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This research presents a novel bio-inspired framework for two robots interacting together for a
cooperative package delivery task with a human-in the-loop. It contributes to eliminating the
need for network-based robot-robot interaction in constrained environments. An individual
robot is instructed tomove in specific shapes with a particular orientation at a certain speed for
the other robot to infer using object detection (custom YOLOv4) and depth perception. The
shape is identified by calculating the area occupied by the detected polygonal route. A metric
for the area’s extent is calculated and empirically used to assign regions for specific shapes
and gives an overall accuracy of 93.3% in simulations and 90% in a physical setup.
Additionally, gestures are analyzed for their accuracy of intended direction, distance, and
the target coordinates in the map. The system gives an average positional RMSE of 0.349 in
simulation and 0.461 in a physical experiment. A video demonstration of the problem
statement along with the simulations and experiments for real world applications has been
given here and in Supplementary Material.

Keywords: bio-inspired multi-robot interaction, RGB-D perception, vision based gestural interaction, human-robot
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1 INTRODUCTION

Humans are adept at using audio and visual cues for communication while carrying out collaborative
tasks. However, humans must rely entirely on non-verbal communication like visual gestures to
coordinate in a noisy environment. This research aims towards implementing a similar ability to use
gestural interaction in a networked system of robots. Traditional methods of robot communication
in a multi-robot system rely heavily on network connections through communication protocols (Yan
et al., 2013). What if a system of robots had to be deployed in an area where there was a lack of
network resources? In such a scenario, robots will have to rely on other sensors for interaction. In this
paper, two robots are used to demonstrate a vision-based gestural interaction framework to carry out
a task of package handling in cooperation with a human (Wang and Schwager, 2015). This approach
enables each robot to be independent of a centralized controller or server. A system of two different
robots demonstrates that the framework is scalable to incorporate different types of robots in the
system. The system consists of the following types of robots: (1) package handling robots capable of
carrying packages and detecting both human and robot gestures; (2) messenger robots for conveying
information to package handling robots and carry out supervision and can detect only human
gestures. Themessenger robots read a human gesture using skeletal tracking for knowing the package
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to be transported and signal a particular package handling robot to
carry out the task. The package handling robot is capable of object
detection and tracking by which it can infer the trajectory of a
messenger robot depicting a particular action. This mode of bio-
inspired passive action recognition (Das et al., 2016) is based on
how bees communicate with other bees in their hive to convey the
distance and direction of a food source about the hive’s location
and position of the Sun using a gesture-based communication
called ‘waggle dance’ (Riley et al., 2005) (See Figure 1). Waggle
dance has been used in for studying pattern formation and
recognition (Esch and Burns, 1996). Recent studies have used it
for robot interaction with live bees (Landgraf et al., 2018). Inmulti-
robot systems, “waggle dance” inspired interaction has been used to
identify commands in the form of gestures from other robots (Das
et al., 2016). This paper implements a novel framework for
interaction as well as determining the distance and direction
through such gestures. Past work in vision-based multi robot
interaction (Kuniyoshi et al., 1994) has mainly focused on

limited explicit communication (Meng et al., 2006) and marker-
based communication (Parker et al., 2004) or colour-based
interaction (Melanie et al., 2020). This research adds a gestural
interaction framework to the existing literature. Gesture based
interaction involves object detection and tracking for which various
algorithms have been developed in the past. The major object
detection algorithms include the development of YOLO (YouOnly
Look Once) (Redmon et al., 2016), (Shafiee et al., 2017), (Redmon
and Farhadi, 2018) series as well as SSD (Single Shot Detection)
(Liu et al., 2016), (Zhai et al., 2020) frameworks. Object tracking
involves the usage of measuring the distance of that particular
object from the camera. This has been done using a monocular
camera (Crivellaro et al., 2017), (Tjaden et al., 2018) usingmachine
learning algorithms, or a stereo camera (Lin and Wang, 2010),
(Issac et al., 2016) using triangulation methods as well as other
machine learning methodologies. The current paper uses a depth
camera (Lukezic et al., 2019) where the IR sensor in the depth
camera is used to measure the distance of the object from the
camera once it has been detected. Object tracking has various
methodologies being used in the past like centroid detection and
tracking (Nascimento et al., 1999), average depth estimation (Chu
et al., 2017) and other methods.

Additionally, network servers are prone to damage by heat,
moisture and dust. Moreover, a lack of electricity or network is
possible during natural calamities, due to which a server may not
be feasible. Hence, the approach ensures that the system is reliable
and in cases of emergencies, can respond to human intervention
and instruction to stop a certain process. To summarize, the
contributions of this paper are as follows:

1) A distributed, asynchronous and scalable robot-robot
interaction using vision-based gestural motion cues

2) Robot-robot interaction using a gesture-based action
formation and recognition methodology:

a) Gesture formation in form of shapes using basic motion
control

FIGURE 1 | An analogical example of how bees communicate to convey
distance and direction of food source. The framework used in this paper
involves a robot that moves in a triangle to convey direction and distance
towards the target destination for the other robot.in cooperation with
humans.

FIGURE 2 | Schematic for a collaborative vision-based gestural interaction framework. The shaded region represents the contribution of this paper.
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b) Gesture recognition of formed shapes using visual perception
c) Target Position Identification by formulating the orientation

and duration of gesture
3) Experimental validation in simulation environment and a

physical system of two robots with multiple humans on an
experimental testbed of a manufacturing industry setup.

2 PROBLEM FORMULATION

The main focus of this paper is to demonstrate a robot-robot
interaction framework using vision-based cues. Additionally, this
is also done in collaboration with a human to carry out a package
delivery task. The main methodology is to identify the robot and
track its trajectory through which a gesture is interpreted, and the

command is carried out. Figure 2 provides an overview of the
entire schematic of the proposed architecture.

2.1 Human Gesture Identification
This paper uses skeletal tracking for human body pose estimation
to convey a command to the robot. Google’s MediaPipe (Lugaresi
et al., 2019) is used for tracking the skeletal points. A total of 18
skeletal points of the upper body are taken. Based on the
coordinates of these skeletal points, certain body poses are
pre-coded into the robot as certain gestures with
corresponding commands, as shown in Figure 3. Improving
skeletal tracking and identification is not the focus of this
paper. Body pose estimation is merely used to introduce a
human-in-the-loop for a cooperative package handling task.

FIGURE 3 | Commands for robot correlating human gestures.

TABLE 1 | Classification of different types of shapes and their corresponding gestures.

Shape Command Command attributes

Triangle Go to location Orientation of triangle denotes the direction; Duration of gesture correlates to distance to be travelled
Circle Follow messenger N/A
Square Follow a human N/A

FIGURE 4 | Schematic for the methodology of Gesture Identification and
Inference. FIGURE 5 | Simulation Environment.
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2.2 Robot-Robot Interaction
The system consists of the following types of robots: (1) package
handling robots capable of carrying packages and detecting both
human and robot gestures; (2) messenger robots for conveying
information to package handling robots and can detect only
human gestures. The messenger robots read a human gesture
using skeletal tracking for knowing the package to be transported
and signal a particular package handling robot to carry out the task.
The package handling robot is capable of object detection and
tracking by which it can infer the trajectory of a messenger robot
depicting a particular action. The methodology concerned with
gesture formation and identification are discussed exhaustively in
the next section (see Section 3).

2.3 Path Planning and Control
The robots are given a map of the environment before-hand
constructed using RTAB-MAP (Labbé andMichaud, 2019). Once
they receive command with destination location, a global path
planner is implemented using the A* algorithm, (Hart et al.,
1968), and Dynamic Window Approach (Fox et al., 1997) is used
for local path planning. A proportional controller is used on the
robot to gradually approach the target location or follow a person
or robot. The distance for following is calculated based on the size
of the bounding box of objects in the camera frame. These

methods are merely for demonstration, and better ones exist
in the literature, but that is not the focus of this paper.

3 ROBOT-ROBOT INTERACTION

3.1 Robot Gesture Formation
Following a human command, the robot has to convey
instructions to another robot. The messenger robot moves in
basic shapes according to the type of command (see Table 1). As
an extension to this gesture-based command transfer, a bio-
inspired gesture attribute recognition, as shown in Figure 1, is
demonstrated for the case of a triangle, as explained in Table 1.

3.1.1 Shape Formation
Before forming a gesture, the messenger robot approaches and
faces the other robot head-on using pose estimation from a
custom trained YOLOv4 (Bochkovskiy et al., 2020) model.
Subsequently, shapes are formed by the robot discussed in
Table 1 using basic Robot Operating System (ROS)
commands (Quigley et al., 2009). In the case of a triangle, the
robot has to initially orient itself to angle α, which will be the
initial angle the robot has to turn to before starting its motion to
trace a triangle in direction θ, which is the direction the robot has
to convey to the other robot in the framework. To prevent large
odometry errors, an angular velocity of ωi = 15°/sec is chosen for
the robot. An equilateral triangle is formed with sides a = 0.4 m.
Larger sides have not been chosen since it leads to higher errors in
odometry. Similarly, smaller a has not been chosen since the
shapes formed are not distinguishable due to a smaller area. The
triangles are formed at an orientation of ϕ with a constant linear
speed of v and angular speed of ωδ = 30°/sec. Here, ϕ is decided by
the direction of the package handling robot from its current pose.

3.1.2 Duration Control of Gesture
The goal here is tofind a v such that the triangle is traversed in timeT at
an orientation of ϕ. Accordingly, to cover the trajectory after orienting
itself, the relation of duration T to linear speed v of the robot is:

T � 3p
a
v
+ 3p

(2π
3
)

ωδ
secs

∴v � 1.2
T − 12

m/sec

(1)

FIGURE 6 | Operational task flow.

FIGURE 7 | Experimental test set-up.
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3.2 Robot Gesture Identification
After gesture formation, the package handling robot recognizes
the gestures based on shape, orientation, and motion duration.
The next step after gesture formation is for the package handling
robot to recognize the gesture based on the shape, orientation and
time in which gesture is completed. An overall schematic of the
same is depicted in Figure 4.

3.2.1 Object Detection
Object detection is implemented on the RGB image from the depth
camera for identifying the robot. The YOLOv4 (Bochkovskiy et al.,
2020) model is trained on a 500-image custom dataset. The primary
aim is to identify the robot and implement a better object detection
model beyond this paper’s scope.

3.2.2 Object Trajectory Tracking
The depth image from the RGB-D camera is used for finding
the corresponding depth of points depicted in the bounding

box given by the object detection algorithm. An average of all
the points is given as the distance of the robot from the camera,
and the coordinates of the robots are tracked. The trajectory of
the robot is tracked for its shape and time taken to complete.
An important point to note in this section is that the messenger
robot moves in a 2D plane but is tracked in a 3D space. This
creates a discrepancy in the actual path followed by the
messenger robot against the path observed by the package
handling robot. However, the shape is similar when viewed
from a top view.

3.2.3 Gesture Recognition
The package handling robot is trained to identify the shape of
trajectory in relation to the area covered using the methodology
for calculating the extent of the area implemented (Das et al.,
2016). Let the shape be x,y ∈ [X,Y ]. The area of the polygon has to
be calculated to find the area (A).

FIGURE 8 | Frame-by-frame shape formation in experiment and simulation. Red arrows indicate the path which has been traced, and yellow arrows indicate the
prospective path to be followed. A comparison of odometry data with the path captured by the camera is shown for the physical system and simulation. The bounding
box is represented for the observed shape, and the extent of the area is calculated.
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A �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(∑N

i�1xipyi+1 − xi+1pyi) + (xNpy1 − x1pyN)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2)

To classify a shape, the ratio of area to its bounding box is
calculated as extent of area (Das et al., 2016). The bounding box
was marked using the minimum and maximum x and y
coordinates tracked by the camera. Different shapes tend to
have different ranges of extent of area classified empirically
after conducting various test cases.

3.2.4 Target Position Identification
A gesture formation and recognition methodology is also
implemented for robots to convey a specific point to visit on
the map. The duration of the gesture and its orientation to
another robot corresponds to the resultant vector from
robot to target pose. The case of a triangle is used to
depict the task of going to a particular location {xT ,yT}
from the source location of robot {x0,y0}. For calculating
distance, the time is taken, T, to cover the path corresponds

to the distance, r, the robot has to travel. Here, r is to be
estimated by the robot, and subsequently, xT and yT once the
direction is known

r �




















(xT − x0)2 − (yT − y0)2√

(3)
This distance inferred by the robot correlates to the total time

taken (T) by the messenger robot to complete the gesture. As
discussed earlier, a shorter duration corresponds to a shorter
distance.

r∝T &. r∝
1
v

(4)

Assuming that the maximum speed of the robot is vmax and
maximum traversal distance is dmax

r|dmax
� kp(3pa

v
+ 3p

π

3pω
)∣∣∣∣∣∣∣vmax

(5)

Where, where a � 0.4m is the length of side of triangle, v is the
linear speed of the robot, ω � π/12 is the angular velocity of the

FIGURE 9 | Sample data from simulation and experiment for the extent of area covered and ranges for the corresponding shape. The pink, yellow and purple areas
are the empirical regions for the classification of shapes. Below the figure are the confusion matrices for the related scenarios.
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robot and k is the proportionality constant with which the entire
time period required is multiplied. Formulating Eq. 5, we get

k � dmaxpvmax

12p(0.1 + vmax) (6)

Hence, the relation of distance with time duration of gesture is

r � dmaxpvmax

12p(0.1 + vmax)pT (7)

Calculating Direction: The perpendicular to the vertex of the
triangle where the gesture starts/ends, from the opposite base
denotes the target direction, and the centroid of the triangle lies
on its perpendicular. Let {xobs,yobs} ∈ C, where C is the set of
observed coordinates of robot detected by the camera. The
centroid {xctd,yctd} is

{xctd , yctd} �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑N−1

0 xobsi
N

,
∑N−1

0 yobsi
N

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (8)

The coordinates of the vertex are taken by taking an
average of the first 5, and the last 5 points in C denoted as
{xvtx,yvtx}. Therefore, the resultant angle of direction is
formulated as

θ � atan2(yvtx − yctd , xvtx − xctd) (9)
Thus, we get a resultant polar vector of { �r,θ} towards the target

location, which is translated to cartesian coordinates on the map
as the target pose for the robot.

FIGURE 10 | Comparison for few cases of angle orientations and error comparison for odometry and camera perception for simulation and experimental results.
The blue and orange arrows indicate the formulated angle. The bar chart depicts the error in the formulated orientation.
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4 EXPERIMENT SET-UP

The simulation environment depicted in Figure 5 is created in the
Gazebo (Koenig and Howard, 2004) simulator. The robots used
are a Turtlebot 2 equipped with a Kinect camera at the height of
90 cm and a Turtlebot 3.

The cases for forming different shapes and triangles at
different velocities and orientations are carried out in Gazebo.
These gestures are tracked with the simulated Kinect camera. The
setup is tested on a physical system, and the experimental task
flow is depicted in Figure 6.

The setup was tested in an industrial testbed in an area of 15 m
× 6 m, consisting of a conveyer belt, a pick-to-light system, and a
fixed manipulator, as shown in Figure 7. We test our framework
using two modified robot platforms. All the robots were tested on
Ubuntu 18.04 running ROS Melodic.

4.1 Package Handling Robot
Amodified Turtlebot 2 has additional 3D printed plates at heights of
90 and 120 cm to accommodate space for extra sensors and
packages. An NVIDIA Xavier NX was mounted on the base of
the robot for a physically smaller processing system. Orbbec Astra

RGB-D camera is attached at the height of 35 cm for conducting
SLAM and Intel Realsense D435i RGB-D camera at the height of
90 cm with a 15° downward tilt for object detection and skeletal
tracking. The Realsense cameras are accurate for object tracking and
have been used in past literature for tracking position of objects due
to their precise depth tracking. It possesses a depth sensor with a
resolution upto 1,280 × 720 pixels at 30 frames per second. A brief
description of accuracy of object tracking and precision of RealSense
cameras has been described and reasoned in (Carfagni et al., 2019).

4.2 Messenger Robot
A modified version of a Turtlebot 3 is used for the experiment.
Additional 3D printed PLA plates were provided to the robot to
accommodate an RGB camera. NVIDIA Jetson Nano was used as
an onboard processing system for better image processing and
faster computation.

The framework is tested for the following tasks:

i) Messenger robots receive and convey distance and direction
of location from human to package handling robots

ii) Messenger robots specify the target package
iii) Instructs package delivery robot to follow messenger robot

FIGURE 11 | Error plot of directional angles.
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Additionally, 3 human operators were working in the given
environment in cooperation with the robots. The people were
instructed with the gestures and their corresponding commands.
Preliminary setup was tested for a given set of velocities and
intended directions. For the current setup, the Turtlebot3
(messenger robot) is operated at a maximum velocity vmin =
0.05 m/s and the maximum distance in the environment to be
dmax = 10 m. Subsequently, according to Eq. 8, the
proportionality constant k = 0.278. We took certain angles
from the range of -150° to 150° at regular intervals at either

15° or 30°. The experiments were initially carried out for the cases
of v = 0.05 m/s, 0.08 m/s, 0.1 m/s and 0.2 m/s evaluating to a total
number of 64 cases.

5 RESULTS

This section analyses the robot-robot interaction framework.
The two primary factors to be analyzed were a) How does one
robot differentiate between different gestures (shapes) drawn
by the other robot? b) What is the accuracy of direction and
orientation perceived by the package handling robot? The
performance for human gesture identification, object
detection, and path planning has not been evaluated since
standard libraries and algorithms have been used. The
methodologies above have been used only for
demonstrating the framework as a whole.

5.1 Gesture Formation and Identification
Figure 8 describes gesture formation by the messenger robot and
identification by the package handling robot. Trials of the

FIGURE 12 | Error plot of distance accuracy.

TABLE 2 | Summary of RMSE.

eθ (in Degrees) er (in m) ed (in m)

Sim. Exp. Sim. Exp. Sim. Exp.

0.05 5.295 7.984 ~ 1.024 0.391 0.528
0.08 6.378 8.058 0 1.119 0.371 0.468
0.1 7.621 9.572 ~ 0.908 0.343 0.432
0.2 8.542 11.915 0 0.972 0.292 0.415
Average 6.959 9.382 ~0 1.006 0.349 0.461
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messenger robot were conducted for tracing a triangle, square,
and circle, according to Eq. 3, the area was calculated for each
instance and compared with the given ratio to test for similarity to
the shape.

An illustration of the same is shown in Figure 8. The values of
extent area obtained from these test cases were empirically
formulated (Das et al., 2016) to create regions of gesture
identification. Triangles were observed to have an extent area
ratio of less than 0.45, squares from 0.45 to 0.63, and circles
occupying 0.63 to 0.9 part of the bounding box. The same has
been depicted for 10 trials, each for a different shape in Figure 9
with a confusion matrix for the number of outliers and inliers.
The confusion matrix for the experiments of triangle showed a
better result compared to the simulations. This is attributed to a
reasoning of a probable better estimate from the camera and
tracking system. Moreover, the simulations were carried out in
Gazebo which has close similarity to robots simulated in real
world environments. Hence, a similar or better confusion matrix
can be expected in either the case of simulation or
experimental setup.

5.2 Gesture Formation and Detection for
Different Directions
Figure 10 contains three out of the 64 cases to depict how
gestures are identified for different orientations shown by the
messenger robot and perceived by the package handling robot.
The overall analysis for all 64 cases has been discussed in the
results from Figure 11; Figure 12. The vector between the
centroid and the midpoint of the average of 5 initial and final
points gives the robot’s orientation. The significant error in

orientation is due to odometry error which adds up to the
error of direction perceived by the camera.

Additionally, trajectory tracking by the camera has multiple
fluctuations due to errors in depth estimation by the RGB-D
camera, contributing to an added error on top of
odometry error.

5.2 Performance Evaluation Metrics
5.2.1 Directional Error
Figure 11 describes the error in formulating the intended
orientation of the triangle, and subsequently the direction to
go in for the 64 cases. The corresponding results are depicted in
Figure 12. A minimum error was observed at the angles of -30°

and 30°.

eθ � 1
N
















∑N

i�1(θobs − θexp)2√
(10)

Where θo is the observed direction and θe, is the expected
direction.

5.2.2 Distance Error
Figure 12 describes the distance accuracy error. Thismetric analyses
the formulation’s efficiency to infer the proper distance to travel for
the linear velocity of the robot, i.e., how the error changes as the
intended distance are increased or decreased. The duration for each
case was calculated based onwhen the robot starts and stopsmoving.
The corresponding predicted distances (r) were formulated for all
angles from Eq. (7). The error in the duration of motion is negligible
for simulations since the environment is ideal. The experimental
results gave an average error of 1.006 m. It was observed that the
error increases as the velocity of robot increases, which can be

FIGURE 13 | Polar representation of Intended Destination Positions vs. Expected Positions.
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attributed to the fact that chances of odometry errors are higher at
higher speeds

er � 1
N















∑N

i�1(robs − rexp)2√
(11)

5.2.3 Resultant Position Error
Here, the overall accuracy is tested by evaluating the final coordinates.
Once both distance (r) and direction (θ) values are generated, the
resultant vector { �r,θ} is formulated. As seen in Table 2, the observed
error trend depicts that the error is lower at higher speeds. This shows
that the absolute position error is more dependent on the distance
error than the orientation error. The resultant coordinates (r, θ) for
each case of given orientation and speed are depicted in Figure 9 and
the average error is represented in Figure 10. The overall resultant
position and orientation of the robot has been represented in
Figure 13 as a polar plot. It has been observed that the distance as
well as orientation shows a higher error when the speed is higher, or
the required orientation is larger. This can also be shown via
observations recorded in Table 2. The orientations at −30°and
30 °are the orientations where the messenger robot does not have
to take an initial deviation before forming the gesture. Hence, these
orientations show the least deviations and errors. Table 2 also draws
an interesting perspective that the resultant error is influencedmore by
the errors observed in the orientation rather than the ones observed in
position where r is a major contributor to the ed since error in θ is
reduced to a range of [-1,1].

6 CONCLUSION AND FUTURE SCOPE

This paper proposes a novel bio-inspired framework for robots to
interact with only visual cues and motion. A cooperative object
manipulation task is performed to demonstrate the same by
introducing a human-in-the-loop using traditional human-robot
interaction methodologies. The key ideas presented in the paper
are that a robot can interact with another robot by moving in a
particular manner with specific kinematic constraints. Three gestures
were demonstrated to signify different commands. Gesture
Identification gave an accuracy of 90% for simulations and 93.33%
for experiments. A framework for going to a particular location based
on a triangle traced by the robot in a specific orientation and time
duration was also implemented. The entire framework was tested for
its accuracy in conveying the gesture and the intended coordinates in a
simulation and an experimental setup. The average positional error
was 0.349m in simulations and 0.461m for experiments. This
framework utilized a team of different robots to demonstrate that
the system is scalable. As a future problem, the system can also be
trained to recognize the intensity of human gestures. Additionally, the
robots can be trained to estimate the trajectory better by modeling a
robot after detecting the robot. The applications of this framework in

the real world are limitless. As shown in the experimental scenario of
the paper, the framework can be used in an industrial environment,
but it can also be extended to a search and rescue operation in tight
environments where communication may fail. Moreover, it can
collaborate with humans and carry out a rescue operation. The
main advantage is that it uses only a single modality of vision
which allows it to be compatible with robots of various sizes,
thereby enabling it to function in a heterogeneous team of robots.
The framework can be used to accommodate such multiple robots to
create a completely independent and scalable team of robots.
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