its
usage scenario shares some properties with our scenario.

5.1 Illustration of How COPE Works
To illustrate the functioning of our solution, we use a WSN of 100
nodes andwe put ourselves in the conditions of a swarm of 50UAVs

FIGURE 12 | The influence of the meta-agent density on the time needed for the UAVS to reach the fire.
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(we title this configuration by Config 1). A first set of measurements
shows the number of interactions involving meta-agents (Figure 9).
A second set of measurements shows the type of messages
exchanged (Figure 10). We can thus distinguish 3 phases:

Authorization of the exploitation: From t = 6 to t = 18 slots we
note a large number of message exchanges between producer meta-
agents that correspond to the decision to authorize the exploitation
of the collective product. We note an even larger number of
interactions between the consumer meta-agents which leads to
the decision to exploit the collective product of the other system.
We notice that the interactions between the consumer meta-agents
and those with the producer meta-agents precede the exchanges
between producer meta-agents. Indeed, the consumer meta-agents
must have expressed their need to exploit the collective product
before the other meta-agents work on collecting indicators.

By analyzing the graph of Figure 10 on the same interval, we can
see that the messages exchanged during this phase are
COPEStartingRequest sent by the consumer meta-agents to the
producers, followed by COPEStartingReply messages generated by
the producer meta-agents to the consumers. At t= 14 slotswe notice a
peak of COPEStartingRequest messages which reflects the
involvement of a large number of consumer meta-agents in the
process in order to be able to share the information with as many
producer meta-agents as possible. It is for a similar reason that we see
a peak of COPEStartingReply messages at t= 16 slots. Interactions
between meta-agents in the same system (consumer or producer)
induces individualDecision messages and collectiveDecision messages
as well as messages of the meta-agent state adaptation mechanism
(activationRequest, activationProposal, activationReason,
activationInform).

Implementation of the exploitation: From t = 19 to t = 90 slots we
notice that the meta-agents of both systems interact throughout this
interval to allow the exchange of indicators. At the beginning of the
period and a few times during this interval (for example at t = 50
slots), traffic peaks of the producer meta-agents represent the taking
of collective decisions authorizing the transmission of indicators
required by the consumer system. The interactions between the

consumer meta-agents are present at the beginning of this interval
and reappear at t = 42 slots and at t = 66 slots to guarantee the
successful transmission of the exploitation requests.

By analyzing the graph of Figure 10, we note that the messages
exchanged are COPEImplementationRequest (consumer meta-
agents) and COPEImplementationReply (producer meta-agents).
At t= 44 slots the interactions between consumer meta-agents
show in particular the involvement of new meta-agents in the
interactions allowing the exploitation (messages activationRequest,
activationProposal, activationReason, activationInform). This
increase in the number of participants is naturally followed by an
increase in the messages COPEImplementationRequest at t= 50 slots
which will imply an increase in the producer meta-agents involved
(activation message) at t= 52 slots and finally the increase in
messages COPEImplementationReply at t= 54 slots.

Arrival of the UAVs on the fire zone: from t = 91 to t = 96 slots
the interactions of the consumer meta-agents towards the
producers start to decrease which implies the decrease of the
interactions of the producer meta-agents towards the consumers.
The consumer meta-agents progressively reach their objective
which leads them to stop sending COPEImplementationRequest
messages. We notice then that the producer meta-agents are less
solicited by observing the decrease of response sending (messages
COPEImplementationReply).

About implemented coupling strategy: the establishment of a
coupling strategy requires a compromise between several criteria,
including the simplicity of the definition of the rules to be
implemented in the meta-agents and the QoS criteria. The
strategy we proposed to address the problem of the illustrative
scenario is not optimal in terms of energy consumption6 because

FIGURE 13 | Cost of COPE vs. EAGILLA.

6From an energy consumption point of view, a better solution would be for a single
UAV to locate the burning area using the identified route and transmit the location
(e.g., a GPS position that it measures with its own sensor) to the other UAVs.
Allowing this communication could force the UAV to return to the transmission
area of the others.
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the identified route may not be the optimal route to be followed
by the UAVs. However, it better illustrates the coupling of two
physically distributed systems following a decentralized
approach.

5.2 Ends-To-End Delay
We test whether the COPE approach allows UAVs to reach the
fire as well as the influence of system density on its operation
using three configurations where density of WSN nodes is
decreased (density of sensors divided by 2 for Config 2 then 4
for Config 3). By analyzing the obtained results (Figure 11), we
notice that with COPE the UAVs start to approach the fire faster
than in the implementation using EAgilla. Following the EAgilla
approach, mobile agents traverse the network in search of a
shorter path and do not exploit the available collective product.
The additional time required by EAgilla (23 slots in Figure 11A,
44 slots in Figure 11B, 80 slots in Figure 11C) is due to the time
required for agent cloning, agent mobility (of their code and data
vector) and agent coordination.

We noticed that COPE becomes slower when the MAS density
decreases because of the communication link loss. More time is
then needed to execute the meta-agent activation mechanism. For
Config 1 and Config 2 we find that COPE is faster than EAgilla,
and that both solutions give almost the same result when the
network density is less important with Config 3 (Figure 11C).

However, it should be noted that in this simulation, we
consider that the alerts are sent continuously. The further
apart in time they are, the longer it takes for UAVs to
progress along the MWAC route.

We evaluate the influence of the density of the meta-agents on
the performance of our approach. To this end, we use Config 1
where we will disable a set of randomly chosen meta-agents. We
set the proportion of disabled agents at 10, 30 and 50% of the total
number of deployed producer meta-agents. The results obtained
on the graph of Figure 12 show that when 10% of the meta-agents
are disabled the UAVs move more slowly towards the fire. This is
explained by the time needed (e.g., between t = 27 slots and t= 29
slots) to engage more producer meta-agents in the interactions in
order to meet the demands of the consumer meta-agents to share
the indicators needed for the collective product exploitation.
Indeed, the meta-agents have some mechanisms (e.g., timers)
to decide to start interacting in order to change the state of some
standby agents to the active state.

For the same reason, with 30% of the meta-agents disabled, we
notice that the UAVs move even more slowly towards the fire.
(Figure 12). The activation mechanism is triggered more
frequently (e.g., at t= 25 slots, t = 29 slots, t = 39 slots. . .).

With 50% of meta-agents disabled, the route is not always
perceived by the consumer meta-agent. So, their associated UAVs
must explore the environment more widely to fill this
information gap. More complex rules for efficient exploration
of the environment should be defined. These rules will also help to
break the one-agent/one-meta-agent association.

5.3 COPE Cost
The components of the two systems are limited in resources,
especially energy, which defines their lifetime. We test the cost

of the approach in relation to the rate of exchanged messages
because the communication module is the one that consumes
the most energy of the components of the two systems. The
obtained results (Figure 13) by using Config 1 show that COPE
adds 15% more exchanges to the average exchange volume of
already deployed agents because the operation of the solution
relies on collective decisions involving several meta-agents
interactions. EAgilla adds 20% due to the mobility of the
agents, which is done by sending/receiving messages.

Concerning the sensor agents which are involved in the first
four bars on the graph of Figure 13, we notice that our approach
(the first two bars) adds a similar volume of sent and received
messages because each meta-agent which receives an individual
or collective decision makes its own decision and sends it back to
the meta-agents in its neighborhood only.

For the EAgilla middleware, we also see that the volume of
messages sent and received by the sensor agents are almost
equal because these communications represent the mobility of
the mobile agents of the middleware in order to find the
shortest route to the LACU (each message containing the
code of a mobile agent received is systematically sent
afterwards).

Regarding the UAV agents that are involved in the last four
bars of the graph, we note that the COPE approach adds an
approximately similar volume of sent and received messages, but
this volume remains relatively high compared to that of the
sensor agents. This can be explained by the fact that the meta-
gents associated with the UAVs are consumers, so they exchange
more frequently with each other and with the producer meta-
agents associated with the sensor agents in order to benefit from
the collective product of the producer system.

For the EAgilla middleware we also notice that the volume of
messages sent and received by the UAVs agents is even more
important than the volume of the messages of the sensor agents
which is due to the movement of the mobile agents in order to
guide the swarm by using an RSSI based algorithm and the tuple
space of the middleware.

In the test we performed, COPE appeared to be less expensive
than EAgilla.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach called COPE (COllective
Product Exploitation) to allows a MCPC to exploit the collective
product of another one. This approach relies on the use of meta-
agents deployed in the two systems to be coupled. The solution we
propose here can be characterized as follows:

• Non-intrusive: by using the ability of meta-agents to observe
the occurrence of a collective product and to make decisions
in order to allow its exploitation without any cooperation
from the MCPC agents. No modification of the decision
loop of these agents is indeed necessary.

• Generic: the components of a meta-agent are generic and
must be parameterized via the definition of perception,
decision and action rules.
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We are presently working on improving the following
characteristics of the proposed solution:

• Multi-dimensional compliance: by allowing the exploitation of
several MASs with several collective products. We need to
validate the operation of the model with multiple producer
MASs and a single consumerMAS initially, and then generalize
to multiple consumerMASs. An interesting problemwill be the
study of the impact of negative interference.

• Environment interaction awareness: by not only taking into
account the eavesdropping of the exchanged frames, but
also all the possible interactions via the environment
between a meta-agent and its associated agent. This
means that the meta-agents must be able to perform an
activity recognition of their associated agents.

• “One-agent/one-meta-agent association” breaking: by associating
one meta-agent to a set of agents. To do this, a meta-agent must
be able to observe all the agents in its communication range and
to influence them to realize the exploitation of the collective
product. An issue lies in identifying these different agents. The
loss of a communication link between producer and consumer
meta-agents could no longer be considered as a disturbance but
as a normal functioning.

We also intend to implement the model in the context of Web
Of Things (WoT) applications considering a Smart Home
application (Khenifar et al., 2014). In a such scenario, a home
security system and a home comfort management system are
studied. Each one is incorporated in an independent home. The
objective is to enable the exploitation of these systems by using
COPE with a RESTful implementation.
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