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This paper is concerned with learning transferable contact models for aerial

manipulation tasks. We investigate a contact-based approach for enabling

unmanned aerial vehicles with cable-suspended passive grippers to

compute the attach points on novel payloads for aerial transportation. This

is the first time that the problem of autonomously generating contact points for

such tasks has been investigated. Our approach builds on the underpinning idea

that we can learn a probability density of contacts over objects’ surfaces from a

single demonstration. We enhance this formulation for encoding aerial

transportation tasks while maintaining the one-shot learning paradigm

without handcrafting task-dependent features or employing ad-hoc

heuristics; the only prior is extrapolated directly from a single

demonstration. Our models only rely on the geometrical properties of the

payloads computed from a point cloud, and they are robust to partial views. The

effectiveness of our approach is evaluated in simulation, in which one or three

quadcopters are requested to transport previously unseen payloads along a

desired trajectory. The contact points and the quadcopters configurations are

computed on-the-fly for each test by our approach and compared with a

baseline method, a modified grasp learning algorithm from the literature.

Empirical experiments show that the contacts generated by our approach

yield a better controllability of the payload for a transportation task. We

conclude this paper with a discussion on the strengths and limitations of the

presented idea, and our suggested future research directions.
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1 Introduction

There is evidence that humans possess an internal model of physical interactions that

enables us to grasp, lift, pull, or push objects of diverse nature in various contexts (Mehta

and Schaal, 2002). It is also evident that such internal models are constructed over time as

an accumulation of experience as opposed to an inherent comprehension of physics. In

this paper, we investigate an internal model for enabling autonomous quadrotors

equipped with cable-suspended passive grippers to generate contacts with unknown

payloads for aerial transportation. By unknown payloads, we mean that our approach

does not require a full CAD model of the object or information relative to its physical

properties, such as its centre of mass (CoM) or friction coefficients. We only rely on
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geometric features extrapolated from vision. As the human’s

internal model, our solution is not failure-free but provides a way

to generate candidate grasps even when no information is

available.

The hype for aerial manipulation has reached a high-fever

pitch. Unmanned aerial vehicles (UAVs), such as quadrotors,

have been recently at the centre of attention of the scientific

community as the next means of autonomy. Their dynamic

simplicity, manoeuvrability and high performance make them

ideal for many applications ranging from surveillance to

emergency response. More recently, such systems have been

investigated for aerial transportation of payloads by towed

cables. Small-size single and multiple quadrotors have been

employed for load transportation and deployment by

designing control laws for minimum swing and oscillation of

the payload (Sreenath et al., 2013; Li et al., 2021a; Li et al., 2021b).

Although in their dawn, current approaches disregard the

generation of the contact points. Single drones assume point-

mass loads to simplify the effects of the dynamics, and multiple

drones are manually attached nearby the vertices or edges of the

load, following the intuition of maximising the moments

exercised on the object. No aerial system is capable of

generating on-the-fly contacts, and it is not clear how the

proposed controllers can cope with different payloads or

contact configurations.

On the other hand, we have witnessed a growing interest in

robot grasping and manipulation tasks in the last decade (Bohg

et al., 2014; Stüber et al., 2020). Although we are still far from

robots freely manipulating arbitrary objects, several promising

solutions have been proposed over the years (Brahmbhatt et al.,

2019; Sun et al., 2022). Google employed a dozen robots

interacting in parallel with their own environment to learn

how to predict what happens when they move objects around

(Levine et al., 2018). However, collecting such a large amount of

data for any task is very hard, and many researchers have

focussed on more practical solutions. Additionally, the task of

aerial manipulation presents another significant challenge–failed

attempts may irreparably damage the payload and the AUVs. A

more appealing approach is to learn models in a one-shot or a

few-shot fashion when possible. Such approaches typically

employ generative models which learn probability densities

from demonstrations. We substantially reduce the searching

effort when facing novel contexts by providing one or a few

examples of a good solution. Furthermore, when the learning

space is constructed over local features, the models tend to have a

good generalisation capability within and across object categories

(Kopicki et al., 2016).

In (Kopicki et al., 2016; Arruda et al., 2019), the authors

formulate dexterous grasps for a humanoid robot as contacts

between the robot’s manipulative links and the object’s surface.

Only local surface properties of the object’s geometrics are

required to learn the model, such as curvatures on the (local)

contact patches. The model learns grasp types but does not

encode task-dependent features or physical properties of the

objects, and it has only been demonstrated for pick-and-place

tasks. For different tasks beyond pick-and-place, the authors

enable the possibility of encoding handcrafted loss functions,

which requires (a rarely available) insight knowledge by the user

on the specific task. In (Stüber et al., 2018; Howard and Zito,

2021), this approach has been extended to enable a robot to make

predictions over push operations for novel objects. One-shot

learning is utilised for identifying the contacts between the

pusher and the object, and between the object and the

environment, but an extra motion model needs to be learned

from real or simulated experience in order to make the

predictions. In practice, the motion models encode the task.

Given the initial contact models, motion models are designed as

conditional probabilities, following the general idea that making

predictions on familiar initial conditions will yield more robust

solutions. A few dozens examples are sufficient to learn a motion

model for planar push operations since the environment

constrains the motion. Such luxury is not available for aerial

manipulation, and it would require us to approximate the drone-

payload system dynamics to make any prediction.

In contrast, this paper proposes one-shot learning for aerial

manipulation in which contacts are not solely learned from local

features but also encode intrinsic task-dependent knowledge

without needing handcrafted features, as visible in Figure 1.

The underpinning idea is simple. Imagine having to connect a

load to a single drone. If the load is a box with uniform mass

distribution, probably the best thing we could do is attach the

drone in the middle of the top-facing surface, just above the

payload’s CoM. In order to find the desired spot, we do not need

to have a perfect model of the object or see it in its completeness.

A view of its entireness of the top-facing surface would be

sufficient for estimating its centre. Nevertheless,

counterexamples come to mind where merely teaching the

robot to attach the payload above its CoM may not be a

robust strategy; a package with overlapping ridges makes the

desired contact area irregular and unsuitable for reliable contact.

If we have taught the robot to connect over flat surfaces, we desire

to maintain this property on novel objects. Hence, our approach

weights the contact’s local shape versus its relative location over

the visible payload’s surface. The latter is implemented as a

probability distribution over the distances between the taught

contact regions and sampled patches that describe the general

shape of the visible geometry of the payload, e.g., flat surfaces,

edges and corners. Themain drawback of this approach is that we

will need to learn a new contact model for each desired task and

contact type. In robot manipulation, a grasp encodes the desired

contacts with the object to be grasped, such as a pinch or power

grasp. These grasp models generalise well over object categories,

but the grasp model has no knowledge of the task. Further

(context-dependent) information is needed to decide when a

pinch grasp is more suitable than a power grasp. By including the

task information in the model, e.g., transporting a load with

Frontiers in Robotics and AI frontiersin.org02

Zito and Ferrante 10.3389/frobt.2022.960571

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.960571


uniform mass distribution, we lose this decoupling and new

models need to be learned.

We evaluate our proposed approach in a set of empirical

experiments and compare the results against a baseline method.

Our aim is to demonstrate that our approach successfully

captures the task from the training sample while a more

conventional contact-based approach would fail. First, we

have modified the approach in (Kopicki et al., 2016) to cope

with a single or multiple UAVs equipped with cable-suspended

passive grippers in lieu of a dexterous manipulator. From the

same training data, we learned contact models for the baseline

and our approach. Then, we use the learned models to generate

candidate contact points for four test payloads. The contacts have

been evaluated in a simulated transportation task, where the

UAVs need to lift the payload and transport it along a desired

trajectory, showing that our inferred contacts are more suitable

for the given task.

In summary, our main contribution is the investigation of a

contact-based grasp synthesis approach for dynamic tasks.

Without physical knowledge of the payload optimal solutions

cannot be guaranteed, but our simulated experiments

demonstrate that our approach leads to more reliable contacts.

The full pipeline of our approach is presented in Figure 2. For

clarity’s sake, we identify the same 4 stages as presented in the

original work of our modified baseline (Kopicki et al., 2016).

While the baseline only learns a contact and configuration

models from the training, we extend this formulation with the

task model. Further details are available in the caption.

FIGURE 2
Full pipeline of our method. Stage 1 represents the training of the models. From one single example we extrapolate the three models as
probability density functions. Inferring the contact on a new load is decomposed in the three phases: Stage 2 samples similar local contacts on the
newobject; Stage 3 samples a feasible configuration for theUAV(s); and Stage 4 optimises the contacts and configurations for a better solution, if any.
The baseline approach uses the same pipeline but without the task model. For a single UAV Stage 3’s dotted blocks are disregarded.

FIGURE 1
Learned contact models. (left) shows a central contact with a flat surface, i.e. top face of the Fedex box, (middle) shows a curved contact on a
teapot, and (right) a triangular configuration for three drones. The red points represent the sub-sampled local area of the surface used to learn the
contact model. Black points represent the five highest local features used to learn the task. The global reference frame of the object, e.g. at the base
of the teapot (middle), is not considered in the learning.
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The rest of the paper is structured as follows. In Sec. 2, we

introduce the problem formulation in terms of object-centric

representation of the contacts and the robot mechanics. Section 3

describes how we learn the models needed for aerial

manipulation. Section 4 presents how we infer contacts on

novel shapes. The experimental evaluation is presented in

Section 5 and our results are discussed in Section 6. We

conclude with our final remarks about the strengths and

limitations of this work and future research directions.

2 Problem formulation

Let us begin from defining our notation. Vectors will be

consider column vectors and written in bold letters. Matrix will

be written as capital letters. We also denote by SE(3) �
R3 × SO(3) the standard Euclidian group in a three-

dimensional space, and by SO(3) � {R ∈ R3×3|R⊤R �
I3×3, det[R] � 1} the special orthogonal group representing

rotations in the three-dimensional space. To describe rigid

body transformations or poses, we will use the following

format of denoting v = (p, q) ∈ SE (3) where p ∈ R3 is the

translational component and q ∈ SO(3) is the quaternion

describing the rotational component. Without losing

generality, we abuse of the bold notation for the quaternion

since they are implemented as a column vector in R4.

2.1 Mechanics

We consider a set of Nq ≥ 1 quadrotors with cable-suspended

magnetic grippers. The inertia frame I is defined by the unit

vectors ex = [1,0,0]⊤, ey = [0,1,0]⊤, and ez � [0, 0, 1]⊤ ∈ R3, and

the third vector is aligned opposite to the direction of gravity. For

each quadrotor, we define a body-fixed frame Bn � [bx, by, bz]
located at the centre of mass (CoM) of the quadrotor with its

third axis aligned upward.

The pose bn = (pn, qn) ∈ SE (3) describes the location of the

CoM of the n-th quadrotor, pn ∈ R3, and its rotation with respect

to the inertia frame, qn ∈ SO(3). The mass and the inertia matrix

for each quadrotor are denoted as mn ∈ R and Jn ∈ R3×3,

respectively. We also denote the control input for the

quadrotor as the pair (fn, Mn), where fn ∈ R is the total

thrust and Mn ∈ R3 the generated moment with respect to its

body frame. With respect to the inertia frame, the quadrotor can

generate a thrust fR(q)ez ∈ R3, where R(q) ∈ SO(3) is the

equivalent rotation matrix to the quaternion q.

Each quadrotor is equipped with a cable of length ln and let

ξn ∈ S be the unit-vector representing the direction of the n-th

cable pointing outward from the quadrotor’s CoM to the gripper.

Let Ln ∈ SE (3) be the pose for the end-effector’s link for the n-th

quadrotor with respect to the inertia frame. The contact points

are defined with respect to the payload’s reference frame, z ∈ SE

(3), where mz ∈ R and Jz ∈ R3×3 represent the mass and the

inertia matrix, respectively.

2.2 Surface features

Surface features encode the geometrical properties of an

object and are derived from a 3D point cloud, as shown in

Figure 3. We represent a surface feature as a pair

s � (v, r) ∈ SE(3) × R2, where v = (p, q) ∈ SE (3) represents

the pose of the surface feature s and r ∈ R2 is a vector of the

surface descriptors. All poses denoted by v are specified relative to

the inertia frame I .
To compute the pose v ∈ SE (3), we first estimate the

surface normal at point p using a PCA-based method

(Kanatani, 2005). Surface descriptors correspond to the

local principal curvatures around point p (Spivak, 1999),

which lie on the tangential plane to the object’s surface

and perpendicular to the surface normal at p. Let k1 ∈ R3

be the direction of highest curvature, and k2 ∈ R3 the

direction of lowest curvature perpendicular to k1. Let us

FIGURE 3
Computation of a surface feature on a teapot. (left) the full point cloud of the teapot with its reference frame. The normal of the sampled point is
shown as a blue arrow (middle) the principal curvature directions are drawn for the same point as red and green arrows (right) the associated
reference frame for the surface feature with respect to the object’s reference frame.

Frontiers in Robotics and AI frontiersin.org04

Zito and Ferrante 10.3389/frobt.2022.960571

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.960571


also define r � [r1, r2]⊤ ∈ R2 as a 2D feature vector

representing the curvatures along directions k1 and k2,

respectively. The surface normal and principal directions

form a body-fixed frame for the surface point p and enable

us to compute the 3D orientation q that is associated to the

point.

2.3 Kernel density estimator

In this work, probability density functions are approximated

via kernel density estimation (KDE) (Silverman, 1986), which are

built around surface features (see Section 2.2). A kernel can be

described by its mean point μs = (μp, μq, μr) and bandwidth σs =

(σp, σq, σr):

K s | μs, σs( ) � N 3 p | μp, σp( ) Θ q | μq, σq( ) N 2 r | μr, σr( ) (1)

where s = (v, r) = (p, q, r) is the surface feature being compared

against the kernel, N k is an k-variate Gaussian distribution, and

Θ corresponds to a pair of antipodal von Mises-Fisher

distributions forming a distribution similar to that of a

Gaussian distribution for SO(3) (Fisher, 1953).

Given a set of Ns surface features, the probability density in a

region of space is computed as the local density of features in that

region, as

P p, q, r( ) ≡ P s( ) ≃ ∑Ns

i�1
wiK s|si, σs( ) (2)

where si corresponds to the i-th surface feature acting as a kernel,

wi corresponds to its weighting with the constraint ∑Ns
i�1wi � 1,

and σs is a user-defined bandwidth for the surface features.

3 Learning contacts

We learn contacts from a single demonstration. We require a

point cloud of the payload and the configuration of the

quadrotors and their passive grippers. Partial views of the

objects are sufficient for learning reliable models under the

assumption that the surface in contact is fully visible. Figure 1

(left) shows the case in which only the top face of a box is visible

at training time. Although learning contacts is computational

efficient, as demonstrated in (Kopicki et al., 2016), the time

computation grows linearly with the number of links in contact,

the number of triangles in the mesh representing the links, and

the surface points considered. Furthermore, a new model needs

to be learned for different drone configurations, contact types or

tasks.

3.1 Object and task model

The object model describes the composition of a point cloud

in terms of its surface features distribution. In the literature, this

approach is used to learn the features distribution only nearby the

contact area, e.g., (Kopicki et al., 2016; Stüber et al., 2018; Arruda

et al., 2019), while in (Howard and Zito, 2021) the CoM of the

object to be pushed is also estimated as a distribution from visible

surface features. In contrast, we decouple the object model into

two densities. The first describes the surface features distribution

nearby the contacts, while the second encodes the location of

these near-the-contact features with respect to other features in

the visible point cloud, e.g., its corners and edges.

At training time, we observe a set of contacts between the

quadrotors’manipulative links and an object point cloud. Before

FIGURE 4
Graphical representation of the task model (left) and the link pose (right) used in the contact model. The task model is constructed as a rigid
body transformation uij in SE (3) from a task feature sj to a surface feature si in the contact region. The link pose is computed as a rigid body
transformation uni in SE (3) from a surface feature si in the contact region to the reference frame of the robot’s link. All the SE (3) poses sj, si, Ln are
computed with respect to the inertia frame I .
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learning a contact model (see Section 3 2), we collect a set of NO

features, si � (vi, ri) ∈ SE(3) × R2, within the surface in contact

with the manipulative link. This enables us to compute a joint

probability distribution as

O v, r( ) ≡ P v, r( ) ≃ ∑NO

i�1
wiK v, r|si, σs( ). (3)

further referred as the object model as in (Kopicki et al.,

2016), where the weight wi = 1/NO. Figure 1 shows in red the

local area considered for extrapolating the features for two

different contact types: a) flat contact and b) curved contact.

From the same point cloud, we collect a second set of NT

features by uniformly sampling the visible point cloud to

compute a second joint probability as

T v, r( ) ≡ P v, r( ) ≃ ∑NT

j�1
wjK v, r|sj, σt( ). (4)

further referred as the task model, where

sj � (vj, rj) ∈ SE(3) × R2, σt is the bandwidth and wj = r1j/r is

the weight associated with the feature represented by the j-th

kernel and it is proportional to its highest curvature normalised

with respect to the maximum curvature value available between

the Ts sampled points, r. This enables us to give more importance

to salient features such as corners and edges. Figure 4 shows a

visual representation of the task model.

3.2 Contact models

The contact model describes the relation between the robot’s

end-effector and the object surface. It is trained in a one-shot

fashion from a demonstration. A teacher presents to the robot the

desired contact, either in simulation or in reality, then the local

surface in contact with the robot’s link is sampled, and a

probability density function is learned.

We denote by uni = (pni, qni) ∈ SE (3) the pose Ln of the n-th

link relative to the pose vi of the i-th surface feature from (3). We

compute this as

uni � v−1i ◦Ln (5)

where ◦ denotes the pose composition operator, and v−1i �
(−q−1i pi, q−1i ) is the inverse of pose vi.

The contact density Mn (u, r) closely resembles the surface

feature kernel function in (1), and is defined as follows:

Mn u, r( ) ≃ ∑Nc

i�1
wniN 3 p | pni, σ

c
p( ) Θ q | qni, σcq( ) N 2 r | rni, σcr( )

(6)
where Nc ≤ NO is a user defined parameter to allow

downsampling to save computational time and wni

corresponds to the kernel’s weighting such that ∑Nc
i�1wni � 1.

3.3 Quadrotor configuration model

The configuration model encodes the poses of the quadrotors

and their grippers as demonstrated during training. For a single

drone, the configuration model merely describes the kinematic

relation between the quadrotor and its gripper. However, when

n > 1, this model enables us to reduce the configuration space

when transferring the contacts to another surface by focusing

only on those configurations that resemble the one in the training

example, e.g., a triangular formation. The configuration model is

not capable of choosing the correct number of UAVs. It

reinforces the learned formation onto a novel payload. The

SA optimisation can locally optimise the pose of the single

UAV in order to generate a higher-scoring contact while

simultaneously avoiding collisions or kinematically impossible

configurations. The room for the local improvements is bounded

by a user-provided standard deviation on the expected placement

of the gripper for the desired formation. This enables us to cope

with different sized and shaped payloads.

The poses of the Nb ≥ 1 quadrotors are represented as hn =

(bn, Ln) with bn = (pn, qn) ∈ SE (3) the pose of the n-th drone and

Ln � (pLn, qLn) ∈ SE(3) the pose of its manipulative link. We

approximate the configuration density as

H h( ) ≃ ∑Nb

i�1
wiN 3 pL | pLi

, σp( ) Θ qL | qLi, σcq( ) (7)

where wi � e−α‖b−bi‖
2
depends on the similarity between the

drone’s pose, b, and the kernel’s one, bi, while L = (pL, qL) is

the link pose compared against the Nb link poses from the

kernels, Li � (pLi, qLi).

4 Transferring to novel surfaces

Once the models are learned, we can transfer the contacts on

novel payloads. The aim is to find local features on the new object

that are similar to those presented in training and to place the

robot’s manipulative links accordingly. For evaluating the

approach, we learn several contact models for different tasks

and contact types–we call them testing conditions as introduced

in Section 5. However, when presented with a new point cloud,

wemanually select the appropriate contact model for each testing

condition. Automatic model selection can be formulated as an

optimisation problem (Pozzi et al., 2022) or a learning one

(Kober et al., 2013), but we kept it as out of scope for this work.

4.1 Query density

The query density represents the distribution of link poses

over a novel point cloud. By searching for local similarities in the

query point cloud’s surface features, we can estimate the relative
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link pose u, which transfers the learned contact onto the new

surface. This process is designed to be transferable such that a

model trained upon a single object can be applied to a variety of

previously unseen objects. Figure 5 shows a graphical

representation of the method: starting from a sampled task

feature, we identify a potential area on the visible surface

where to seek for a good contact.

We define the query density as Q (Ln, u, v, r) where v ∈ SE

(3) denotes a point on the object’s surface expressed in the

inertial frame, r ∈ R2 is the surface curvature of such a point,

u ∈ SE (3) denotes the pose of the link relative to a local frame

on the object, and Ln is the pose of the n-th link with respect to

the inertia frame.

For each link, its pose distribution over a new point cloud

is given by marginalisingQ (Ln, u, v, r) with respect to u, v, and

r. Since Ln = v◦u is described in terms of v and u, and by

assuming that the density in the inertia frame of the surface

point, v, and the distribution of link poses relative to a surface

point, u, are conditionally independent given the curvature on

a point, r, we factorise the query density as follows

Q Ln( )�∫∫∫P Ln,u,v,r( )dudvdr∫∫∫P Ln|u,v( )P u,r,v( )dudvdr

∫∫∫P Ln|u,v( )P u|r( )P v|r( )P r( )dudvdr (8)

where, by following (Kopicki et al., 2016), we implement p (Ln|

u, v) as a Dirac function, and p (u|r) as Mn (u|r), the

conditional probability that the n-th link will be placed at

pose u with respect to the surface feature, given that this

surface feature has curvature r. p (v|r) is implemented as O (v|

r), the probability of the observed curvature r. Finally, p(r) =

Mn(r)O(r) is chosen to reinforce that the contact modelM and

the object model O are observing the same surface feature.

Mn(r) is the distribution of features in the contact model, and

O(r) is the distribution of feature r in the new point cloud.

We extend this formulation with another random variable

uij = (vij, qij) to encode the desired pose of the selected i-th surface

feature of the contact model relative to the task model’s features

defined in (4). Thus, uij � v−1i ◦vj, where sj = (vj, qj) belong to the

task model. Then we approximate the query density by sampling

NQ kernels centred on weighted link poses from (7), so that

Q Ln( ) ≃ ∑Nq

k�1
wnkN 3 p | pk, σp( ) Θ q | qk, σq( ) (9)

where (pk, qk) ∈ SE (3) describes the k-th kernel. The variable

wnk � 1
Z

∑Ni

i�1
P Ln|uni, vi( )M uni|ri( )M ri( )O vi|ri( )O ri( )

× ∑Nj

j�1
P uij|ri, rj( )T vj|rj( )T rj( )⎛⎝ ⎞⎠

weights the query density according to the contact model and the

task model. To compute the weighting, we randomly sample

from the new point cloud Ni surface features from the estimated

contact surface and Nj features according to the task model so

that sj ~ T (vj|rj) is the observed feature rj on the new point cloud.

Again, we implement p (uij|ri, rj) as a Dirac function and T (vj|rj)

T (rj) represents the probability of the observed curvature on the

new point cloud. The value Z is a normaliser, and the value Ni

and Nj are maintained constant across all the experiments.

4.2 Contact optimisation and selection

Let us denote by ĥ � {(bi, Li)}ni the poses of the quadrotors and
their gripper in SE (3). The objective of the contact optimisation is to

generate candidate contacts by maximising the product of the query

densities and the quadrotors configuration density, as follows:

argmax
b̂

J ĥ( ) � argmax
bi,Li( )

∏
bi ,Li( )∈b̂

H hi( )Q Li( ) (10)

FIGURE 5
Graphical representation of inferring a candidate link pose for a novel surface. First, from the task model we sample a feature sqj on the novel
point cloud. We then apply the transformation uij observed when learning the model to identify a feasible contact region. From that region (circled
area in themiddle image), we sample a surface feature from the objectmodelO (v, r). Finally we apply the transformation uni observed at training time
to place the link Ln.
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where J is the likelihood of the candidate contact on the new

point cloud. We optimise the likelihood using simulated

annealing (SA) (Kirkpatrick et al., 1983).

5 Results

In this section we present our empirical results aiming to

demonstrate that task-dependent features can be encoded in the

contact models without the need of heuristics or prior

knowledge. The proposed approach has been evaluated in a

set of simulated experiments on several conditions. For a

single UAV, we learn two types of contacts: (i) a contact

placed at the centre of the visible upper surface of a box, and

(ii) a contact on a curved surface. For multiple drones, we learn a

triangular formation for three UAVs for a transportation task.

In all conditions, we learn each contact model in one single

demonstration. Each training object was loaded in the simulation

as full or partial point cloud, as presented in Figure 1. We do not

retrieve global information about the object, such as its CoM. The

UAVs were manually placed to generate the desired contacts with

their passive gripper over the visible point cloud. For all

conditions, we sampled NO = 500 local features to represent

the contacts in both our approach and baseline method and NT =

50 for the task model (present only in our approach). Once a

contact model was learned, it was stored and labelled for future

reference. Only kinematic and geometrical information was used

to learn the models; forces and dynamics are not needed for

learning.

Once the contact models are learned, a new full or partial

point cloud is presented to the system. In Figure 6 we show the

point clouds belonging to four objects used for testing: a) 68cm x

61 cm x 28cm FedEx box (top two rows); b) the Stanford bunny

(third and fourth rows); the hollowed triangular shape used to

learn the three drones’ contact models (fifth and seventh rows);

and a 68cm x 68 cm x 28cm FedEx box (sixth and eighth rows).

We then compare the best five solutions generated for each

condition with those computed by an adapted version of the

grasping algorithm presented in (Kopicki et al., 2016). Since

(Kopicki et al., 2016) considers a robot manipulator equipped

with a hand, we modify it to consider the quadrotor

configuration model. Therefore, the main difference between

the two approaches remains the task model.

5.1 Contact inference: a qualitative
analysis

Our first experiment aims to compare how our model infers

contacts on a novel surface against the baseline method. Figure 6

presents the results. For the purpose of qualitative analysis, we

can identify the following four conditions: C1) single UAVwith a

flat contact (row 1 and 2 in Figure 6), C2) single UAV with a

curved contact (row 3 and 4), C3) three UAVs with no

generalisation (row 5 and 7), and C4) three UAVs with

generalisation to a novel shape (row 6 and 8). The rows in

Figure 6 for each condition are directly comparable, showing our

method’s solutions against the baseline’s ones, respectively.

In condition C1, we learn a flat surface contact on a squared

box and test on a rectangular-shaped box. The taught contact lays

in the middle of the upper face of the box, ideal for transportation

of payloads with uniform mass distribution. Under the

assumption that no more information is available on the

physical properties of the load but that of uniform mass

distribution, it is safe to assume that even a human operator

would attempt to generate contacts in the middle of the upper

face of the rectangular box. We encode this strategy in the

training example. Nonetheless, a more conventional contact-

based algorithm such as the baseline is not capable of

extrapolating this subtlety. The load presents a large number

of possible solutions in which the gripper is in contact with a flat

surface. All these candidates are evaluated according to local

surface features extrapolated from the point cloud, as shown in

Eq. 8, and feature-rich areas would uncontroversially score

higher values. Hence, flat surfaces nearby corners or edges

look more promising for such methods. In contrast, our task

model forces the contacts away from such areas, giving the

method a sort of global, task-dependent understanding of the

payload’s geometry. Yet, thanks to the soft probabilistic

representation of the task model, our approach can deal with

the different shape of the test payload, adapting the learned

contact on a squared surface onto a rectangular one. The first and

second rows in Figure 6 show that the five best candidates for our

method are clustered towards the middle of the rectangular face,

while the baseline’s solutions span the entire surface.

Condition C2 presents a less intuitive example in which a

clear optimal solution may not be identifiable on a bunny-shaped

payload. The contact model trained in C1 would not be helpful in

this case–and it should not be expected to–since it would seek flat

contacts on a mostly curved surface. We, therefore, demonstrate

to the system how to generate contacts on a curved surface using

a teapot as a payload. The contacts we demonstrated take

advantage of the teapot’s symmetry and lay in the centre to

have its handle and beak on opposite sides. Because of the

irregular shape of its lid, we placed the contacts on its body’s

smoother surface just below the lid’s edge. Without the need to

encode this strategy into the model explicitly, our approach

seems to capture the essence. The solutions presented in the

third row of Figure 6 are clustered in the mid-section of the

bunny taking advantage of its symmetry but avoiding the more

irregular areas on its tail and snout. In contrast, the baseline

solutions shown in the fourth row only maximise the similarity in

the local surfaces between the taught contact points and the new

point cloud. In fact, its best solution is placed on the edge of the

bunny’s chest; a large, smooth surface area with a similar

curvature to the one on the teapot. Nevertheless, as
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demonstrated in the transportation task, contacts in this area lead

to high swings when the payload is lifted. Its next three solutions

are also far from the bunny’s mid-section: two on the edge of the

ears and one on the face, making the payload difficult to be

controlled along the desired trajectory.

In conditions C3 and C4, we test the ability of the algorithms

to deal with multiple contact points simultaneously. We

demonstrate a tripodal grasp with three UAVs in a triangular

formation on a hollowed triangle shape. We represent the robot

configurations as a virtual robot hand’s three kinematic chains or

FIGURE 6
Contact inference on a new shape for aerial manipulation. The first column shows the training examples used for learning the contact models.
The first, third, fifth and sixth rows show the transferring of the contacts for our approach. The other rows show the baseline method (Kopicki et al.,
2016). The first column shows the UAVs configuration, the surface used for learning and the contact features. Red points are the local features of the
contacts; black points are the task features. The other columns demonstrate the link pose computed on a new surface. The associated drone’s
pose is shown with a frame using the conventional RGB colour map for x-, y-, and z-axes, respectively.
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fingers. Similarly to any other contact-based grasping algorithm

in the literature, different finger configurations and contacts

characterise each grasp type; thus, the tripodal contact model

must be used with three UAVs and cannot scale up or down.

Another model would need to be learned for a different number

of drones or configurations (e.g. three drones in a straight line).

However, each UAV’s pose can be adjusted to adapt the grasp to

a different payload thanks to the soft probability representation

of the configuration model presented in Section 3.3.

Condition C3 does not attempt to generalise to a novel shape.

Three contacts must be found on the triangle’s surface, and the

query distribution treats that as an optimisation problem. It

randomly selects one UAV and finds a suitable contact, with the

same procedure used for the single UAV case. It then places the

other drones according to the formation presented in the training

data. The optimisation allows local modifications of all three

UAV configurations to maximise the sum of each contact’s score.

Similarly to the single UAV case, many local patches on the

triangle provide flat contacts to initialise the procedure, but not

all lead to a reliable tripodal grasp. This yields to local minima

observable in the baseline, which often cannot find a three-

contact placement on the challenging surface. In contrast, our

task model helps the optimisation procedure identify better

initial guesses and yields more reliable solutions. We

extrapolate the same conclusion from the last condition in

which the tripodal grasp is generalised on a squared flat

surface. In this condition, it is even more observable how the

baseline chooses its initial guess nearby feature-rich areas of the

test objects, i.e. corners and edges, whilst our approach is not

biased by it.

5.2 Transportation task: a quantitative
analysis

Each solution from Figure 6 is also evaluated in a simulated

environment for a transportation task. The simulator is

initialised with the computed optimised contacts. The UAVs

will need to transport the payload along a pre-planned circular

trajectory with a 1 m radius performed for 12 seconds. The

trajectory is computed such that the UAVs need to lift the

payload to the starting position of the trajectory, perform the

circle twice and then hover above the ground, maintaining the

payload in the same position as the last waypoint of the

trajectory. The simulation uses the PCMPC controller as in

(Li et al., 2021b), also adapted by us to control a single UAV

with a payload that is not a point mass object. Additional,

Gaussian noise with 1cm standard deviation was applied to

the perceived position of the payload, and each transportation

task for each contact was repeated ten times. The results were

averaged across each object and trial and presented in Figure 7.

The solutions for the hollowed triangular shape are from the

complete point cloud of the object, for which solution 3 for our

approach and solution 4 for the baseline suggested an upside-

FIGURE 7
The results summarise the transportation experiments. Each solution from Figure 6 is used for ten trials in a simulated environment in which the
single or multiple UAVs lift the payload, transport it along a circular trajectory twice, and then hover the payload above ground for at least 5 seconds.
The x-axis represents the time in seconds for all plots. The top row shows the averaged position and velocity error w.r.t. the desired payload’s
trajectory (baseline and proposed method separately), and both averaged rotational errors in the last plot. The bottom row shows the UAV’s
thrust (together) and moments (separately). For the three UAVs condition, the values in the bottom row have been averaged for each UAV.
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down contact. We discarded these solutions from the

transportation task since we could not achieve the required

kinematic of the contact. All the other solutions from the

baseline methods that do not provide contacts for each UAV

have been modified to connect the gripper to the closest point on

the payload. Considering the kinematically infeasible solutions

for the three drones condition, we had a total of 147 runs

(3 contact models x 5 solutions x 10 trials −3 infeasible

solutions) for the proposed model and 147 for the baseline. In

all conditions, we use a set of fixed parameters as shown in

Table 1.

In Figure 7 we observe the averaged difference in

transporting the payloads given the choice of the contacts.

Our approach outperforms the baseline in terms of accuracy

in following the pre-planned payload trajectory and by

minimising the effort computed by the UAVs as thrust and

moments. Interestingly, in all conditions, our approach

enables the UAV to control the orientation of the payload

in a more agile way. This is due to the relative position of the

contact points with respect to the payload’s shape, which

minimises oscillations during the transportation. This is

clearly visible by the lower standard deviation from the

desired position and orientation of the payload associated

with our approach. Furthermore, the velocity profile of the

payload and the output to the controller (thrust and moments)

show that our contact points simplify the work of the

controller in following the desired path.

The next section will present our final remarks.

6 Conclusion

This paper proposed a framework for learning task-

dependent contacts for aerial manipulation. Our models are

learned in a one-shot fashion and do not require a complete

CAD model of the payload or dynamic modelling. We build on a

contact-based formulation. Typically, such methods rely only on

local information, and task-dependent features must be

handcrafted. In contrast, thanks to the task model presented

in Section 3.1, we capture meta-information regarding the task by

merely looking at the geometrical features of the point cloud,

without the need for user-specific insight about the task.

Although performed in simulation, the empirical evaluation

shows the potential of the proposed idea. Without physical and

dynamic information about the system, a full convergence to an

optimal solution is impossible to achieve. Nonetheless, such

information is rarely available in reality, and this work is the

first step toward autonomous contact selection for aerial

manipulation.

7 Strengths, limitations and future
work

The presented work extends a (static) contact-based

formulation of grasp synthesis to a dynamic task. While

previous efforts have focused on integrating an approximation

of such dynamics in the models, we investigate how much

knowledge about the task we can capture by disregarding the

dynamics altogether.

The probabilistic formulation could be considered as a soft

simultaneous optimisation of multiple experts. Each expert

learns some of the characteristics of the contacts within the

feature space, e.g. the task model, and weighs their opinion in

the choice of the candidate contact at query time. Any soft

simultaneous optimisation of multiple criteria would work in

principle. However, the probabilistic representation allows us

to draw contact points from a continuous representation of

the payload’s surface. Nevertheless, the experts only weight

geometrical properties, which do not play a key role in

defining the dynamic behaviour of the payload. We assume

that the demonstration encodes the contact type (e.g., flat

contact), the task (e.g., contact above the payload’s CoM for a

transportation task) and the visible surface of the object

provides enough salient features to learn a good task

model. Although there is no need for handcrafting task

TABLE 1 Experimental parameters. All of the parameters are kept constant over the experiments. We use diagonal inertia matrices for both the UAVs
and payloads. The gains values are for the x −, y −and z −components, respectively. UAV and gains parameters are taken from (Li et al., 2021b).

Contacts UAV Payload Gains

Learning mn 250 g mz 250 g pos Controller Cable

NO 500 Jxxn 0.0006 Jxxz 0.006 6, 6, 10 1.45, 1.45, 3

NT 50 Jyyn 0.0005 Jyyz 0.0059 vel 3, 3, 6 3.7, 3.2, 2.5

NC 500 Jzzn 0.001 Jzzz 0.107 Rot 0.25, 0.25, 0.08 0.5, 0.5, 0.02

Inferring ln 0.5 m ang 0.025, 0.025, 0.005 0.16, 0.16, 0.04

Ni 500 # prop 4 ξ 16, 16, 16

Nj 5 max RPM 16400 ω 6.7, 6.7, 3.1

NQ 1000 min RPM 5500
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features into the model, the training data choice becomes

crucial.

Furthermore, our approach assumes that the contact

types and tasks are conditionally independent in our

model. However, this is generally not true, as seen in the

transportation of a FedEx box and the teapot examples.

Applying the model learned on the FedEx over the

Stanford bunny will lead to a poor choice of contacts

since flat surfaces are quite limited in the chosen payload.

Therefore, generalisation across contact types and tasks

becomes harder to achieve. This also limits the use of the

same contact model for a different task (e.g., flat contact next

to the edge for dragging the payload) which will require

learning a new model.

With many models that need to be learned, we also need

to solve the model selection problem when facing a novel

payload. Our empirical evaluation disregards this problem

by manually providing the correct model at testing time.

Reinforcement learning techniques can be used for model

selection, but the task would need to be encoded a more

informative way for this technique to converge to a good

reward function.

The choice of the principal curvatures as surface features

is also limiting. It is a baseline for determining the contact

points and the general shape of the payload. However, other

features may provide better information about the intrinsic

dynamic properties of the payload or the encoding task, such

as surface roughness or intensity features–or more likely a

combination of multiple features.

In order to achieve a fully autonomous aerial

manipulation, all these problems will need to be

addressed. This work pioneers the problem of grasp

synthesis for aerial transportation, but with the increasing

interest in aerial manipulation and the technological

maturity that we are witnessing, we would suggest that it

will become central to many applications. In future work, we

will focus on evaluating this framework on a real platform

with payloads with different dynamical properties, e.g., mass

distribution. Since our approach is a generative model,

multiple candidate contacts will be provided for each

payload. Primitive dynamic motions could be used to

evaluate the selected contacts according to the observed

behaviour of the payload.
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