
Making Bipedal Robot Experiments
Reproducible and Comparable: The
Eurobench Software Approach
Anthony Remazeilles1*, Alfonso Dominguez1, Pierre Barralon1, Adriana Torres-Pardo2,
David Pinto2,3, Felix Aller4, Katja Mombaur5, Roberto Conti 6, Lorenzo Saccares6,
Freygardur Thorsteinsson7, Erik Prinsen8, Alberto Cantón9, Javier Castilla 9,
Clara B. Sanz-Morère9, Jesús Tornero9 and Diego Torricelli 2

1TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastián, Spain, 2Spanish National Research Council
(CSIC), Cajal Institute, Neural rehabilitation Group, Madrid, Spain, 3Universidad Politécnica de Madrid, Madrid, Spain,
4Optimization, Robotics and Biomechanics, Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany,
5Department of Systems Design Engineering, Department of Mechanical and Mechatronics Engineering, University of Waterloo,
Waterloo, ON, Canada, 6IUVO S. r.l., Pontedera, Italy, 7Össur Iceland ehf, Reykjavik, Iceland, 8Department of Biomechanical
Engineering, Techmed Centre, Roessingh Research and Development, University of Twente, Enschede, Netherlands, 9Center for
Clinical Neuroscience, Hospital Los Madroños, Madrid, Spain

This study describes the software methodology designed for systematic benchmarking of
bipedal systems through the computation of performance indicators from data collected
during an experimentation stage. Under the umbrella of the European project Eurobench,
we collected approximately 30 protocols with related testbeds and scoring algorithms,
aiming at characterizing the performances of humanoids, exoskeletons, and/or prosthesis
under different conditions. The main challenge addressed in this study concerns the
standardization of the scoring process to permit a systematic benchmark of the
experiments. The complexity of this process is mainly due to the lack of consistency in
how to store and organize experimental data, how to define the input and output of
benchmarking algorithms, and how to implement these algorithms. We propose a simple
but efficient methodology for preparing scoring algorithms, to ensure reproducibility and
replicability of results. This methodology mainly constrains the interface of the software and
enables the engineer to develop his/her metric in his/her favorite language. Continuous
integration and deployment tools are then used to verify the replicability of the software and
to generate an executable instance independent of the language through dockerization.
This article presents this methodology and points at all the metrics and documentation
repositories designed with this policy in Eurobench. Applying this approach to other
protocols and metrics would ease the reproduction, replication, and comparison of
experiments.

Keywords: software, benchmarking, replicability, exoskeleton, humanoid, algorithm, performance indicator

Edited by:
Loris Roveda,

Dalle Molle Institute for Artificial
Intelligence Research, Switzerland

Reviewed by:
Mattia Pesenti,

Politecnico di Milano, Italy
Alessandro Scano,

National Research Council (CNR), Italy

*Correspondence:
Anthony Remazeilles

anthony.remazeilles@tecnalia.com

Specialty section:
This article was submitted to

Human-Robot Interaction,
a section of the journal

Frontiers in Robotics and AI

Received: 24 May 2022
Accepted: 16 June 2022

Published: 29 August 2022

Citation:
Remazeilles A, Dominguez A,

Barralon P, Torres-Pardo A, Pinto D,
Aller F, Mombaur K, Conti R,
Saccares L, Thorsteinsson F,

Prinsen E, Cantón A, Castilla J,
Sanz-Morère CB, Tornero J and

Torricelli D (2022) Making Bipedal
Robot Experiments Reproducible and

Comparable: The Eurobench
Software Approach.

Front. Robot. AI 9:951663.
doi: 10.3389/frobt.2022.951663

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516631

TECHNOLOGY AND CODE
published: 29 August 2022

doi: 10.3389/frobt.2022.951663

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.951663&domain=pdf&date_stamp=2022-08-29
https://www.frontiersin.org/articles/10.3389/frobt.2022.951663/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.951663/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.951663/full
http://creativecommons.org/licenses/by/4.0/
mailto:anthony.remazeilles@tecnalia.com
https://doi.org/10.3389/frobt.2022.951663
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.951663

1 INTRODUCTION

1.1 Context
Research on robotic systems is extremely active nowadays, and
several platforms are now reaching the market. Nevertheless, the
domain is still lacking in systematic tools for comparing the
performances of these robots (Torricelli et al., 2015). From a
research point of view, this lack of benchmarking tools results in
studies that are complex to reproduce with new platforms or
experimental protocols that cannot be easily replicated. The
comparison of system performance is, therefore, either
impossible or quite subjective.

The European project Eurobench addressed this issue by
developing an integrated framework for enabling the
systematic benchmarking of bipedal systems (humans, subjects
using wearable devices, and humanoids) onto well-established
experimental protocols and metrics. This framework consists of
the creation of two benchmarking facilities, one for wearable
systems and another for humanoids, where users could find
testbeds and related protocols to benchmark their system
(Torricelli and Pons, 2019). It also involves the creation of a
centralized benchmarking software, accessible from a website.
Interested persons can find there the list of protocols defined and
connected to one of the facilities. The software is designed to
allow users to upload data collected during experiments following
one of these protocols and automatically obtain a set of
performance indicators (PIs) computed on these data, which
enable the comparison with other experiments and robotic
platforms that have used the same protocol.

This article details the software methodology that has been
defined for enabling such automatic and systematic
benchmarking of experiments. The automation, which requires
no manual intervention during the scoring process, is challenging
in our context, as we did not want to constrain the programming
language of the benchmarking algorithms used to generate the
PIs. Instead of requiring the use of a unique programming
language, we followed the strategy of constraining the interface
of these programs, independent of the language, to come up with
a common API for all, which is described in this document.

The article is organized as follows. The next subsection details
related actions in the scientific community and positions the
approach proposed by Eurobench. Section 2 describes the
methodology used, and Section 3 highlights the developments
that have been following this approach. Further, the conclusion
section summarizes the characteristics of the approach selected
and highlights some relevant further directions.

1.2 State of the Art
Benchmarking consists of comparing the performance of systems
observed under similar experimental conditions following
standardized testing procedures (Torricelli et al., 2020).
Benchmarking is strongly intertwined with standards. Current
developers of collaborative robots, such as exoskeletons or
humanoids, have to face the challenge of certification (e.g., CE
mark) if they want their product to be introduced in the market
(He et al., 2017; Fosch Villaronga, 2018). Nevertheless, the
availability of test methods for these technologies is scarce

(Pinto-Fernandez et al., 2020; Massardi et al., 2022), and
researchers typically use their own protocols to evaluate
robotic abilities. Competitions like Cybathlon exist, wherein
bipedal systems are challenged to perform similar tasks
(Riener, 2016). However, the scoring metrics, such as the
binary success or the execution time, do not permit
characterizing and comparing precisely the performances of
each system. Benchmarking can help in this process by
enabling the plethora of methods available in the research
arena to converge into a set of concrete standards. An
example of this effort is the pre-standard CWA 17664:
20211 “Lower-limb wearable devices-performance test method
for walking on uneven terrain,” developed by the Eurobench
project.

If the benchmarking concept is simple, the reality is quite
complex. In a recent study conducted with approximately 1,500
scientists, it is shown that 70% of these scientists have tried and
failed to reproduce another scientist’s experiment, and 50% have
failed to reproduce their own experiment (Baker’s study, 2016). In
the same spirit, Kim et al. (2018) describe their journey in
reproducing article results, even though the code and the
dataset are available. In both these studies, the authors
recommend internal peer review, better documentation, and
method standardization, processes that may have a learning
curve but would definitely make the difference later on.

Generating research that can be reproduced is a tendency that
has been actively pursued in bioinformatics, a domain in which
research involves significantly large datasets. Several journals
propose to extend articles with sufficient material for
reproducing the study. For instance, the journal Nature
Protocols2 encourages authors to provide step-by-step
instructions, and Plos3 requires authors to make available all
data necessary to replicate the study. In addition, the platform
protocols.io4, which is a framework enabling the creation,
management, and sharing of experimental protocols and
research methods, should be mentioned (Teytelman et al., 2016).

The importance of reproducibility has also been highlighted in
the robotic community. Fabio Bonsignorio and his colleagues
have conducted many activities to promote reproducible robotics,
initially through the special interest group on good experimental
methodology and benchmarking, Euron-GEMSIG5. Based on
their work, the concept of reproducible research in robotics
emerged (Bonsignorio, 2017), associated with guidelines for
good experimental methodology (Bonsignorio et al., 2008).
Since 2017, the IEEE Robotics & Automation Magazine has
been supporting the publication of R articles reporting fully
reproducible experiments. To achieve this, articles are to be
provided with datasets, complete code, and hardware
description. The framework codeocean6 is proposed to host

1https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17664_2021.
pdf[Accessed: 20 May 2022]
2https://www.nature.com/nprot/, [Accessed: May 20, 2022]
3https://journals.plos.org/, [Accessed: 20 May 2022]
4https://www.protocols.io/, [Accessed: 20 May 2022]
5http://www.heronrobots.com/EuronGEMSig/, [Accessed: 20 May 2022]
6https://codeocean.com/, [Accessed: 20 May 2022]

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516632

Remazeilles et al. Eurobench Benchmarking Methodology

https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17664_2021.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17664_2021.pdf
https://www.nature.com/nprot/
https://journals.plos.org/
https://www.protocols.io/
http://www.heronrobots.com/EuronGEMSig/
https://codeocean.com/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

datasets and related codes, to enable any interested reader
reproducing the experiment seamlessly, a cloud tool enabling
to store research material, share it, and even run code on online
computing resources.

The arrival of cloud-based approaches, like codeocean or
protocols. io, demonstrates that the technologies are getting
ready. Likewise, several platforms are available for storing and
sharing research data, such as Dryad7, figshare8, zenodo9, or
OSF10. Nevertheless, they may not be providing material or low-
level APIs for enabling benchmarking activity to occur in a
systematic way, which is a challenging objective of the
Eurobench initiative. The benchmarking aspect goes beyond
the reproducibility process in the sense that through
benchmarking scientists are not only interested in reproducing
the results of a given experiment but also in comparing the
performance levels measured across several experiments,
involving or not different robotic platforms.

Whitaker (2017) and Kim et al. (2018) define the concepts of
reproducibility, replicability, robustness, and generalizability.
From a software point of view, reproducibility means
obtaining the same results using both the same code and same
data. Replicability is achieved if we can use the same code with
different input data. Robustness and generalizability characterize
the quality of the concept: the first one is obtained if the same
result is obtained with the same data but different code, while the
second is obtained if a different code and dataset are used. As will
be seen in the next section, reproducibility and replicability are
being looked at in the Eurobench framework. The reproducibility
is considered mandatory to assess the stability of the metric
implementation as well as ensure the code maintenance along
time. The replicability is the concept required for enabling
benchmark, as data coming from different experiments will be
fed into the same algorithm to get comparable results.

2 METHODS

To ease benchmarking experiments and result comparisons,
Eurobench proposes to harmonize the experimental
methodology. As stated by Remazeilles et al. (2022), all
experimentation should be associated with a benchmarking
protocol and a set of performance metrics. The benchmarking
protocol documentation should describe the scope, purpose, and
related requirements. This can be done through the definition of

(i) the related scenario, i.e., the functional task(s) to realize in a
given environment;

(ii) the objective of the protocol, i.e., the description of the
features the protocol aims to characterize;

(iii) the target subjects, if there exists exclusion and inclusion
criteria;

(iv) the testbed equipment required to perform the
experimentation;

(v) the PIs that will be used to score the behavior of the
subject(s) and/or the wearable device;

(vi) the protocol procedure, describing all operations should
follow the experimenter to conduct the experimentation.
It can also define the appropriate number of repetitions, the
setting(s) that should be changed to analyze the system
behavior under different conditions, etc.

In Eurobench, we proposed a protocol template excel file11 to
set all this information, but additional documentation should be
provided to exhaustively describe the sensor placement, testbed
structure, information that must be collected during the
experimentation, etc. It is also important to state the
performance metrics in the documentation, as it can be
another criteria for the selection of a given protocol by the
experimenter.

Altogether, the protocol description should permit the
experimenter to drive the experimentation and collect the
expected dataset.

Figure 1 highlights the successive operations involved from
the experimentation start to the desired metric computation.
Three different types of software are involved:

• the software needed to conduct the experiment and collect
information (acquisition software);

• the software needed to prepare the collected data
(preparation software);

• the software used to benchmark the experiment, i.e., to
compute specific metrics based on the data collected
(scoring software).

Following the terminology used in Figure 1, the acquisition
software is dependent on the equipment used. In ideal, it should
be provided with the protocol documentation or at least be
sufficiently described to permit other experimenters to conduct
similar acquisition with similar equipment. If an experimenter
uses different equipment, he/she should document the testbed
used to fully describe the captured data.

The preparation software aims to convert the collected data
into a more generic structure, when appropriate. If the
experimenter uses exactly the same setup as the one suggested
in the protocol documentation, similar software could be used. If
not, it is up to the experimenter to convert the collected data into
the expected generic format.

The last block, the scoring software, contains all the algorithms
used to calculate the PIs necessary to quantify the different
abilities of a system. Thanks to the previous layer, the scoring
software should be agnostic to the specific equipment used in the
testbed. Thus, it should be able to process any experiment
following the same protocol, described by similar datafiles,
thereby ensuring the replicability, e.g., allowing the calculation
using data collected on a different testbed.7https://datadryad.org, [Accessed: 20 May 2022]

8https://figshare.com, [Accessed: 20 May 2022]
9https://zenodo.org/, [Accessed: 20 May 2022]
10https://osf.io/, [Accessed: 20 May 2022] 11See https://eurobench.github.io/sofware_documentation/latest/template.html

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516633

Remazeilles et al. Eurobench Benchmarking Methodology

https://datadryad.org
https://fshare.com
https://zenodo.org/
https://osf.io/
https://eurobench.github.io/sofware_documentation/latest/template.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

The challenge is thus to enable another experimenter to
conduct a similar protocol to collect the data, then prepare
them, and finally use the very same algorithm to compute its
associated scores, so that it can be compared with other
experiments under the same protocol.

An additional challenge Eurobench is willing to tackle is to get
this computation done automatically, independently of the
protocol, the collected data, and the algorithm in charge of the
calculation.

To attain this, it is necessary to define:

• a common terminology, to make sure all experimenters and
protocol providers share similar concepts;

• the type of data that are collected from an experiment and
how the collection of files is organized;

• a strategy to handle systematic approach algorithms
possibly implemented in different languages.

2.1 Benchmarking Terminology
In a recent study, we defined terminology for concepts
involved in experimentation (Remazeilles et al., 2022).
Focusing on the items related to an experiment, the
following terms can be highlighted.

A run is the recording of a single instance of the action
requested of the subject (like walk on a slope and stop at the
top). An experiment may contain several runs of the very same
action for statistical purposes.

Controlled variables are conditions and parameters that are
needed to fully describe the experimental settings. They may
refer to the configuration of the testbed (slope angle and
length), tunings of the robotic device, indications given to
the human subject, etc. These variables shall remain constant
during a run execution and all the following repetitions.
Condition is the term for the overall settings of these
controlled variables. If several conditions are considered,
the variations should be logged (we propose using a file
named condition_C.yaml where C is the number of
different settings), and for each condition setting, N runs
should be performed (as illustrated in Figure 2).

During the experimentation, a set of datafiles gets collected.
We distinguish the notion of raw data and preprocessed data (see
Figure 1). By raw data, we refer to a datafile that may be defined
in a proprietary format or using an ad hoc structure depending on
the maturity of the data acquisition software.

To permit data exchange and comparison, it is a good practice to
bring the raw data into a format agnostic to the brand of the sensor
used for collection. Such sensor-agnostic data are named preprocessed
data. Its format should be consistent independent from the software
and hardware used to capture the information. The use of a
preprocessed data format enables counterbalancing the potential
differences in the testbed equipment and increases the replicability
of the PI algorithm.

Distinguishing between raw data and preprocessed data also
enables the handling, up to a point, of testbeds equipped with
slightly different equipment. The preparation software should

FIGURE 1 | Segmentation of the software layers involved during an experimentation process, from data collection to experiment scoring.

FIGURE 2 | Data collected during experimentation.

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516634

Remazeilles et al. Eurobench Benchmarking Methodology

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

enable the experimenter to bring the collected raw data in the
preprocessed format expected by the metric algorithm.

In Eurobench, we proposed a set of preprocessed datafile
formats (see input data format in the online documentation12),
where:

• datafiles are focused on a coherent set of measures or split
into several files otherwise;

• the .csv format is encouraged for any periodic measure: each
line is associated with a given timestamp, and the first line
should name each column of information;

• for more punctual measures (like gait event or gait
parameters), the YAML format is promoted.

The proposed datafile formats are described with their
expected units. If a given protocol (or more exactly, a related
metric) requires specific measures (like specific joint angle,
measure units, acquisition frequency), such information should
be stated in the protocol description.

We can relate our preprocessed data format choices with
similar efforts found in the literature, in particular, in the
research related to human motion analysis. In the study by
Carfì et al. (2019), the University of Genoa created a
multisensor dataset of human–human handover, composed of
over 1000 recordings, where sensor information is stored in excel
files as timestamped time series of 3D joint and marker
coordinates. Maurice et al. (2019) presented the AnDyDataSet
database related to industry-like manual activities. The collected
data, available in proprietary or sensor-specific formats, are also
provided in the csv format. The KIT motion database is another
large-scale whole-body motion database of captured raw motion
data as well as the corresponding postprocessed motion files
(Mandery et al., 2015). Humanmotion is characterized using a set
of 56 markers on the human body captured at a fixed frequency.
The marker positions are stored using the standard c3d format
and an original XML format, the Master Motor Map, which is
proposed to ease the navigation in the timestamped files. In the
study by Wojtusch and von Stryk (2015), the database contained
not only the position of 35 markers recorded at a fixed frequency
but also the electrical activity of 14 muscles from the legs and
force plate sensing. The database and recording processes are well
documented as well as the source code. The authors decided to
store all datafiles as .mat files, matlab proprietary format, which
can contain structured and hierarchical data information.

The distinction between raw and preprocessed data is thus
observed in the literature. The usage of the csv format is also a
common practice. Even though it may not permit to contain
meta information on the data included, it presents the great
advantage of being easily handled by any software language,
and it is thus more likely to be accepted by the community and
the algorithm providers. Regarding the internal file structure
and field names, the proposed formats are based on discussions
with different protocol providers, with whom we tried to reach
a consensus. In any case, any format adjustment is acceptable

as long as this adjustment is well documented in the protocol
description.

2.2 Experimental Files
Experimentation may involve several subjects, requested to
perform a given action and repeat it under different
conditions. For consolidating the analysis, several repetitions
or runs may be required for each conditional setting. The
amount of collected information is significant, as illustrated in
Figure 2.

All the data collected need to be organized. We propose the
following structure:

• any file generated should be focused on a single run,
• a datafile should focus on a single type of information,
• the file naming should enable to distinguish the subject (X),
condition (C), run (R), and file content.

We thus assume an experimental dataset to be composed of
files like:

• subject_X_cond_C_run_R_dataType.{yaml, csv}
• subject_X_info.yaml
• condition_C.yaml

File condition_C.yaml should set the configuration values of
any setting of the environment in a part of the experimentation,
and subject_X_info.yaml should contain any relevant
information about the human subject involved in the
experiment (while respecting GDPR constraints). This
information may be used by the scoring algorithms or just
serve the purpose of documenting the experimental setting.
The information contained in these two files may not be
directly measured by the experimental setup.

The proposed naming for the datafile presents the advantage
of being explicit. From its format, we can relate the subject
involved (characterized in subject_X_info.yaml), the
configuration of the settings (condition_C.yaml), the run
number, and the data type it contains. The proposed file
naming format also permits the direct deduction of the
number of subjects (X), runs (R) or different conditional
settings (C) applied in the experiment.

Some experimenters may argue that a folder-based structure
would be better. Having such an explicit filename reduces the
importance of folder organization, and in any case, switching from
one format to another should just be a simple automation process.

It is a good practice to provide, together with the data collected
(raw and preprocessed), some documentation files that will
permit any reader (including the experimenter) to understand
all collected data, in particular, if some deviations with respect to
the protocol specification occur (in particular, if a different
testbed acquisition device is used or if specific adjustments
have been added for specific ad hoc studies).

2.3 Standardizing Algorithm Interface
The Eurobench project forced us to consider the harmonization
or standardization of the PI algorithm, mainly for two reasons: 1)12https://eurobench.github.io, [Accessed: 20 May 2022]

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516635

Remazeilles et al. Eurobench Benchmarking Methodology

https://eurobench.github.io
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

we wanted the computation to be automatic and 2) the protocol
and algorithm providers were numerous.

To tackle the first item, we propose to standardize the metric
algorithm interface (input and output) according to the following
criteria:

(1) A PI algorithm should be launched using the data of a
single run.

(2) All input files should be explicitly provided to the program as
input parameters.

(3) The output of the program consists of a set of PIs, one PI
per file.

(4) The generated output files are stored in a folder provided as
the input parameter of the program itself.

(5) The program should be able to run in batch mode,
i.e., without any interaction.

Item 1 presents the advantage of drastically simplifying the
algorithm. As a single run is processed, there are fewer files to
provide and less looping in the code (per user, condition, run,
etc.). A simpler algorithm is easier to maintain and revise, and
in the end, it is more focused on its real added value, which is
computing the metric based on a single execution of the
action.

With item 2, we avoid making any assumptions about the
datafile storage organization and bring the program close to a
classical standalone function, for which all required parameters
are provided as input.

Items 3 and 4 are related to the results of the program or the
output of the scoring function. Explicitly specifying the folder where
the results should be stored permits to be independent of the way the
program is launched. The algorithm does not make any assumption
about where to store the results and just feeds the defined folder.

With item 5, we request algorithms to be implemented so that
no human intervention is expected once the algorithm is

launched. The algorithm should obtain all the information
required to compute the metrics from the input files. This is
of major importance if the algorithms are to be launched
automatically.

To ease the automatic processing of the results, we also
propose to harmonize the format of the output. As the PI
score should be numerical information, we define the PI score
as follows:

• each metric is stored in a YAML file, which is an open
format;

• to be self-explanatory, a key “type” indicates the structure of
the score;

• a key “value” is then used to indicate the score;
• as an alternative, a key “label” can be used to assign a name
to the stored values, which is useful when the score is
composed of various values.

Although, through the analysis of the different PIs proposed
by the protocol providers, we observed that it is not always
possible to reach the “Graal” metric, as simple as a scalar,
where a high/low value would be defined as better or worse
depending on the metric. We identified the need for storing more
complex metrics, such as vector, matrix, list of vectors, and list of
matrices. This means that the comparison of experiments based
on complex metrics may require additional work (comparing
matrices is not as trivial as comparing scalars).

Figure 3 provides an example of two metrics obtained with a
protocol characterizing the kinematics of inclined walking
(algorithm rrd_pi_slope in Table 1). File pi_cadence.yaml
describes the subject cadence in steps per minute as scalar
information. File pi_gait_phase_duration.yaml describes the
duration of the main gait phases. It is stored as a vector, and
labels are provided to easily relate the scores to their meanings.
The complete format definition is available on the Eurobench

FIGURE 3 | Example of performance indicators (PI) output score files, obtained with the walking on slope algorithm. Scores are stored as YAML files to ease
potential post-processing.

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516636

Remazeilles et al. Eurobench Benchmarking Methodology

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

documentation webpage (see section performance indicator of
the Eurobench documentation12).

In the Eurobench scope, we chose to focus PI computation on
a single run. As stated above, this single run focus presents the
advantage of simplifying the algorithm structure and interface,
following the software principle of separation of concerns
(Laplante, 2007). The computation of the metrics for all runs,
conditions, and subjects is thus simplified and consists of
launching the atomic PI algorithm iteratively for each of these
settings. Externalizing the looping process enables narrowing the
“responsibility” of the PI algorithm, which is a well-established
principle in software programming for developing more robust
code (Martin et al., 2003).

In a previous study (Remazeilles et al., 2022), we mentioned
the need for aggregating PI to generate a score across runs,
possibly across conditions and/or subjects. Such a mechanism
would be appropriate for protocols aiming at comparing the
subject behavior with or without the exoskeleton, or with
different conditional settings, which would be related to
comparing the scores obtained between conditions Cx and Cy.
We consider that making this aggregation after the computation
of PI per run enforces the experimenter to get a lighter
aggregation module, which is then easier to describe, compare
and review.

2.4 Algorithm Containerization
The Eurobench project allowed us to collaborate with numerous
technicians, engineers, and investigation centers, which helped us
develop all protocols and related metric algorithms. As one can
easily imagine, there is no universal consensus on the most
appropriate programming language, and each contributor can
be convinced that the language she/he uses is the best one, being
python, octave, matlab, C++, or any other languages. Reaching an
agreement on the best language is a never-ending exercise, and we
considered it a better strategy to let the contributors use the
environment they master to implement their metrics.

To get a harmonized interface of these heterogeneous
programs, we use containerization technologies based on
Docker under Linux. Each scoring code is associated with a
Docker file describing how to create the appropriate Docker
image. The building of the code through the Docker file is
much more stable as it does not rely on external
dependencies that should be present on the hosting
machine. In addition, this approach limits the risks of
conflicts between various metric code dependencies, as all
Docker images are standalone. It also provides a generic way
to launch each scoring code for the central server but also for
any potential users, as long as the Docker technology is
installed on the deployment machine (see Figure 4).

2.5 Good Practices for Code Hosting
The application of this methodology, progressively designed
during the project, required a learning curve and proper
support from the protocol providers. We also tried to use

TABLE 1 | List of protocol metrics following Eurobench format.

Name Language Protocol

Wearable-related protocols

rrd_pi_slope python kinematics of stair walking and inclined walking
pi_bench octave sit-to-stand performance analysis
pi_sbs_human_factor python human factor study during stair walking, Maugliani et al. (2022)
sbs_emg matlab EMG signal study during stair walking, Maugliani et al. (2022)
pi_sbs_biomechanics python biomechanics analysis of stair walking, Maugliani et al. (2022)
pi_udbenchmark python walking with a prosthesis on a slope and instrumented treadmill, Bruijn et al. (2013)
pi_pepato octave EMG analysis during treadmill walking
pi_bestable octave visually cued stepping perturbations on a treadmill
pi_ctag octave industrial use case in narrow space
pi_beat octave walking/standing on a moving surface
pi_csic_irregular octave walking on irregular terrain
pi_bullet octave walking with crutches

Humanoid-related protocols

dysturbance matlab stability analysis under external perturbation
eb_hum_bench python humanoid platform walking characterization, Aller et al. (2021)
pi_comtest octave standing on a moving surface, Lippi et al. (2022)
pi_madrob python opening/closing doors, Piazza et al. (2022)
pi_beast python walking with a trolley or walker, Piazza et al. (2020)

Illustrative algorithm templates

pi_octave_csic octave example of octave metric
pi_python_duration python example of python metric
pi_cpp_duration C++ example of C++ metric

12https://eurobench.github.io, [Accessed: 20 May 2022]

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516637

Remazeilles et al. Eurobench Benchmarking Methodology

https://eurobench.github.io
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

several software tools usually associated with continuous
integration and deployment (CI-CD) processes. This resulted
in the following instructions to all developers:

(1) Each scoring code should be stored in a single repository
under version control.

(2) A readme file should be provided indicating the purpose of
the code, providing installation guidelines, examples of use,
and acknowledgment of owner and funding entities.

(3) Each scoring code should be provided with reference input
and associated output files to illustrate how to use it and
enable regression testing.

(4) Each repository should be provided with its Docker file for
generating the related Docker image.

(5) CI tools are used to verify the format of input and output
files.

(6) CI tools are used to automatically generate the Docker image
and test it using the reference input and output files.

(7) The Docker image is automatically deployed to a Docker hub
space centralizing all these images.

Version control is nowadays a key practice to ease code
maintenance, and proper documentation (readme file) is
required to permit collaboration. Providing reference input
and related output files with the code has various objectives. It
provides examples of required input datafiles (which
information is required to launch the code) and expected
associated result files (which result is provided). With this
reference, we can verify that the relation input file–output
result is always maintained. Through the CI mechanism, we
can even launch this verification automatically every time the
code is changed on the git repository. In addition, the presence
of the Docker image, which is generated and tested through the

CI process13, enables any user to seamlessly install the code on
her/his machine. We rely on the expertise of the code
developer to target the replicability: any experiment
described with similar files as required by a given protocol
should be benchmarked with the metric algorithm associated
with the protocol.

3 RESULTS

This methodology has been applied to most of the algorithms
developed in the context of the Eurobench project. All the
algorithms publically available are accessible as git repositories
from the Eurobench GitHub area14 and are listed in the following
Table 1

The last three repositories are provided as examples of metrics
for development performed in octave, python, and cpp, while the
17 others contain metrics associated with concrete protocols. All
generated Docker images are brought to dockerhub15. They can
thus be directly used under Linux without going through the code
compilation and installation process.

4 CONCLUSION AND FUTURE WORK

In this article, we have described the methodology developed
within the European project Eurobench to standardize all
algorithms developed for benchmarking bipedal systems. We
decided to focus on the interface of the algorithm to enable
developers to use their preferred language. Nevertheless, we
strongly encourage reducing the algorithm scope to focus on a
single metric and to focus on the processing of a single trial or
run, to reduce the code complexity and ease maintenance. In
terms of the input datafile, the use of simple and nonproprietary
file formats is a good practice. We also suggest using algorithm
input files that are preprocessed to be sensor-brand independent
as it enlarges the benchmarking replicability. The use of version
control and continuous integration tools is encouraged to
maintain the software algorithms. In addition, providing
reference datafiles with the code helps to illustrate to potential
users the type of input files required to launch the code. It also
permits the insertion of regression tests to ensure that the results
are maintained even when the code is being changed. The
dockerization of the algorithm is a convenient solution for
enabling metric use without going through the installation
process, which can be complex in some cases. Moreover, the
Docker file used to build the container provides all the required
steps to install the code in addition to the indications provided
with the repository documentation.

FIGURE 4 | PI computation based on dockerized algorithms. Algorithms
are deployed into Docker images, providing a generic interface to the
algorithm independent of the programming language. The Docker container
expects preprocessed datafiles of a single run as input and generates a
set of PI scores in YAML files. If several runs or conditions are available, the
Docker image is relaunched successively for each iteration, providing scores
for each run.

13We developed a tool for testing code within a Docker image, verifying that given a
reference input, the program effectively returns the expected output. It is used in all
repositories handled in Eurobench and is accessible at https://github.com/
eurobench/docker_test
14https://github.com/eurobench, [Accessed: 20 May 2022]
15https://hub.docker.com/u/eurobenchtest, [Accessed: 20 May 2022]

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516638

Remazeilles et al. Eurobench Benchmarking Methodology

https://github.com/eurobench/docker_test
https://github.com/eurobench/docker_test
https://github.com/eurobench
https://hub.docker.com/u/eurobenchtest
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

The protocol and metrics that went through these
methodologies are displayed on the project GitHub page, and
examples of repository settings are provided for the most
common languages, such as python, octave, C++, and matlab.

As stated in section 2.3, for simplification purposes, the PI
algorithms were requested to compute metrics from a single run,
letting the experimenter compare behaviors under different
conditions (like comparing score outcomes under conditions
with the exoskeleton and without the exoskeleton). A relevant
extension of this work would be to codify and accordingly
automate the comparison of the system performance under
the different conditions of use, which can be involving (or
not) the exoskeleton, changing its tuning, changing the
environment settings, etc. Work in this direction would also
enable one to define how two experiments should be compared,
taking care of all the combinations that may occur. Such an
aggregation process should also envision how to handle the
variability of results that may be produced by the involvement
of different human subjects with different capabilities and/or
disabilities. Standardizing the score aggregations across runs,
conditions, and subjects would also permit the consideration
of generic tools for displaying the results, depending on their type
and their meaning.

Limited effort has been dedicated so far to verify the code
quality. The software practice of linting code files to verify the
compliance to file format rules has been only applied to input and
output datafiles (i.e., csv and yaml formats). Similar effort should
be dedicated to the code itself to check and improve the code
quality, which will also ease its maintenance. In addition,
significant effort could be dedicated to verify the code
robustness with respect to the input datafile format (i.e., can we
switch two columns in a given timestamped file?), or with respect
to the potential error messages (i.e., can the user understand why
an error occurred, to arrange the input file format for example?).

Moreover, the current methodology does not consider yet the
use of AI tools. Such an extension would permit adding reasoning
capabilities across experiments, such as the correlation between
device design and control choices, and the resulting metric scores.
The standardization of experiment datafiles and the resulting PI
scores is the first step in this direction. Meta information should
be selected to describe the robotic system characteristics in terms
of kinematics, control mode, etc. With this and through the

accumulation of experiments following the proposed
methodology, we can imagine deducing from AI possible
design suggestions according to the PIs to optimize, which
would be a step change in the benchmarking journey.

To conclude, it is interesting to note that the methodology
presented to standardize the benchmarking process is quite generic
as it focuses on defining common input files, generic PI algorithm
interfaces, and scalable PI output formats. The methodology here is
applied to protocols designed for exoskeleton evaluations and
protocols focused on humanoid platforms. Thus, relevant future
work should consider the extension to other benchmark
applications to consolidate the benchmarking framework.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/eurobench/.

AUTHOR CONTRIBUTIONS

All authors contributed to the discussion on the general
methodology design. AR and FD implemented the
methodology. AR and DT wrote sections of the manuscript.
All authors contributed to manuscript revision and read and
approved the submitted version of the manuscript.

FUNDING

This study is supported by the European Union’s Horizon
2020 research and innovation program under Grant
Agreement no 779963, project Eurobench.

ACKNOWLEDGMENTS

We would like to thank all protocol and PI algorithm providers,
with whom the proposed methodology has been progressively
designed: Eurobench consortium partners and all cascade
funding participants (FSTP-1 and FSTP-2).

REFERENCES

Aller, F., Harant, M., Sontag, S., Millard, M., and Mombaur, K. (2021). “I3sa: The
Increased Step Size Stability Assessment Benchmark and its Application to the
Humanoid Robot Reem-C,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 5357–5363. doi:10.1109/IROS51168.
2021.9636429

Baker, M. (2016). 1,500 Scientists Lift the Lid on Reproducibility. Nature 533,
452–454. doi:10.1038/533452a

Bonsignorio, F. (2017). A New Kind of Article for Reproducible Research in
Intelligent Robotics [from the Field]. IEEE Robot. Autom. Mag. 24, 178–182.
doi:10.1109/MRA.2017.2722918

Bonsignorio, F., Hallam, J., and del Pobil, A. (2008). Gem Guidelines: Euron Gem
Sig Report Online Report.

Bruijn, S. M., Meijer, O. G., Beek, P. J., and van Dieën, J. H. (2013). Assessing the
Stability of Human Locomotion: a Review of Current Measures. J. R. Soc.
Interface. 10, 20120999. doi:10.1098/rsif.2012.0999

Carfì, A., Foglino, F., Bruno, B., andMastrogiovanni, F. (2019). AMulti-Sensor Dataset
ofHuman-HumanHandover.Data Brief 22, 109–117. doi:10.1016/j.dib.2018.11.110

Fosch Villaronga, E. (2018). “Legal Frame of Non-social Personal Care Robots,” in
New Trends in Medical and Service Robots. Editors M. Husty and M. Hofbaur
(Cham: Springer International Publishing), 229–242. doi:10.1007/978-3-319-
59972-4_17

He, Y., Eguren, D., Luu, T. P., and Contreras-Vidal, J. L. (2017). Risk Management
and Regulations for Lower Limb Medical Exoskeletons: A Review. Mder 10,
89–107. doi:10.2147/MDER.S107134

Kim, Y. M., Poline, J. B., and Dumas, G. (2018). Experimenting with
Reproducibility: a Case Study of Robustness in Bioinformatics. GigaScience
7. doi:10.1093/gigascience/giy077.Giy077

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 9516639

Remazeilles et al. Eurobench Benchmarking Methodology

https://github.com/eurobench/
https://doi.org/10.1109/IROS51168.2021.9636429
https://doi.org/10.1109/IROS51168.2021.9636429
https://doi.org/10.1038/533452a
https://doi.org/10.1109/MRA.2017.2722918
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.1016/j.dib.2018.11.110
https://doi.org/10.1007/978-3-319-59972-4_17
https://doi.org/10.1007/978-3-319-59972-4_17
https://doi.org/10.2147/MDER.S107134
https://doi.org/10.1093/gigascience/giy077.Giy077
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Laplante, P. A. (2007). What Every Engineer Should Know about Software
Engineering. Boca Raton, FL: CRC Press.

Lippi, V., Mergner, T., Maurer, C., and Seel, T. (2022). “Performance Indicators of
Humanoid Posture Control and Balance Inspired by Human Experiments,” in
Wearable Robotics: Challenges and Trends. Editors J. C. Moreno, J. Masood,
U. Schneider, C. Maufroy, and J. L. Pons (Cham: Springer International
Publishing), 597–601. doi:10.1007/978-3-030-69547-7_96

Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., and Asfour, T. (2015). “The
Kit Whole-Body Human Motion Database,” in 2015 International Conference
on Advanced Robotics (Istanbul, Turkey: ICAR), 329–336. doi:10.1109/ICAR.
2015.7251476

Martin, R. C., Rabaey, J. M., Chandrakasan, A. P., and Nikolić, B. (2003). Agile
Software Development: Principles, Patterns, and Practices. Upper Saddle River,
NJ: Prentice-Hall.

Massardi, S., Pinto-Fernandez, D., F.Veneman, J. J., and Torricelli, D. (2022).
“Testing Safety of Lower Limbs Exoskeletons: Current Regulatory Gaps,” in
Wearable Robotics: Challenges and Trends. Editors J. C. Moreno, J. Masood,
U. Schneider, C. Maufroy, and J. L. Pons (Cham: Springer International
Publishing), 145–149. doi:10.1007/978-3-030-69547-7_24

Maugliani, N., Caimmi, M., Malosio, M., Airoldi, F., Borro, D., Rosquete, D., et al.
(2022). “Lower-limbs Exoskeletons Benchmark Exploiting a Stairs-Based
Testbed: The Stepbystep Project,” in Wearable Robotics: Challenges and
Trends. Editors J. C. Moreno, J. Masood, U. Schneider, C. Maufroy, and
J. L. Pons (Cham: Springer International Publishing), 603–608. doi:10.1007/
978-3-030-69547-7_97

Maurice, P., Malaisé, A., Amiot, C., Paris, N., Richard, G.-J., Rochel, O., et al.
(2019). Human Movement and Ergonomics: an Industry-Oriented Dataset
for Collaborative Robotics. Int. J. Robotics Res.. doi:10.1177/
0278364919882089

Piazza, E., Fontana, G., Matteucci, M., Nardi, D., and Migliavacca, M. (2020).
“Quantitative Evaluation of Humanoid Robots,” in In 2020 I-RIM Conference
(I-RIM), 33–34. doi:10.5281/zenodo.4781102

Pinto-Fernandez, D., Torricelli, D., Sanchez-Villamanan, M. d. C., Aller, F.,
Mombaur, K., Conti, R., et al. (2020). Performance Evaluation of Lower
Limb Exoskeletons: A Systematic Review. IEEE Trans. Neural Syst. Rehabil.
Eng. 28, 1573–1583. doi:10.1109/tnsre.2020.2989481

Remazeilles, A., Dominguez, A., Barralon, P., and Torricelli, D. (2022). “Towards a
Unified Terminology for Benchmarking Bipedal Systems,” in Wearable
Robotics: Challenges and Trends. Editors J. C. Moreno, J. Masood,
U. Schneider, C. Maufroy, and J. L. Pons (Cham: Springer International
Publishing), 609–613. doi:10.1007/978-3-030-69547-7_98

Riener, R. (2016). The Cybathlon Promotes the Development of Assistive
Technology for People with Physical Disabilities. J. Neuroeng Rehabil. 13,
49. doi:10.1186/s12984-016-0157-2

Teytelman, L., Stoliartchouk, A., Kindler, L., and Hurwitz, B. L. (2016).
Protocols.io: Virtual Communities for Protocol Development and
Discussion. PLoS Biol. 14, e1002538. doi:10.1371/journal.pbio.1002538

Torricelli, D., Gonzalez-Vargas, J., Veneman, J. F., Mombaur, K., Tsagarakis, N.,
del-Ama, A. J., et al. (2015). Benchmarking Bipedal Locomotion: A Unified
Scheme for Humanoids, Wearable Robots, and Humans. IEEE Robot. Autom.
Mag. 22, 103–115. doi:10.1109/MRA.2015.2448278

Torricelli, D., and Pons, J. L. (2019). “Eurobench: Preparing Robots for the Real
World,” in Wearable Robotics: Challenges and Trends. Editors M. C. Carrozza,
S. Micera, and J. L. Pons (Cham: Springer International Publishing), 375–378.
doi:10.1007/978-3-030-01887-0_72

Torricelli, D., Rodriguez-Guerrero, C., Veneman, J. F., Crea, S., Briem, K.,
Lenggenhager, B., et al. (2020). Benchmarking Wearable Robots: Challenges
and Recommendations from Functional, User Experience, and Methodological
Perspectives. Front. Robot. AI 7. doi:10.3389/frobt.2020.561774

Whitaker, K. (2017). Showing Your Working: A How to Guide to Reproducible
Research. doi:10.6084/m9.figshare.4244996.v2

Wojtusch, J., and von Stryk, O. (2015). “Humod - a Versatile and Open Database
for the Investigation,Modeling and Simulation of HumanMotion Dynamics on
Actuation Level,” in IEEE-RAS International Conference on Humanoid Robots
(Seoul, Korea (South): Humanoids), 74–79. doi:10.1109/HUMANOIDS.2015.
7363534

Conflict of Interest: Authors RC and LS are employed by IUVO S.r.l., and FT is
employed by Össur Iceland ehf.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Remazeilles, Dominguez, Barralon, Torres-Pardo, Pinto, Aller,
Mombaur, Conti, Saccares, Thorsteinsson, Prinsen, Cantón, Castilla, Sanz-Morère,
Tornero and Torricelli. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org August 2022 | Volume 9 | Article 95166310

Remazeilles et al. Eurobench Benchmarking Methodology

https://doi.org/10.1007/978-3-030-69547-7_96
https://doi.org/10.1109/ICAR.2015.7251476
https://doi.org/10.1109/ICAR.2015.7251476
https://doi.org/10.1007/978-3-030-69547-7_24
https://doi.org/10.1007/978-3-030-69547-7_97
https://doi.org/10.1007/978-3-030-69547-7_97
https://doi.org/10.1177/0278364919882089
https://doi.org/10.1177/0278364919882089
https://doi.org/10.5281/zenodo.4781102
https://doi.org/10.1109/tnsre.2020.2989481
https://doi.org/10.1007/978-3-030-69547-7_98
https://doi.org/10.1186/s12984-016-0157-2
https://doi.org/10.1371/journal.pbio.1002538
https://doi.org/10.1109/MRA.2015.2448278
https://doi.org/10.1007/978-3-030-01887-0_72
https://doi.org/10.3389/frobt.2020.561774
https://doi.org/10.6084/m9.figshare.4244996.v2
https://doi.org/10.1109/HUMANOIDS.2015.7363534
https://doi.org/10.1109/HUMANOIDS.2015.7363534
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Making Bipedal Robot Experiments Reproducible and Comparable: The Eurobench Software Approach
	1 Introduction
	1.1 Context
	1.2 State of the Art

	2 Methods
	2.1 Benchmarking Terminology
	2.2 Experimental Files
	2.3 Standardizing Algorithm Interface
	2.4 Algorithm Containerization
	2.5 Good Practices for Code Hosting

	3 Results
	4 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

