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Despite the strong increase in available computational power enabling an

unprecedented level of realism in simulation, modeling robotic systems at

higher abstraction level remains crucial to efficiently design robot controllers

and analyze their properties. This is especially true for multi-robot systems, with

their high computational complexity due to the numerous interactions among

individual robots. While multiple contributions in the literature have proposed

approaches leading to highly abstracted and therefore computationally efficient

models, often such abstractions have been obtained with strong assumptions

on the underlying spatiality of the system behavior (e.g., well-mixed system,

diffusive system). In this work, we address themodeling of an arbitrary collective

movement involving the displacement of a robot ensemble along a certain

trajectory overlapped with continuous interactions among the robotic

members. Without loss of generality, we have focused our modeling effort

on a flocking case study, as a prominent and well-known example of collective

movement. We investigate our case study at the microscopic level while

leveraging a more faithful submicroscopic model (implemented through a

high-fidelity robotic simulator) as ground-truth. More specifically, we

illustrate multiple choices for designing and calibrating such microscopic

models, so that their faithfulness with the underlying submicroscopic model

of the same physical system is preserved. Such effort has produced concrete

implementations of three different microscopic models for the same case

study, all taking into account the spatiality of the collective movement. We

find that all three microscopic models produce quantitatively accurate

estimations for our flocking case study. As they rely on different underlying

assumptions and modeling techniques, the choice between them is a trade-off

between the computational cost, the modeling effort, the metrics considered

to evaluate their faithfulness, and the subsequent usage (e.g., control design,

system property analysis, control code prototyping).
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1 Introduction

As defined by Hamann (2010) in the scope of swarm

robotics, a model of a swarm of robots is an “as far as

possible mathematically closed form that predicts the behavior

of large self-organizing robot groups based on their control

algorithm.” While also concerned with smaller groups of

robots, this definition remains valid for Multi-Robot Systems

(MRSs). In fact, such modeling is crucial not only for efficiently

designing robot controllers, but also to analyze and predict the

behavior of an MRS for a given controller. Therefore, the robot

control algorithm should be exposed to such models, that is,

either being used as input for the model or being directly

integrated into the model structure.

This work is concerned with modeling of collective

movements; more specifically, our objective is, without loss of

generality, to accurately model a flocking case study. Therefore,

we will focus the remaining of this introduction on presenting the

different types of model typically used for MRSs and swarm

robotics and point out which techniques have been used for

modeling flocking in previous works.

1.1 Modeling levels and techniques for
multi-robot systems

Computational efficiency is one of the main motivations for

the use of models of higher abstraction over realistic simulations

or even real robot experiments. Consequently, the most

commonly used modeling technique are mean-field

macroscopic models, due to their ability to capture the

ensemble of the MRS independently of the number of robots

involved. Lerman et al. (2005) and more recently Elamvazhuthi

and Berman (2019) provide a thorough overview of the wide

range of different mean-field macroscopic modeling techniques

used in the scope of swarm robotics. Although these methods are

computationally efficient, they have often been designed in the

context of modeling fluidic, molecular, or purely mechanical

systems and, therefore, rarely expose explicitly the underlying

control structure and related parameters inherent to robotics.

This in turn significantly reduces the effectiveness of leveraging

such modeling methods to solve a crucial inverse engineering

problem in MRS: given the overall collective behavior and

possibly related quantitative performance metrics, design

individual robotic nodes so that the desired system behavior is

produced and the resulting performance optimized. Three

additional difficulties make such inverse engineering problem

hard: first, starting from macroscopic models and going down to

physical reality (possibly not only designing or optimizing

software but also hardware features) means also bridging a

large simulation-to-reality gap; second, the nodes of an MRS

are typically affected by severe resource constraints (this is

particularly true for most of the swarm robotics

demonstrators), and it is therefore rarely possible, for

instance, to exploit canonical layering techniques outsourcing

the implementation of high-level desired node behavior to well-

separated low-level control layers; third, most of the macroscopic

modeling techniques borrowed from other fields (e.g., statistical

physics, molecular chemistry) target underlying continuous

systems while the reality of MRS nodes is typically hybrid,

namely involving continuous and discrete components

Henzinger (1996).

Promising attempts to tackle these difficulties are represented

by multi-level modeling methods, such as Egerstedt et al. (1999),

Martinoli et al. (2004) or Brambilla et al. (2014). In Martinoli

et al. (2004), the authors use Probabilistic Finite State Machines

(PFSMs) with transition probabilities calibrated on physical

experiments in order to faithfully model an MRS using the

control FSM as model state-space. They also introduce a

multi-level hierarchical representation of the modeling

technique, which we adopt for this work: submicroscopic

models (high-fidelity simulation of reality), microscopic

models (each agent is individually represented, but only

relevant robot features are captured), and macroscopic models

(representation of the whole MRS, typically corresponding to a

mathematical model of the dynamical system representing the

group). In their framework, calledMulti-Level Modeling (MLM),

model structure and parameters are generated manually in a

bottom-up fashion, from the physical reality to the highest

abstraction level (i.e., the macroscopic representation)

leveraging the FSM-based controller blueprint for the

structure and dedicated experiments for the parameter

calibration.

In Egerstedt et al. (1999), a microscopic model consisting of

regularized hybrid automata is proposed. Similarly to the work in

Martinoli et al. (2004), it is obtained in a bottom-up fashion,

basing its structure on the underlying robotic controller. This

work is then extended to hierarchical hybrid automata with

formal model checking in Furbach et al. (2008) and improved

in Mohammed and Furbach (2010) to reduce the size of the

model by using constraint logic programming. The overall

framework (conveniently summarized in Mohammed et al.

(2010)) uses parallel hybrid automata to represent individual

parts of the system (e.g., robots, environment, etc.) which

communicate through shared variables or synchronized

transitions. Together they form a composed, hierarchical

automata representing the whole system (thus arguably

corresponding to a macroscopic view), which can be

processed through model checking techniques to investigate,

for example, the reachability of a certain environmental state.

In Brambilla et al. (2014), a property-driven design method is

proposed for the manual top-down design of robotic controllers.

Starting from desired (macroscopic) properties of a system, a

macroscopic model of the MRS is derived iteratively. In a second

step, a microscopic model is derived from themacroscopic model

using again an iterative process. While, in principle, the method
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is agnostic to the used modeling techniques for both macroscopic

and microscopic levels, the authors demonstrate the design

method using deterministic Markov chains and probabilistic

computation tree logic, resulting thus in similar models as the

previous frameworks. This similarity in the resulting models

seems natural, given that leveraging (probabilistic) FSMs

switching between continuous-time control algorithms is a

highly intuitive and widely used method for controlling

robots, including those belonging to an MRS. This method is

formally known as hybrid automata and was first proposed in

Henzinger (1996). Naturally, this suggests that one also uses the

states of the control FSMs as state space for modeling purposes,

which leads to these promising modeling frameworks for MRSs.

In subsequent works, different variations of the frameworks

have been explored, such as the use of Chemical Reaction

Networks (CRNs) in Matthey et al. (2009), which are then

combined with trajectory matching in Mermoud et al. (2012)

to automatically generate a macroscopic model without

knowledge of the implemented control architecture. However,

this implies the need for the observability of the trajectories of the

individual robotic nodes to build the interaction graph.

Additionally, it does not preserve any strict mapping with the

underlying physical and technological constraints, which limits

the use of the resulting model for control design. Haghighat et al.

(2019) leverages the same trajectory matching technique, but

uses it to automatically calibrate parameters of a stochastic

submicroscopic model of floating robots, while using a

microscopic model for designing the ruleset eventually

deployable on both high-fidelity simulation and real robots. In

Hamann et al. (2014) the authors establish a relationship between

a microscopic model consisting of CRNs and a macroscopic

model using stochastic differential equations, which is applied to

a collective decision-making process of a swarm of agents. In

Reina et al. (2015) high-level guidelines are provided for the

inverse problem: designing a microscopic model, given the

desired macroscopic dynamics. While the considered case

study of the shortest path selection is spatial, all spatiality

needs to be neutralized through dedicated tweaking of the

individual robots’ behavior in order to obtain the desired

quantitative micro-macro link.

Another modeling technique, borrowed from biochemical

systems, is proposed in Ciocchetta and Hillston (2009). In this

framework, the system is only modeled at the microscopic level.

Originally created for the analysis of biochemical systems, it is

based on stochastic simulation, fluid flow analysis, and statistical

model checking, which allows it to verify specific macroscopic

characteristics. It has been applied to robotic swarms in Massink

et al. (2013), for example. However, it shares the same limitations

as CRNs as no strict mapping with the underlying physical and

technological parameters, respectively constraints, is preserved.

Petri nets are somewhat similar to a combined view of all

FSMs of the MLM framework at a microscopic level. Similarly to

FSMs, they are event-based deterministic structures: a transition

to another state occurs as soon as all input states are occupied.

Thus, a Petri net can reproduce the behavior of a FSM by

integrating the environment into the net, such that the

required environmental conditions for FSM-state-transitions

are input states for the state transitions within the Petri net.

In Costelha and Lima (2008) they have been used to analyze the

behavior of an MRS playing robotic soccer. In Pereira et al.

(2014), generalized stochastic Petri nets are used in combination

with mean-field dynamics analysis to model on a macroscopic

level an MRS controlled by institutional controllers based on

executable Petri nets, that is, Petri nets taking into account robot

actions and sensing.

Another noteworthy category of modeling techniques used

frequently for MRS are high-fidelity and multi-agent simulators

whose capabilities, such as preservation of spatiality, will be

discussed in the following section.

1.2 Preserving spatiality in models

A major assumption common to all models presented in the

previous section is the well-mixedness of the system. Well-

mixedness of a SRS can be translated into the presence of a

large number of stochastic interactions in the scenario, which is

often not the case in collective movements, as the spatial

distribution of the agents is actively controlled and fairly

deterministically. One possible solution to this problem is

presented in Correll and Martinoli (2006), where system

identification techniques are used to compensate, through

optimization of the model parameters, for the deviation from

the well-mixedness assumption used to design the initial model

structure.

Another possibility of preserving spatiality at the

macroscopic level consists in the use of the Fokker-Planck

equation. This technique provides a probability density for a

particle, or robot in our case, to be at a given position at a

specific time. This has been applied successfully to MRSs in

Hamann andWörn (2008) and Prorok et al. (2011), though, to

our knowledge, it has never been applied to flocking. In

Elamvazhuthi et al. (2018) reaction-advection-diffusion

equations are used to optimize robotic control parameters

for an MRS coverage scenario. Unfortunately, a major

drawback of such techniques based on partial differential

equations is their dependence on a high degree of

stochasticity within the system, which is not the case for

our case study. Furthermore, the underlying robotic control

structure and related parameters are mostly abstracted,

complicating the use of such models for control design,

though their applicability for parameter optimization has

been demonstrated on multiple occasions.

In summary, while most of the works mentioned so far

maintain a degree of spatiality in their models, to the best of

our knowledge, none exists that maintains enough spatiality to
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model spatially coordinated groups of robots, such as our chosen

flocking case study.

A different category of tools, dynamic robot simulators,

usually maintain full spatiality and model both robots and

their environment more or less closely to reality. A survey of

dynamic simulators based on user feedback can be found in

Ivaldi et al. (2014). In this work, we distinguish between two types

of simulators:

• High-fidelity simulators, leveraged for implementing

submicroscopic models (fat), aim at emulating reality as

closely as possible, usually using dedicated physics engines.

Popular examples are Webots Michel (2004), Gazebo

Koenig and Howard (2004) or ARGoS Pinciroli et al.

(2012). While highly reliable, these models unfortunately

only provide a limited speedup in comparison to reality (1-

2 orders of magnitude) and are thus ill-suited for analyzing

and predicting the behavior of MRSs consisting of large

numbers of robots.

• Spatial microscopic simulators, leveraged for

implementing absolute microscopic models (fat), are

often custom implementations using Matlab. They

simulate the robots as point masses with kinematics or

even as fully holonomic particles. Although faster than

sub-μM, these models usually broadly simplify physics

(e.g., no friction), which, depending on the scenario,

leads to significant reality gaps, that is, differences

between the simulation and reality. Furthermore, the

speedup achievable with μM-A models also decreases

significantly for higher numbers of robots.

1.3 Modeling collective movements

The original flocking work of Reynolds (1987), but also

Vicsek et al. (1995), both use kinematic μM-A models to

demonstrate their algorithms. However, also more recent

works, such as Olfati-Saber (2006), Vásárhelyi et al. (2018),

Micklisch et al. (2018), or Jia and Vicsek (2019) rely on μM-A

models to demonstrate their flocking controller’s performances.

It should be noted that the definition of “flocking model” does

not correspond to the definition of models used in this work.

Indeed, their “flocking model” corresponds to our “flocking

controller”. Works that implement flocking on real robots,

such as Hayes (2002) or Navarro et al. (2008), tend to use

submicroscopic simulators instead, presumably in order to

reduce the simulation-to-reality gap. However, there are

contrasting examples, such as Virágh et al. (2013) or Shirazi

and Jin (2017) where custom μM-A simulators are used.

As motivated expertly in Hamann (2018), simulating spatial

displacements is computationally expensive even when using the

less precise μM-A, particularly for a large number of agents. By

simplifying the interactions between agents with viscoelastic

models, that is, virtual, “mechanical” links composed of

springs and damping elements, techniques borrowed from

physics can be applied. Using a fractional-order model

(Heymans and Bauwens (1994)), significant computational

speedups have been achieved in Goodwine (2014) and

subsequent works. However, while such models have been

successfully applied to detect faulty robots in Ni and

Goodwine (2020), their applicability for robot control design

or analysis remains unknown.

Another set of works leverages modeling for the analysis of

MRSs, usually focusing on control or stability analysis. In this

case, the MRS is modeled for the target purpose, and therefore all

other aspects of the system such as embodiment, noise, etc., are

removed. Often, Lyapunov theory is used to prove stability, such

as in Gazi and Passino (2005) or Schwager et al. (2011). While

extreme computational cost reductions are achieved, the

underlying control structure and related parameters are

completely abstracted, making the use of these models for

other purposes such as control design or optimization difficult.

1.4 Contributions

As mentioned previously, a major gap in the current

literature of MRS modeling is related to computationally

efficient representations of tightly coordinated systems in

space, such as collective movements. Indeed, to our

knowledge, no microscopic (and consequentially no

macroscopic) model exists capable of maintaining the

spatiality needed for this purpose while capturing the

stochasticity of interactions typical of a real MRS in a

computationally efficient way. As reported above, currently to

this purpose essentially only microscopic and submicroscopic

simulators tracking positional states in global coordinates have

been adopted. However, these modeling instruments are

computationally expensive due to their rich and continuous

tracking of system states and, therefore, do not scale well with

the size of the MRS. Moreover, such modeling instruments are

not designed with further abstraction levels in mind, and it is

therefore difficult to formalize microscopic-to-macroscopic links

starting from their rich representations. As a consequence, while

a macroscopic model is computationally cheaper and more

scalable than a microscopic model, and thus often the desired

final product of a modeling effort, microscopic modeling choices

play a crucial role in the overall abstraction process, as they serve

as the link between macroscopic and submicroscopic

representations, or put it differently, between mathematical

formalism and physical reality of an MRS. However, despite

the highly influential role of such choices in the whole modeling

process, we believe that the microscopic modeling level has not

received sufficient attention to date from the research

community in MRSs. This motivated us to focus this

contribution precisely on such modeling level and investigate
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various options to produce valuable representations for its crucial

linking function.

The main contributions of this work are two-fold. First, we

demonstrate how to apply a canonicalmicroscopicmodelμM-C to a

flocking case study using a discretization of the state space.

Combining geometrical reasoning similar to Winfield et al.

(2008) and calibration using system identification techniques as

in Correll and Martinoli (2006), we then calibrate the model to

compensate for the non-well-mixedness of the system. Second, we

introduce a novelmicroscopicmodel μM-R, situated between μM-A

and μM-C, which is capable of modeling the same case study

without introducing a discretization of the state space. We

compare both resulting microscopic models against the next-

most accurate model, μM-A, commonly used for modeling

flocking, as well as a more realistic submicroscopic model sub-μM.

As we illustrate explicitly how each model is built, in

addition to discuss their respective advantages and

drawbacks, we further hope that this work will simplify the

reader’s choice and implementation of a suitable model for

case studies involving MRSs engaged in tightly coordinated

movements in space.

The remainder of this paper is structured as follows: we start

by introducing the flocking scenario and the two different

metrics used throughout the paper. We then introduce the

three microscopic models, demonstrate how they can be

applied to the scenario, and report their performance. Finally,

we compare and discuss the different modeling techniques before

ending with some conclusive remarks.

2 Scenario

We consider a simple flocking scenario using pairwise

potential functions between N homogeneous robots, based on

the control law proposed by Olfati-Saber (2006). The flock of

robots is further tasked to follow an 8-shaped trajectory, given as

a temporal trajectory in a common reference frame. This

trajectory can be considered serving an equivalent function of

that of the migratory urge introduced in Reynolds (1987).

The pairwise potential function is given by Eq. 1 and

illustrated in Figure 1, with z the distance between the two agents.

ψ z( ) � D7

6z6
+ z (1)

resulting in a pairwise distance control law u(z) of

u z( ) � dψ z( )
dz

� 1 − D7

z7
(2)

It is trivial to see that Eq. 2 has its equilibrium point at z � D,

the desired inter-agent distance within the flock. In this work, we

use D � 0.6 m, which corresponds roughly to four robot

diameters in our case (see below for more details on our robots).

Following the implementation framework proposed in our

previous work Baumann and Martinoli (2021), we can define

Xtar
i � 1

N_ngb∑ u(zj) the target position of robot Ri within the

flock, with N_ngb being the total number of neighbors of robots

Ri. For further implementation details, such as the concrete robot

control law, we refer to our previous work.

Given our previous work in bridging the reality gap, as

reported in Baumann and Martinoli (2021), we omitted real

robot experiments here and considered the results of

submicroscopic modeling to be the ground-truth. Thus,

ground-truth experiments were conducted using simulated

Khepera IV robots (see Soares et al. (2016)), equipped with a

custom range and bearing board developed in Pugh et al. (2009).

Khepera IV are differentially driven robots with a diameter of

14 cm and a maximal speed of ~81 cm/s. The submicroscopic

model of the MRS has been implemented in Webots Michel

FIGURE 1
Potential (left) and action function (right) used in this work, with a desired inter-robot distance D � 0.6 m. The zone between the green lines is
considered the “ideal range” (width of 2ϵ) considered in the spatial discretization described in Section 4.
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(2004), an open-source, high-fidelity robotics simulation

platform. Sensors and actuators used in Webots were

previously calibrated using dedicated experiments to match

those of real Khepera IVs. For each submicroscopic

simulation, the robots are randomly initialized within an area

of size
��
N

√
x

��
N

√
m in an (considered to be) infinite arena.

Figure 2 shows a flock of 20 robots in the Webots simulator.

2.1 Metrics

For assessing quantitatively the quality of the proposed

microscopic models, we have decided to focus on the most

interactive part of the collective movement, and thus decouple

the trajectory followed by the flock as a whole from the

maintenance of the flock over this trajectory as a result of

individual members’ actions. To this purpose, we consider two

differentmetrics, a fully continuousmetricMc, defined in Eq. 3, and

a discrete metricMd, defined in Eq. 4. Both metrics are based only

on the closest three neighbors to obtain comparable metrics across

different numbers of robots in the MRS. However, a sensitivity

analysis on the impact of the number of neighbors used in themetric

is provided in Section 6.Mc corresponds to the average error with

respect to the desired inter-agent distance D for the three closest

neighbors of every robot.Md corresponds to the average number of

neighbors which are within the “ideal range” ([D − ϵ,D + ϵ]) for
the three closest neighbors of every robot.

Mc k[ ] � 1
N

∑N
i�1

∑min3 zi,j k[ ]( ) −D
3

(3)

Md k[ ] � 1
N

∑N
i�1

∑ϕ min3 zi,j k[ ]( )( )
3

(4)

withϕ z( ) � 1 if z ∈ D − ϵ,D + ϵ[ ]
0 else

{ , j ∈ 1, N_ngb[ ], and j ≠ i

with k ∈ [0, kmax] representing the index of the time step, with

steps separated by a period T and zi,j [k] the Euclidean distance

between robots i and j at time step k. The numerical values used in this

work are 50 ms for T, kmax � k120 � 120[s]
T � 2400 and 0.15 m for ϵ.

To avoid biasing the metrics through initialization, we do not

consider the first 20 s of a given run. That is:

Mx � 1
kmax − k20

∑kmax

k�k20
Mx k[ ] (5)

with x denoting the type of the metric (c or d). These correspond

to the metrics measured by both μM-C and μM-R and are thus the

metrics used in our results. All plots reporting these metrics include

vertical bars that indicate standard deviations. The number of

repetitions of the experiments performed depends on the model

used: experiments using the μM-A and submicroscopic model are

repeated 20 times; μM-C experiments are repeated 40 times and

μM-R experiments are repeated 80 times.

2.2 Microscopic models

In the following sections, we will introduce the three microscopic

models used in this work, starting with the more accurate μM-A, a

spatialmicroscopicmodel keeping track of the absolute position of the

agents and leveraging widely used multi-agent simulation principles.

We then present μM-C, a canonical probabilistic microscopic model

which considers a discretized spatial representation of the

neighborhood of every agent. Finally, we introduce our novel

μM-R, which maintains a continuous spatial representation of the

relative distances of the neighboring teammates from a representative

agent in the flock.

Each model is detailed, and its performance is reported, in

its respective section. For both μM-R and μM-C, we further

discuss geometric reasoning that enables us to reduce the

number of experiments needed to calibrate their respective

parameters.

3 The absolute microscopic
model μM-A

A fully spatial microscopic model keeping track of the

absolute position of each agent in the group is a highly

intuitive way to model collective movements; an example of

implementation of the corresponding microscopic

simulator is given in Figure 3.

FIGURE 2
Submicroscopic simulation of a group of 20 Khepera IV
robots.
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3.1 Modeling choices and structure

This custom-implemented simulator resembles a

submicroscopic simulator with a few crucial simplifications at

the individual robot level:

• Every type of discrete sensor is aggregated into an

omnidirectional sensor, one for each sensing

modality.

• Robots are represented by point masses, whose pose is

indicated by the “x” in Figure 3 (the heading is not

FIGURE 3
Screenshot of our custom spatial microscopic simulator implementing our μM-A.

FIGURE 4
(A) Comparison between μM-A (using kinematics) and the submicroscopic model using the continuous metric Mc. (B). Comparison between
μM-A (using kinematics) and the submicroscopic model using the discrete metric Md.
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visualized). The red outlines of the robots are visual

aids only.

• Robot kinematics can be accurately represented. In our

case, we use forward kinematic equations for differential

driven robots. The impact of modeling kinematics is

discussed in Section 3.2.

• In contrast to submicroscopic simulators, friction, wheel

slip, body-to-body collisions, etc. are neglected.

Figures 4A,B show the resulting modeling output compared

to the submicroscopic ground-truth, as well as a submicroscopic

model using kinematics instead of full physics. This latter is

interesting as most commonly used submicroscopic simulators

provide such a kinematics mode, which is thus trivial to apply.

Note that in all figures, the dot positions of the data points of the

different models are slightly offset along the horizontal axis to

increase the readability of the figures.

3.2 Parameter calibration

In order to calibrate μM-A, all represented parameters and

coefficients are matched as well as possible to submicroscopic

experiments. For example, the amount of noise of the

omnidirectional range and bearing sensor is set to the

average noise level of the corresponding submicroscopic

sensors. The only less trivial aspect is the calibration of the

motor-command-to-robot-displacement chain. Since motors,

gears, etc. are omitted from the robot model in μM-A, we

approximated this complete (and complex) chain with a single

linear coefficient, which is again calibrated based on

submicroscopic experiments. It is worth highlighting that

the submicroscopic model has previously been calibrated in

an equivalent way to the physical system, though naturally with a

much richer set of parameters. Another important aspect of the

calibration of μM-A is the decision to accurately model the

vehicles’ kinematics, as its impact depends on the scenario and

metric considered. Figure 5 shows the difference for the μM-A

model, usingMc. A Mann-Whitney-U-Test has been performed,

using 20 runs each, to determine whether this difference is

statistically significant. The p-values obtained for the

continuous metric are [ < 0.001, 0.026, 0.116, <0.001, <0.001]
for [4, 10, 20, 40, 100] robots, respectively. Therefore, we can

conclude that the impact of accurately simulating kinematics for

this case study is statistically significant, and we will thus only use

μM-Awith kinematics for the remainder of this work, even though

the discrepancy between the submicroscopic model and μM-A is

larger than this difference. It should be noted that the observed

errors might be acceptable for a specific modeling purpose, in

which case the kinematics could be omitted, resulting in a ~25%

reduction of the computational cost in our implementation.

4 The canonical microscopic
model μM-C

Canonical probabilistic microscopic models, μM-C, as

introduced in Martinoli et al. (2004), are built in a bottom-

up fashion, leveraging the states of the control algorithm to

define the state space of the model. The transitions between

these states subsequently correspond to interactions between a

robot and its environment or other robots. However, in

contrast to both μM-A and μM-R, interactions are

represented probabilistically only, defined through time

delays and encountering probabilities. In order to define a

μM-C, the following main steps are necessary:

• Separation of the group trajectory from the interactions

within the group;

• Decision on distinct, discrete states to represent the state-

space of the model;

• Definition of metrics computable with the tracked

states;

• Calibration of the transition rates between the states using

knowledge of the underlying controller, geometrical

reasoning, or bymeasuring them in amore accurate model.

4.1 Modeling choices and structure

In our case study, the selected control algorithm (see

Section 2) does not have distinct states. We therefore revert

to a spatial discretization similar to the work of Winfield

FIGURE 5
Impact of using accurate kinematics in μM-A for our flocking
model using the continuous metric Mc .
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et al. (2008). Figure 6 shows an illustration of this

discretization. Using the point of view of robot Ri, three

different circular zones are defined around it: zone

“R”–repulsion, zone “F”–flocking, and zone

“A”–attraction. This is based on the intuition that the

prominent pairwise behavior for a very close neighbor is

repulsion, and the prominent behavior for a far away

neighbor is attraction. In the middle, that is for a

neighbor distance between D − ϵ and D + ϵ, no

predominant behavior can be found. Therefore, this zone

is considered the “optimal” flocking zone, as illustrated in

Figure 1. Using predominant behaviors, we can thus obtain

distinct control states which we subsequently leverage to

build our model as shown in the following. It should be noted

that the definition of zone F must match the definition of the

ideal flocking distance in metric Md[k] for μM-C to be

meaningful. More generally, the metric of interest needs

to be computable as a function of the model states.

Based on the three zones R, F and A, we can compute the

exact number of neighbors in each zone for each robot Ri in the

flock using the following difference equations, capturing the

robot balance across zones:

N R k + 1[ ] � N R k[ ] − ΔR−F k[ ] + ΔF−R k[ ]
N F k + 1[ ] � N F k[ ] + ΔR−F k[ ] − ΔF−R k[ ] + ΔA−F k[ ] − ΔF−A k[ ]
N A k + 1[ ] � N A k[ ] − ΔA−F k[ ] + ΔF−A k[ ]

(6)

whereN R[k],N F[k],N A[k] are the number of neighboring

robots at time step kwithin the repulsion, flocking, and attraction

zones, respectively.

Each Δ is the sum of neighbors that transition at time step k:

ΔR−F k[ ] � ∑
NR k[ ]

P pR−F( )
ΔF−R k[ ] � ∑

NF k[ ]
P pF−R( )

ΔF−A k[ ] � ∑
NF k[ ]

P pF−A( )
ΔA−F k[ ] � ∑

NA k[ ]
P pA−F( )

(7)

with P(pi) � 0 |rng≥pi

1 |rng<pi
{ , where rng is a randomly

generated number ∈ [0, 1.

FIGURE 6
Spatial discretization used in μM-C.

TABLE 1 Recorded μM-C transition probabilities obtained through
μM-A simulations.

N = 4 N = 8 N = 10 N = 20 N = 40 N = 100

pR−F 0.1043 0.0941 0.0887 0.0444 0.0220 0.0118

pF−R 0.0001 0.0024 0.0051 0.0120 0.0096 0.0063

pF−A 0.0018 0.0019 0.0019 0.0045 0.0066 0.0056

pA−F 0.0053 0.0017 0.0013 0.0012 0.0008 0.0003

Frontiers in Robotics and AI frontiersin.org09

Baumann and Martinoli 10.3389/frobt.2022.961053

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.961053


4.2 Parameter calibration

A very intuitive way to numerically define the probabilities

p is to measure them based on recorded experiments carried

out with a more accurate and typically richer model. Table 1

reports the probabilities obtained for different numbers of

robots using the μM-A for an 8-shape trajectory. Figure 7

shows the resulting modeling performance compared μM-A,

using μM-A as ground-truth for calibration.

4.2.1 Geometrically defined transition
probabilities

While basing the transition probabilities directly on

dedicated, more accurate experiments results in modest

modeling errors, this procedure significantly limits the

analytical impact of the abstraction effort originally

motivating many of the modeling choices of μM-C.

Additionally, given the spatiality, respectively, non well-

mixedness of the system, the transition probabilities change

non-linearly with the number of robots N, as illustrated by

Table 1. This in turn means that dedicated experiments are

necessary for every N of interest, further limiting the impact of

the model. In this section, we therefore explore geometrical

reasoning in combination with system identification

techniques as a valid alternative to properly estimate the

transition probabilities, for all possible number of robots N.

As in Winfield et al. (2008), we can define “transition zones”,

that is, regions where the transition from one zone to another can

occurs in a time step of duration T for a given (average) robot

speed V. These regions are indicated as zones TX−Y in Figure 6.

The conditional probability of being in one of these zones given

one of the three main zones (R, F, A) can be calculated

geometrically:

PTF−R|F � RR + 2VT( )2 − R2
R

R2
A − R2

R

PTF−A|F � RA
2 − RA − 2VT( )2

R2
A − R2

R

PTA−F|A � RA + 2VT( )2 − RA( )2
R2
S − R2

A

PTR−F|R � RR
2 − RR − 2VT( )2

R2
R − R2

p

(8)

with RR, RA and RS the radii of the respective zones, as

illustrated in Figure 6. Each probability corresponds to the ratio

of the corresponding transition zone’s size over the size of the

current zone. Intuitively, this corresponds to the probability of an

agent ending up in the transition zone, given the current zone.

This assumes that the agents are “hopping”, that is, not following

a trajectory but stochastically changing positions. This

introduction of hopping is a key simplification necessary to

achieve the non-spatialness of the microscopic model as

introduced in Martinoli et al. (2004), however, it requires the

system to be well-mixed in the region of interest (over the whole

arena in case of an enclosed one), resulting in a roughly uniform

distribution of the agents. In contrast to the previous

contribution, here, the robots are hopping only within their

zone instead of globally. Accordingly, only well-mixedness

within a given zone is assumed. This more granular

representation of spatiality enables the model to represent

situations with a lower amount of stochasticity. Using these

probabilities, we can rewrite Eq. 7 as

ΔR−F k[ ] � N R k[ ] PTR−F|R[ ]ΓR−F
ΔF−R k[ ] � N F k[ ] PTF−R|F[ ]ΓF−R
ΔF−A k[ ] � N F k[ ] PTF−A|F[ ]ΓF−A
ΔA−F k[ ] � N A k[ ] PTA−F|A[ ]ΓA−F (9)

where each Γ represents the probability that a neighbor will

actually change zone from the respective transition regions.

4.2.2 Fine-tuning transition probabilities with
system identification

Assuming neighbors are moving randomly, the transition

probability of Eq. 9 would be roughly 50%. However, in our case,

the robot control is highly deterministic. Therefore, a more fine-

tuned calibration is required. Similarly to Correll and Martinoli

(2006), we leverage to this purpose a system identification

method (Ljung (1998)) consisting of the following three basic

steps:

1) Gathering of ground-truth data using dedicated perturbation

experiments;

2) Creation of a candidate model;

FIGURE 7
Comparison between μM-C and μM-A using recorded
probabilities of μM-A for the Md metric.

Frontiers in Robotics and AI frontiersin.org10

Baumann and Martinoli 10.3389/frobt.2022.961053

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.961053


3) Minimization of the difference between the candidate model

and the ground-truth data using optimization.

In order to gather enough ground-truth data for the size of

the parameter vector to be calibrated (and thus avoiding an

underdetermined system), four sets of perturbation experiments

of L = 20 runs each for N = 4, 10, 20, 100 number of robots were

carried out using the next-most accurate model, μM-A.

The candidate model has been described before, using Eqs. 8

and 9. The initial conditions are defined using a purely geometric

approach:

N R 0[ ] � R2
R

R2
S

(10)

N F 0[ ] � RA − RR( )2
R2
S

(11)

N A 0[ ] � RS − RA( )2
R2
S

(12)

It is worth noting that, given the linearity of the model, we

could also have expressed it in matrix notation which

does not, however, increase its readability and is thus

omitted here.

We want to minimize the prediction error of the model

estimate M̂d(θ, N) compared to ground-truth perturbation

experiments Md(N) by choosing the optimal parameter set

θo = {ΓR−F, ΓF−R, ΓF−A, ΓA−F}. That is, we want to solve the

following optimization problem:

θo � arg min
θ

∑
Ni∈N

∑L
l�1

M̂d θ( ) −Md( )2⎛⎝ ⎞⎠ (13)

with Ni the number of robots in an experiment. Using the

Nelder-Mead optimization of SciPy with Ni ∈ [4, 10, 20, 40]

results in the transition probabilities as indicated in Table 2. The

resulting modeling performance is shown in Figure 8. The

optimization has been performed using a maximum of

2000 function calls and with a tolerance of 0.0001 for early

convergence.

5 The relative microscopic
model μM-R

The relative microscopic model, μM-R, maintains a

continuous spatial representation of the relative distances

of the neighboring teammates from a representative agent

in the flock. As such, the level of abstraction of this model is

situated in between μM-A and μM-C. In order to define a

μM-R, the following steps are required:

• Separation of the group trajectory from the interactions

within the group;

• Determination of the distribution of an average

neighborhood of a robot within the group using

geometrical reasoning, system identification or

calibration experiments using a more accurate model;

• Re-formulation of the metric(s) to require only the point of

view of a single (representative) robot.

5.1 Modeling choices and structure

μM-R is a spatial model; as such the robots are represented

in a two dimensional space. However, the model is fully

aligned with the definition of the metrics. That is, the

deterministic trajectory of the group is omitted, focusing

instead on the local interactions. The stochastic interactions

between flock members are modeled using the same principles

as for μM-A (aggregated sensors, with or without kinematics,

neglected physics). However, to further reduce model

complexity, we do not model the complete MRS, but only a

representative robot surrounded by an averaged

neighborhood representative of the whole flock. For this,

TABLE 2 Transition probabilities for μM-C obtained through
geometrical reasoning and system identification.

ΓR−F ΓF−R ΓF−A ΓA−F

0.91 0.09 0.03 0.74

FIGURE 8
Comparison between μM-C and μM-A using geometrical
reasoning and transition probabilities obtained through system
identification.
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we initialize N_ngb neighbors around a robot Ri in a

randomized fashion, as described in the next subsection.

Subsequently, those neighbors are considered static in a

global reference, with only the robot Ri moving according

to the action function defined in Eq. 2. To minimize the bias of

the metrics through the initialization of the neighbors, we

consider only the metric of the central (non-static) robot.

Therefore, the metrics of Eqs. 3 and 4 are changed to:

Mc k[ ] � ∑ min3 zi,j k[ ]( ) −D( )
3

Md k[ ] � ∑ϕ min3 zi,j k[ ]( )( )
3

with j ∈ 1, N_ngb[ ]
(14)

It is worth noting, that the speedup between this model

and μM-A is a function of the ratio between the number of

robots N and the local neighborhood N_ngb, namely if the

complexity of μM-A is O(N2), the complexity of μM-R is

O(N_ngb).

5.2 Parameter calibration

One of the critical calibration aspects of this model is

related to the construction of an averaged neighborhood

representative of the whole flock. Similar to the parameter

calibration of the μM-C, we present in the following two

techniques for defining the averaged neighborhood, one

exploiting data gathered with a more faithful model and

one leveraging geometrical reasoning.

5.2.1 Averaged neighborhood defined with
experimental data

Based on recorded positions using the next-most accurate

model, μM-A (using 20 experiments in our case), similar to the

work of Zhang et al. (2008), it is possible to establish Probability

Density Functions (PDFs) of the position of neighbors for a given

flock size and flock trajectory. This spatiotemporal aggregation

includes the positions of all neighboring robots of each robot Ri in

FIGURE 9
(A) PDF of neighbor positions for a static flock of four robots (simulated using μM-A), from the point of view of a robot placed at (0,0) facing east.
(B) PDF of neighbor positions for a flock of four robots tasked to follow an 8-shape trajectory (simulated using μM-A), from the point of view of a
robot placed at (0,0) facing east.

FIGURE 10
AGMMoverlayed on the PDF of neighbor positions for a flock
of four robots following an 8-shape (simulated using μM-A), from
the point of view of a robot placed at (0,0) facing east.
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the flock for every time step k ∈ [0, kmax]. Figure 9A shows an example

of a PDF for a static flock of four robots. In Figure 9B, the flock is

tasked to follow an 8-shape trajectory. The similarities between the

two PDFs are apparent, but so are the differences, demonstrating that

the neighboring positions depend on the trajectory assigned to the

flock. Although not demonstrated in thiswork, we expect the presence

of obstacles to have a similar effect on the PDF.

Unfortunately, PDFs are not directly usable for initializing

neighboring robots in μM-R, as once a neighbor is placed, its

position influences the PDF of the remaining neighbors, as in

reality, the neighboring robots are also following the same

flocking control law and are thus also coordinated amongst each

other. Indeed, drawing positions without replacement from the PDF

does not take this aspect into account. It is therefore necessary to

cluster positions, where each cluster corresponds to the position of

one neighbor. This can be achieved, for example, through Gaussian

Mixture Models (GMMs).

Using the same aggregated experimental data as before, we can

fit a GMM on the data rather than just generating a PDF. In this

work, the GMMs have been created using the Python library sklearn.

The number of clusters (K) has been varied fromN_ngb, the number

of neighbors according to Eq. 18, to N, the number of robots in the

flock. For each K, four initializations of K-means of the cluster have

been done with a maximum of 100 iterations each. For each flock

size, only the GMM with the highest silhouette score (Rousseeuw

(1987)) has been retained. Figure 10 shows the resulting GMM for

the situation previously considered of a flock of four robots tasked

with following an 8-shape trajectory.

In order to initialize a neighbor in μM-R, one of the Gaussian

distributions of the GMM is drawn randomly (without

replacement), taking into account the respective weights of the

Gaussian components in the GMM. The neighboring robot’s

position is then drawn from the selected Gaussian distribution.

The number of neighbors N_ngb is calculated using

geometrical reasoning within an ideal flock. That is, a flock

where the distance between every first-order neighbor is

precisely the desired inter-robot distance D, leading to a

hexagonal lattice shape of the flock. Taking into account the

sensing range Rw = 1.5 m of the range and bearing sensor

endowing each robot, we can define the total number of

neighbors as follows, following closely the calculation and

notation of appendix A of Winfield et al. (2008):

N_ngbmax � N0 + 2∑lmax

l�1
Nl − 1 (15)

using

Nl �
����������
4R2

w − 3D2l2
√

D + 1,with l ∈ 0, lmax[ ] (16)

and

lmax <
2Rw�
3

√ D (17)

where lmax is the number of “rows” of neighboring robots

within the the sensing range, andNl the number of robots in row

FIGURE 11
(A) Comparison between μM-A and μM-R using a GMM-defined averaged neighborhood on the continuous metric Mc. (B) Comparison
between μM-A and μM-R using a GMM-defined averaged neighborhood on the discrete metric Md.
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l. The number of neighbors N_ngb can finally be defined using

the total number of robots N as

N_ngb � min N_ngbmax,N − 1( ) (18)

The final performance of μM-R compared to μM-A is shown

in Figures 11A,B.

5.2.2 Averaged neighborhood defined with
geometrical reasoning

Similar to the μM-C, while constructing the averaged

neighborhood on data gathered with more faithful models

results in good performance, this implies the need for

dedicated prior experiments to conduct this calibration.

An intuitive manner to avoid this is to base the neighbor

positions on geometrical reasoning. We based our approach

on an ideal flock assuming a hexagonal lattice shape. Using

the underlying robot control law in Eq. 2, we can calculate

the distance d to the first neighbors of a robot Ri as the

distance where the sum of all pairwise controls is 0:

0 � ∑N_ngb

j�1
u zi,j( ) � ∑N_ngb

j�1
1 − D7

z7i,j
( ) (19)

We can split the forces in attractive (FA) and repulsive forces

(FR) and neglect for the latter all but first-order neighbors (which

are situated at z = d), as illustrated in Figure 12. Considering

(without loss of generality) the situation as illustrated in

Figure 12, we obtain:

0 � ∑N_ngb

j�1
FA,j − ∑N_ngb

j�1
FR,j ≈

N_ngb
π

− 1 + cos π/3( ) + cos −π/3( )( )D
7

d7
(20)

which gives us

d �
�������������������������
D7 1 + cos π/3( ) + cos −π/3( )( )

N_ngb/π7

√
(21)

Note that we consider a robot at the very edge of the flock

for this calculation, as, for a robot in the center, assuming a

“perfect” flock with equal distances between all first-order

neighbors, attraction and repulsion from all directions will

cancel each other out. Therefore, the distance between robots

d is given solely through the control of the outermost robots.

Considering again Eq. 18 for the number of neighbors

given a flock size, we realize that it depends in turn on the

inter-robot distance D. By replacing D with d obtained using

Eq. 21, we obtain a set of inter-dependent equations which

can be solved for example using numerical methods. In this

work, we used the classical Nelder-Mead method (Nelder

and Mead (1965)) with d0 = 0.5 m to obtain d as a function of

the flocksize N.

Given the expected inter-robot distance d, as well as the

clean lattice format of our flocking, we can easily initialize

neighbors in the μM-R model in a hexagonal lattice with an

edge length of d, without recurring to any construction of a

GMM-based probabilistic landscape as in Section 5.2.1. In

order to provide a more realistic simulation, additional

Gaussian noise can be added to the neighboring positions.

Figure 13 shows the resulting performance for μM-R using a

Gaussian noise with σ = 0.2 in comparison to μM-A.

FIGURE 12
A simplified illustration of the forces acting on a robot Ri

(orange). FA,j corresponds to the attracting force due to neighbor j
and FR,j to the corresponding repulsive force of neighbor j.

FIGURE 13
Comparison between μM-A and μM-R using geometrical
reasoning to construct the averaged neighborhood on the
continuous metric Mc.
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6 Overall comparison and discussion

Figures 14A,B show the resulting modeling performance for

both metrics Mc and Md. Both μM-R and μM-C reported here

correspond to the modeling version using parameters calibrated

with prior experiments using μM-A. However, as shown in

Sections 4.2.1 and 5.2.2, using geometrical reasoning results in

similar performances. Since μM-C can only produce results for

the discrete metricsMd, this microscopic model variant has been

omitted in the comparison on the continuous metric Mc.

The fact that the μM-Amatches well with the submicroscopic

simulator for both metrics confirms that the common practice of

using (custom) spatial microscopic simulators is indeed adequate

for metrics of interest similar to the ones used here. It is worth

stating, however, that μM-A does not represent hardware and

thus hardware-related parameters. While it is possible to include

those in the simulation, the μM-A will, in this case, degenerate

sooner or later to a submicroscopic model. Given the availability

of high-quality open-source submicroscopic simulators, we

believe that such an exercise is not needed for most applications.

As expected, both calibrated models, μM-R and μM-C,

closely match the calibration baseline. The accuracy obtained

is, in our view, an impressive demonstration of the capabilities of

the modeling structures of both μM-C and μM-R. However, we

note that μM-R includes a significant standard deviation due to

the randomization inherent to the use of an averaged

neighborhood constructed probabilistically. Moreover, we

showed that, while the parameters of this models (e.g,

transition probabilities, GMMs) can be calibrated with

dedicated data gathered using more faithful models,

geometrical reasoning can help in further reducing the

calibration effort and promoting thus additional analytical

insight in the dynamics of the MRS.

One of the key reasons for leveraging modeling instead of

high-fidelity simulations or even real robot experiments is the

speedup in comparison to wall-clock time. As a result, we report

in Table 3 the speedups obtained using our implementations. The

speedup is defined as the ratio between the time that would be

needed to run the experiment with real robots vs. the time needed

FIGURE 14
(A)Overall comparison between the different models for the continuous metricMc. (B)Overall comparison between the different models for
the discrete metric Md.

TABLE 3 Simulation speedups recorded in our implementations in
comparison to wall-clock time for different flock sizes N.

N Sub-μM Sub-μM (kin) μM-A μM-R μM-C

4 x 25 x 28 x 200 x 239 x 15,000

10 x 8 x 9 x 67 x 146 x 8,500

20 x 2 x 2.3 x 26 x 79 x 5,000

40 x 0.5 x 0.5 x 9 x 59 x 3,200

100 x ~0.01 x ~0.01 x 2 x 40 x 3,000
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to run the experiment using a given model, on a given hardware.

In our case, a real robot experiment takes 120s independently of

the number of robots involved. For four robots, sub-μM takes

~4.8 s, resulting thus in a speedup of 25. All experiments have

been conducted on an Intel® Core™ i9-11900 CPU @2.50 Hz

processor with an NVIDIA GeForce RTX 3060. It is worth noting

that the sub-μM is implemented in C, while all other models have

been implemented in Python. Nevertheless, μM-A uses a limited

amount of Cython to speed up the simulation. Additionally, the

models in this work use one thread only. However, all of them

could further be optimized for computational speed through

parallelism. As a result, the speedup values reported in Table 3

should be taken as indicator of the order of magnitude for each

model rather than precise speedup values, as the latter will always

depend on the concrete implementation choices. Nonetheless, it

is interesting to realize that, as soon as robot numbers increase, a

submicroscopic simulation cannot provide a high amount of

speedup (for one robot, speedups of up to 50x can be observed).

When using kinematic mode instead of full physics, a slight

computational gain can be observed. However, typically no

additional simplifications are made and, depending on the

implementation of the simulator, less work is offloaded to

GPUs, which limits the impact of the kinematic mode on the

computational cost. Using a custom μM-A results in an increased

speedup by one order of magnitude, with μM-R increasing it

further with an even more significant impact for larger numbers

of robots. The most extreme speedups of four orders of

magnitude are achieved by the μM-C.

A potential limitation of this work is the choice of using

precisely three robots for bothMc andMd to obtain comparable

metrics for different flock sizes. Therefore, using a flock size of

20 robots, a sensitivity analysis has been performed using k = [3,

5, 10, 19] neighbors for the calculations of Mc,k and Md,k

respectively. The resulting performance of all models is

reported in Figures 15A,B. No significant impact on the

accuracy of the modeling can be observed, with the exception

of μM-R. This decrease in performance can be explained by the

fact that μM-R has been designed to model the local

neighborhood of the central robot. However, taking more

robots into account for the metric results in gradually taking

into account the whole flock. Consequently, a local neighborhood

representation is not as adequate as for smaller k’s.

An additional, related limitation is the extrapolation from the

case study used here to “generality”. Even though the

stochasticity of the flocking in this work is already severely

limited, it is larger than for other spatially coordinated

movement, such as formation control using model predictive

control. While we believe the calibration techniques used in this

work to adapt μM-R and μM-C to the limited amount of

stochasticity will still be valid for more extreme cases, this still

needs to be validated in future works. However, for collective

movements with a similar (or higher) amount of stochasticity,

the results obtained here remain valid as long as the other

requirements of the respective models are fulfilled, as

discussed below.

In this paper, we focused our efforts on pure modeling.

Naturally, depending on the final purpose of the modeling

effort, the metrics �M need to be adapted accordingly.

However, the two metrics Mc and Md used here allow us to

demonstrate several characteristics of microscopic modeling.

FIGURE 15
(A) Sensitivity analysis on the number of neighbors used in the continuous metricMc,k . (B) Sensitivity analysis on the number of neighbors used
in the continuous metric Md,k .
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• While μM-C always needs a discrete space, the

corresponding discretization can be chosen arbitrarily.

As a result, μM-C can be applied to any case study, as

long as the metric (and thus the model space) can be

discretized.

• The structure of a model is easier to choose than the

parameters. This is apparent in the fact that we could

easily ground the structure of our μM-C on our

understanding of flocking and geometrical reasoning.

However, to calibrate the parameters, dedicated

experiments were necessary. Similarly, the structure of

μM-R using recorded GMMs is rather straightforward,

whereas the use of geometrical reasoning to avoid

dedicated experiments is strongly dependent on in-

depth knowledge of the flocking behavior and the

control parameters.

• The more stochastic interactions are present in the

scenario, the more the well-mixed assumption is

fulfilled, and the less calibration due to spatiality is

necessary to create a quantitatively correct probabilistic

microscopic model (μM-C). While we are unable to prove

this statement through this work alone, it becomes

apparent by comparing with previous works leveraging

the same type of microscopic models. In this work, the

absence of stochastic interactions is apparent in our

flocking implementation, as well as the resulting need

for fine calibration, given the variability of the

parameters recorded in Table 1. A similar situation can

be observed in Correll and Martinoli (2006). However, as

shown, for example, in Winfield et al. (2008), for a scenario

similar to the one used here, though generating swarming

rather than flocking, it has been possible to better estimate

the model parameters through pure geometrical reasoning

and therefore avoiding further fine-tuning through system

identification techniques.

• The choice between μM-A, μM-R and μM-C is a trade-

off between the computational speed (μM-C is the

fastest), the modeling effort (μM-A requires the least

modeling choices), the modeling capability (μM-C

requires discretization), the modeling accuracy

(μM-A is most accurate) and the modeling precision

(μM-R has the highest standard deviation).

Consequently, we are unable to name a generally

valid “best microscopic modeling technique”.

Nevertheless, we can give the following tentative

recommendations as long as metrics are not too

closely related to hardware.

• If a system including the metric of interest can be

discretized, μM-C provides the best modeling

speedup with a limited number of calibration

experiments needed, depending on the amount of

stochasticity present.

• If the metric of interest cannot be discretized,

μM-C cannot be applied. Thus, μM-R provides the

best speedup possible without the need for

calibration experiments, if the underlying

behavior is known well enough for geometrical

reasoning.

• If the modeling effort should be minimized, μM-A

provides a significant speedup over submicroscopic

models, without the need for any important modeling

or calibration effort.

• Submicroscopic models, μM-A and μM-R are all

compatible with (high-level) robot control

algorithms as used on real robots. μM-C, on the

other hand, requires the control algorithm to be

discretized in order to construct the model.

However, it should be noted that optimizing some

key algorithmic parameters using μM-C is still

possible by explicitly exposing them in the

discretized algorithm.

• With increasing abstraction, the amount of additional

information that can be extracted from the model is

reduced. From a sub-μM, any desirable characteristics

can be extracted as long as they are simulated (e.g., the

temperature of batteries is usually not considered and

could thus not be extracted). In μM-A and μM-R, the

characteristics of the control input and the trajectory (e.g.,

speeds, accelerations, etc.) can be extracted. In μM-C such

additional information are not available, due to its non-

spatial nature.

• Notably μM-C, but to a certain degree also μM-R, is

composable. That is, if the overall behavior consists of

sub-behaviors, for which the corresponding model exists,

the overall model can be composed from the models of the

sub-behaviors.

• Both μM-C and μM-R require strictly converging metrics

for their respective parameter calibration. Consequently,

oscillating or dynamic behavior metrics need to be cast in

such a converging metric, for example by using the error of

the resulting dynamic behavior to a behavior of reference.

However, the use of μM-C for such dynamic metrics is

limited, as outlined previously.

While this work focused on the microscopic modeling

level, the multi-level modeling framework in Martinoli et al.

(2004) defines an additional level of modeling: the

macroscopic one. Given the linearity of the μM-C model in

our scenario, a macroscopic version of it can be derived easily.

However, the macroscopic model for μM-R is not as straight

forward, even for the considered scenario. In future work, we

will therefore not only aim to demonstrate the applicability of

μM-R to different case studies but also expand it with a

macroscopic model.
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7 Conclusion

In this work, we have investigated the modeling of a spatially

coordinated multi-robot system. More specifically, we concerned

ourselves with a flocking scenario leveraging a potential field

control law. We demonstrated the application of three different

microscopic models for this case study. Using a fully spatial

microscopic model (μM-A), a very intuitive and widely used

microscopic modeling type, we showed the impact of modeling

precise kinematics. While even with precise kinematics, μM-A

did not match perfectly the underlying submicroscopic model

considered as ground-truth, its modeling accuracy was

considerable. We then demonstrated how to discretize

spatiality to correctly capture the flocking scenario using a

more canonical probabilistic microscopic model (μM-C),

resulting in a significantly increased speedup. We further

proposed a novel microscopic model (μM-R), situated

between μM-A and μM-C in terms of both abstraction and

simulation speedup, which is capable of accurately modeling

the selected continuous flocking metric and reproduce any

arbitrary control law deployable in lower level

implementations, similarly to μM-A. In an attempt to

increase the usability of both μM-R and μM-C, we then

showed how to leverage geometrical reasoning and system

identification to avoid (for μM-R) or reduce (for μM-C) the

need of prior experiments for the calibration of model

parameters.

This contribution aims at transmitting our understanding of

the different modeling techniques and demonstrating how they

can be applied to spatially coordinated groups of robots. In a

subsequent work, we plan to both extend the modeling

techniques presented here to include macroscopic

abstractions, and to apply them in order to optimize the

underlying robot controllers.
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