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Emergence of responsible behavior is explored in non-cooperative games

involving autonomous agents. Rather than imposing constraints or external

reinforcements, agents are endowed with an elastic “sense of self” or an elastic

identity that they curate based on rational considerations. This approach is

called “computational transcendence (CT).” We show that agents using this

model make choices for collective welfare instead of individual benefit. First,

relevance of this model in game theoretic contexts like Prisoners’ dilemma and

collusion is presented. Next, a generic multi-agent framework for simulating

dilemmas around responsible agency is also proposed. CT implemented on this

framework, is shown to be versatile in acting responsibly to different kinds of

circumstances–including modifying their strategy based on their interaction

with other agents in the system as well as interacting with adversaries that are

rational maximizers, and who have a rationale to exploit responsible behavior

from other agents. CT is also shown to outperform reciprocity as a strategy for

responsible autonomy. Thus, we present CT as a framework for building

autonomous agents which can intrinsically act responsibly in multi-agent

systems. The core model for computational ethics presented in this paper

can potentially be adapted to the needs of applications in areas like supply

chains, traffic management, and autonomous vehicles. This paper hopes to

motivate further research on responsible AI, by exploring computational

modeling of this elusive concept called the “sense of self” that is a central

element of existential inquiry in humans.
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1 Introduction

Responsible behavior is often in conflict with self-interest driven autonomous agency

Rapoport et al. (1965); Axelrod and Hamilton (1981). This is true of both humans and

autonomous artificial intelligence (AI). Reconciling between the pursuit of individual self-

interest, and one’s social responsibility have elicited a lot of philosophical inquiry since

millennia. As autonomous AI makes fast inroads into our collective lives, the need for

designing computational foundations for responsible behavior is becoming more urgent

Matthias (2004). The problem is exacerbated in multi-agent systems where several

autonomous agents interact in a shared environment, resulting in complex emergent

conditions, whose implications may not be a priori apparent.
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In this paper, we define responsible behaviour by an

autonomous agent as selecting an action which is aligned

towards collective welfare even in the presence of lucrative

alternate but irresponsible actions, which are individually

beneficial (and hence, rational) for the agent. In this context,

we propose a model which leads to emergent responsible

behaviour in autonomous agents even where they are tempted

with irresponsible choices.

Machine ethics is gaining prominence in recent times, and

ethical dilemmas addressed from an individual agent’s

perspective have resulted in several variants of the well-known

“Trolley problem” Bonnefon et al. (2016); Bruers and Braeckman

(2014); Edmonds (2013); Goodall (2014). The idea of ethics is

largely a philosophical debate with multiple paradigms defining

what is or ought to be termed ethical. However, there is an

emerging consensus on the need for responsibleAI Clarke (2019);

Dignum (2017); Peters et al. (2020); Ramchurn et al. (2021);

Yazdanpanah et al. (2021); Dastani and Yazdanpanah (2022);

Dignum (2020); Allen et al. (2006); Gogoshin (2021), that is

concerned with more tractable issues like upholding integrity,

safety, explainability, accountability, and other systemic

constructs within an overarching legal or ethical framework,

rather than questioning the foundations of the framework itself.

However, even when there is clarity on what ought to be

called responsible behavior, enforcing this is hard when agents

act autonomously and interact with one another. Interacting

autonomous agents trying to maximize self-interest, can lead to

conditions like the prisoners’ dilemma Rapoport et al. (1965),

where individual benefit and collective good are in conflict.

Identifying such conditions at design time, and/or enforcing

corrective actions in real-time, pose major challenges. There is

hence a need to imbibe an innate sense of responsibility into

models of agency.

Approaches to multi-agent ethics have also been addressed

through various means like introducing morality as a separate

explicit consideration that agents balance with their desires, and

with heuristics representing responsible multi-agent interactions

Cointe et al. (2016, 2020); Lorini (2012).

A common design feature in current approaches to agent

morality is that, moral considerations are introduced as an

extraneous construct in the agent model, that needs to be

executed in addition to the logic of self-interest based utility

maximization. In this work, we argue that moral considerations

are not separate from self-interest and that moral reasoning can

be a direct consequence of rational self-interest, with a slightly

modified form of the core agent model.

Human societies are replete with examples where morality

and responsible behavior emerge from affected populations, even

in times of extreme conflict and oppression. There are many

examples where human societies have been more cooperative

rather than less, in times of crises, where formal structures of fair

statehood and public morality have emerged as a bottom-up

phenomenon Bregman (2020); Bandura (2006); Hamlin (2013).

Such emergence of public morality is often explained using

extraneous constructs like reciprocity, empathy, altruism, virtue,

and so on, that the population is thought to have imbibed.

However, we argue that the emergence of public morality is a

consequence of how individuals curate their “sense of self” or

identity. Individuals identifying with other individuals or even

abstract concepts, makes them internalize the interests of the

object of their identity, into their own sense of utility. Curating

the identity of agents, helps us distinguish “associations of

identity” from “rational associations” that are conventionally

studied.We show how an elastic sense of self can naturally lead to

a sense of responsibility in self-interested agents.We also propose

a model to show how the logic behind identity associations can

itself be based on self-interest considerations, thus obviating the

need for any independent concept like virtue or reciprocity, to be

brought in to explain agent morality.

The key contributions of this paper are as follows: 1) We

propose a bottom-up model called elastic sense of self for

autonomous agents which we posit leads to responsible

behaviour. 2) We demonstrate that an elastic sense of self in

game-theoretic contexts like prisoners’ dilemma and collusion

leads to collective good even when there is an incentive to act

selfishly. 3) We propose a generic multi-agent framework for

simulating dilemma between rational and responsible choices,

and evaluate computational transcendence on this framework. 4)

We demonstrate the efficacy of our model specifically in context

of adaptability and resilience of autonomous agents using this

framework. 5) Finally we show that our model outperforms

baseline model of reciprocity.

1.1 Related work

Emerging research areas like Artificial Moral Agents (AMA),

Reflective Equilibrium (RE), and Value Sensitive Design (VSD)

have proposed several paradigms to formally represent moral

and responsible behavior from which, multiple insights can be

discerned Jobin et al. (2019); Daniels (1979); Floridi and Sanders

(2004); Friedman (1996); Friedman et al. (2002); Fossa (2018);

Wallach et al. (2008, 2010); Awad et al. (2022); Santoni de Sio and

Van den Hoven (2018). There is a continuum of maturity in

moral reasoning between machines and humans Fossa (2018);

moral considerations are applicable to any agent (natural or

artificial) when it satisfies the following characteristics:

interactivity, proactive functioning, and adaptability Floridi

and Sanders (2004); moral considerations may require

reasoning beyond the current level of abstraction at which an

agent is operating Floridi and Sanders (2004); Wallach et al.

(2010); moral or responsible behavior is a combination of both

top-down imposed norms, and universal principles of morality

that are embodied by each agent individually Wallach et al.

(2008, 2010); Allen et al. (2005). Responsible behavior is also

non-monotonic in nature, requiring belief revisions of one’s
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deeply held beliefs and values when in conflict with externally

imposed expected behavior Rawls (2009); Daniels (1979); Jobin

et al. (2019). Cooperative games involving the formation of

coalitions have also been explored in the context of

responsible autonomy Ahmed and Karlapalem (2022). In

these cases, agents are already expected to, or are

programmed to cooperate, and the main dilemma is the

formation of coalitions.

Different forms of computational foundations have also been

explored for agent morality Tolmeijer et al. (2020); Dignum

(2017). Three paradigms have emerged as significant alternatives:

consequentialism, deontology and virtue ethics as summarized in

Table 1. Consequentialism focuses on the end result of an action

and selects the action which maximizes the utility or well-being

for all agents in the system. Deontology on the other hand,

focuses on whether the actions are based on specific, widely-

accepted rules or norms–the results of actions are irrelevant in

this context. Based on Kant’s categorical and practical

imperatives Kant (1785), actions should be such that it can

become a universal law and it should not treat people as

means to an end. Finally virtue ethics focuses on upholding

good virtues in the appropriate amount. The focus in this case is

not on actions or consequences but on the agent itself and its

virtuous character. We propose transcendence as a fourth

paradigm, which we posit leads to emergent responsible

behaviour due to the elastic sense of self of agents combined

with traditional methods of upholding self-interest and utility

maximization.

1.2 Agency and identity

Autonomous agency is typically modeled as a utility

maximization process, given a self-interest function. Self-

interest in turn, is represented by a preference relationship

among choices that, augmented with a set of beliefs, can lead

to intentions and goal-setting by the agent. An agent may also

indulge in speculative reasoning about the future, as well as

reflective processes, where the agent examines its beliefs and

actions, resulting in revision of beliefs and strategies.

While considerable amount of research has focused on

formulating strategies for utility maximization, given a

specification of self-interest; to the best of our knowledge,

there seems to be little research interest in modeling how an

agent’s self-interest itself is formed.

Computational foundations of rational choice, come from

the work of von Neumann and Morgenstern Morgenstern and

Von Neumann (1953), that is also now called the “classical”

model. This theory is based on representing self-interest in the

form of preference functions between pairs of choices. Ordinal

preference relations between pairs of choices are converted to

numerical payoffs based on equating expected payoffs of a

conflicting set of choices. Classical rational choice theory is

widely used in computational modeling of agency. However,

the classical model has also received criticism from various

quarters about its shortcomings when trying to model human

agency. In his critique called “Rational Fools” Sen (1977), Sen

argues that our autonomy comes from our sense of who we are,

and it is too simplistic to reduce this concept to a preference

relation between pairs of choices. Specifically, Sen argues that

humans display an innate sense of trust and empathy towards

others, and assume a basic level of trust to exist even among self-

interested strangers. This critique of the classical model lead to

the development of the theory of rational empathy and welfare

economics.

While we may be far from a comprehensive model of our

sense of self, in this work, we focus on a specific characteristic that

may hold the key for the innate sense of responsibility and ethics

in humans. We call this the “elastic” nature of our sense of self.

In humans, our sense of self is rarely confined to the

boundaries of our physical being Hanson (2009). We often

attach a part of our sense of self to some external entity,

which is when we are said to “identify” with that entity. For

instance, some external entities that humans typically identify

with, include: their family, religion, gender, ethnicity, race,

country, and so on.

TABLE 1 Comparison between different models of ethics and computational transcendence.

Consequentialism Deontology Virtue Ethics Computational
Transcendence

Description An action is right if it has the best
consequences for everyone

An action is right if it is
based on a moral rule or
principle

An action is right if it is based on good
virtues in the right amount usually as
demonstrated by virtuous agents

An action tends to be right if one’s
sense of self includes other stakeholders

Central
Paradigm

Outputs matter not actions or
intentions

Correct rules matter, results
are irrelevant

Focus on the attributes of the agent Elastic sense of self that includes the
interests of other stakeholders as
one’s own
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Identifying with an external entity is characteristically

different from a rational association with the entity.

Rational association is driven by self-interest, and exists

only as long as the association serves our self-interest. But

when we identify with an external entity, it becomes a part of

our sense of self, and its interests become part of our self-

interest. The elastic nature of our sense of self, also forms the

basis for social identity Jenkins (2014) that builds a sense of

belongingness and loyalty towards something bigger than

one’s individual self.

Identification with external entities is not uniformly

distributed. An agent may experience a “semantic distance”

to an external entity, with its identity attenuating over

distance. For instance, a parent may rejoice in the successes

of others’ children belonging to the same community or

nationality that the parent identifies with, but would likely

value the successes of their own children much more

intensely.

We are not commenting on what ought to be the

“correct” way in which an agent should curate its

identity and semantic distance with other entities.

Regardless of what is the “correct” distribution of our

sense of self, we posit that the elastic nature of our sense

of self, is key to the emergence of responsible behavior in a

way that is consistent with, and not in conflict with, self-

interest considerations.

1.3 Computational transcendence

We now take a formal approach to modeling an elastic sense

of self, that we call computational transcendence. Given an agent

a, the sense of self of a is described as:

S a( ) � Ia, da, γa( ) (1)

Here Ia is the set of identity objects that the agent identifies

with. Here a ∈ Ia, which represents a reflection property in that,

the agent itself belongs to its own set of identity objects. The set

may contain any number of other entities including other agents,

representations of agent collections like an ethnic group or a

nation; or even abstract concepts, like “human rights,” or “gender

pride,” for example. The criteria for any object to be a member of

an identity set of some agent is that, it should be possible to

represent the object as a stakeholder in the system whose interests

need to be furthered and protected, with the stakeholder

receiving positive or negative payoffs based on the choices

made by agents in the system.

The term da: {a} × I → R+ represents the “semantic

distance” between a and some object in its identity set, with

da(a) = 0 ordinarily. The term γa ∈ [0, 1] represents the

transcendence level or the “elasticity” of the agent’s sense of

self, indicating how its sense of self attaches to objects in its

identity set. Values of γa near 0 indicate that the agent’s sense of

self is largely inelastic, while values of γa near 1 indicate high

FIGURE 1
Demonstrating interaction between agents of different transcendence levels (A) Non-transcended vs. Non-transcended interaction (B)
Partially-transcended vs. Non-transcended interaction (C) Partially-transcended vs. Partially-transcended interaction (D) Fully-transcended vs.
Fully-transcended interaction.
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levels of elasticity. Agent a, with elasticity γa is said to identify

with an object at distance d with an attenuation of γda .

Figure 1 schematically depicts rational and identity

associations between agents with different transcendence

levels. Here, diameter of the circle represents transcendence

level of the agent. Dashed circle around the agent represents

the elastic sense of self of the agent. Solid lines between two

agents represents rational association while dotted lines between

two agents represents association of identity. For example

Figure 1A shows interaction between two non-transcended

agents where their sense of self is limited to just themselves.

Figure 1B shows an interaction between a partially transcended

agent and a non-transcended agent. We can see that the sense of

self of agent 1 includes 50% of agent 2 where as sense of self of

agent 2 is limited to just itself. Figure 1C shows interaction

between to partially transcended agents and we observe that both

of them include the other by 50% in their sense of self. Finally

Figure 1D shows an interaction between two completely

transcended agents where they completely include the other in

their sense of self. Here we have shown interactions between just

a pair of agents, however it can be extended to a network with

multiple agents as well.

Identifying with external entities affects how an agent’s

internal valuation or utility, is computed based on external

rewards or payoffs that may be received by elements of its

identity set. For any element o ∈ Ia, let the term πi(o) refer to

the payoff obtained by object o in game or system state i. Given

this, the utility derived by agent a in system state i is computed as

follows:

ui a( ) � 1
Z

∑
∀o∈I

γda o( )
a πi o( )

Z � ∑
∀o∈I

γda o( )
a

(2)

The above can be understood as a “unit” of self being

attached in different proportions to the objects in the identity

set, based on their semantic distance and extent of transcendence.

For a rational agent, the distance from an agent to itself is zero,

and has the least attenuation in utility. This represents a

“rational” model of transcendence of one’s identity towards

other objects.

Using this model, we can also construct a model for “selfless”

or “altruistic” agents where the semantic distance to itself ismore

than the semantic distance to other objects in its identity set. Such

agents value the welfare of other entities more than their own

welfare. However in this paper, we restrict our inquiry only to

“rational” transcendence, where the semantic distance to oneself

is zero.

To illustrate the impact of an elastic sense of identity on

responsible actions, consider the game of Prisoners’ Dilemma

(PD) as shown in Table 2. The Prisoners’ Dilemma represents a

situation where agents have to choose to cooperate (C) or defect

(D) on the other. When both agents cooperate, they are rewarded

with a payoff R (6 in the example). However, as long as one of the

agents chooses to cooperate, the other agent has an incentive to

defect, and end up with a much higher payoff T (10 in the

example), at the cost S of the cooperating agent (0 in the

example). Hence, an agent choosing to cooperate, runs the

risk of getting exploited by the other agent. And when both

agents choose to defect on the other, they end up in a state of

“anarchy” with a much lesser payoff P (1 in the example), than

had they both chosen to cooperate. The four kinds of payoffs

have the following inequality relation: T > R > P > S. Here,

cooperation is seen as the “responsible” choice, and defection is

the “irresponsible” choice. Acting responsibly leads to overall

good, but as long as one agent is acting responsibly, there is a

rational incentive for the other agent to exploit this, by defecting

on the other.

When played as a one-off transaction, there is no rational

incentive for an agent to choose to cooperate. Regardless of

whether an agent is known to choose cooperate or defect, it

makes rational sense for the other agent to choose D over C. The

state DD is the Nash equilibrium, representing the mutual best

response by both agents, given the choice of the other. The choice

D strictly dominates over choiceC, as regardless of what the other

agent chooses, an agent is better off choosing D over C. The only

way agents in a PD game find a rational incentive to cooperate, is

when the game is played in an iteratedmanner, with evolutionary

adjustments allowing agents to change strategies over time

Axelrod and Hamilton (1981); Sadhukhan et al. (2022).

However, with an elastic sense of identity, we can create a

rational incentive for the agents to cooperate, even in a one-off

transaction. Instead of curating strategies, here we change the

agents’ sense of self, to include the other agent, to different

extents.

Without loss of generality, consider agent A, and let the

payoff in game state i be denoted as ai (correspondingly, bi for the

other agent).With an elastic identity that includes the other agent

in one’s identity set at a distance of d, the derived utility of agent

A in game state i is given by (from Eq. 2):

ui A( ) � 1
1 + γd

ai + γdbi[ ] (3)

The expected utility of a choice (either C orD) is computed by

the utility accrued at all possible game states on making this

choice, along with the probability of this game state. Since we

TABLE 2 Payoff matrix for 2-player Prisoner’s dilemma.

Player A

C D

Player B C R = 6, R = 6 S = 0, T = 10

D T = 10, S = 0 P = 1, P = 1
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make no further assumptions, all game states are considered

equally probable. Hence, the expected utility for choosing a given

choice is computed as follows:

EA C( ) � 0.5 · uCC A( ) + 0.5 · uCD A( )
EA D( ) � 0.5 · uDC A( ) + 0.5 · uDD A( ) (4)

where:

uCC A( ) � R

uCD A( ) � S + γdT

1 + γd

uDC A( ) � T + γdS

1 + γd

uDD A( ) � P

(5)

Figure 2 plots the expected utility from choosing C or D over

varying values of γ or the elasticity in one’s sense of self, for a

semantic distance d = 1.

When γ = 0, this becomes the usual PD game, where the

expected utility from choosing D is much higher than the

expected utility from choosing C. However, as γ increases,

with agent A identifying more and more with agent B, the

expected utility of choosing C overtakes that of choosing D.

When γ = 1 the sense of self is evenly split between an agent and

the other. In this state, the PD game effectively “flips over” with C

and D swapping places with respect to expected utility. Such a

state is also called rational altruism Khalil (2004); Andreoni and

Miller (2008). In this state, it makes as much rational sense to

choose to cooperate, as it made rational sense in the conventional

PD to choose to defect on the other.

An important caveat is in order here. Suppose agent A

maximally identifies with the other agent (γ = 1), which gives

it a rational incentive to offer cooperation. Whether cooperation

will actually emerge, will depend on how much the other agent

identifies with A. Suppose that the other player doesn’t identify

with A, and chooses to defect instead. In this case, the other agent

obtains a payoff of 10 (which is also its internal utility), while

agent A still gets an internal utility of 5 according to Eq. 3, even

though its extrinsic payoff is zero. This suggests that a

transcended agent that identifies with the other, “feels”

gratified with the other agent’s success, even if it comes at the

cost of one’s own prospects! In a later section we will see how this

“feeling gratified” by other’s success affects the resilience of a

population of transcended agents.

Ensuring a minimum extent of identity transcendence across

the population, is a major challenge with human societies.

However, with engineered AI systems, it is possible for the

system designer to mandate a minimum level of

FIGURE 2
Change in expected utility with increased elasticity of sense of self, and semantic distance d = 1.

TABLE 3 Payoff Matrix for 3-player collusion game. Payoffs are in the
order (πA, πB, πC).

Players A and B

HH HT TH TT

Player C H 6,6,6 6,1,6 1,6,6 10,10,2

T 6,6,1 2,10,10 10,2,10 0,0,0
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transcendence for all agents in the system. We will address this

issue of engineering AI systems using computational

transcendence, in the next section. We also address potential

hurdles towards trivially making all agents transcend to the

fullest extent possible, to create a population of rational altruists.

Table 3 shows another example game that extends the PD

over three players (we shall be using the terms “players” and

“agents” interchangeably). This game comprises of three players

A, B and C, having to choose between two choices, namelyH and

T. The payoff sequence shown in each cell are respectively that of

players A, B and C in that order. All three players independently

choose their choices.

The state HHH, where all players choose H, results in a fairly

high and equitable distribution of payoffs. This state is also the Nash

equilibrium, since there is no incentive for any player to unilaterally

change its choice, to obtain a better payoff, as long as the other

players remain in this choice. Also, since all players get the same

payoff in this state, there is no conflict among the players.

However, the game admits the formation of a collusion,

where any two players can collude and choose T, and get a

better payoff for themselves at the cost of the third player, as long

as the third player remains at H. However, when all three players

choose T, the game collapses with a zero payoff for everyone.

Individually, choosing H is the dominant strategy, however with

collusion, two players decide to choose T together at the cost of

third player. As before, choosing H is the responsible choice that

brings overall benefit to the population, but runs the risk of

getting exploited, as a result of other players colluding to act

irresponsibly.

When combined with computational transcendence,

this game not only illustrates the dynamics of collusion,

but also the dynamics of social identities at different

granularity levels. Societies often encourage responsible

behavior from its individuals, by forming communities

and promoting a sense of collective identity. However,

when large populations contain several communities that

compete for identification from individuals, this often

results in a contention between one’s communal identity

and the global identity of the population Deshmukh et al.

(2021).

In this example, individuals transcend with an elasticity γ, to

identify either with the world comprising of all three players, or

the community or group identity formed by the other player with

the same choice. The semantic distance that one has with the

world or the group, may vary. Agents may identify themselves

firstly as citizens of the world, and then as members of their

FIGURE 3
Transcendence in a three player PD game (A) Transcendence from Self toWorld (B) Transcendence from Self to Group (C) Transcendence from
Self to Group (dg = 1) to World (dw = 2) (D) Transcendence from Self to Group (dg = 2) to World (dw = 1).
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community; or vice versa. We use the following possible semantic

distances d ∈ {1, 2, ∞} with which, an individual identifies with

the group or the world. If the individual does not identify with the

group or the world, its distance is set to ∞.

Let dg and dw be the semantic distance from a given agent a to

the group or the world, and let πg and πw represent the payoffs of

the group and the world, respectively. Let πa represent the payoff

for player a. The transcended utility for the agent a in game state i

is given by (Equation 2):

ua i( ) � 1
1 + γdg + γdw

πa i( ) + γdgπg i( ) + γdwπw i( )[ ] (6)

For different combinations of distances, we now plot the

expected utility from choosing H or T for any given player.

Figures 3A,B plot the expected utility of choosingH and T for a

player, that transcends to identify with either the world or the group,

respectively. Here, an agent identifies with either the world or the

group, which means either dg or dw is set to 1, and the other term set

to ∞. When γ = 0 the expected utility from choosing T is slightly

higher than that of choosingH (5.25 and 5 respectively). However, as

γ increases, the expected utility of H overtakes that of T. Regardless

of whether an agent identifies with the group or theworld, the higher

the extent of transcendence, themore rationale there is to choose the

more responsible choice. We can also see that identifying with the

world makes the utility ofH grow faster than that of T, as compared

to identifying with the group.

Figures 3C,D depict a three-stage transcendence, where an

agent identifies with both the group and the world, to different

extents. In the first case, the agent identifies with the group and

the world at a semantic distance of 1 and 2 respectively, while the

distances are reversed in the second case.

In both cases, H overtakes T and reach the same difference

(10.83 and 9.91 respectively), when γ = 1. And although the

intermediate values for E(H) and E(T) differ between the two

cases, the overall trapezoid area under curve (AUC) is exactly the

same for both cases (AUC(E(H)) = 0.292, AUC(E(T)) = 0.233).

This suggests that as long as the world or the entire collective is

part of the identity set of an agent, it does not matter to what

extent the agent identifies with its community.

We will need to clarify here, why choice H is considered a

“responsible” choice, while T is considered an “irresponsible”

choice. With the earlier example of a 2-player PD (Table 2) it is

more clear. The game state CC has the highest collective payoff

and theminimum disparity among the payoffs. With the 3-player

collusion game (Table 3), the state HHH does have the least

disparity in payoffs, but is not the state with the highest collective

payoff. The collusive state HTT for example, yields a collective

payoff of 22, while HHH yields a collective payoff of 18. With a

simple utilitarian model that considers the sum of individual

payoffs as collective good, HTT appears better for the collective

than HHH. But this does not factor the disparity in payoffs.

A better model for assessing outcomes from responsible choices

is the Nash bargaining metric Binmore et al. (1986). The Nash

bargainingmetric computes collective extrinsic utility as the product

of individual payoffs. In games with non-negative payoffs, this

metric is shown to account for both maximization of gains and

minimization of disparity in utilities between the players.

With the Nash bargaining metric HTT has an overall payoff

of 200, whileHHH outperforms this with an overall payoff of 216.

Similarly, in the case of 2-player PD, an exploitative game state

(CD or DC) has a Nash bargaining payoff of 0, while the

cooperative game state has a value of 36.

Extending one’s sense of self beyond one own individual

seems to provide a natural incentive for acting responsibly. In the

next sections, we build a generic multi-agent framework to

implement transcendence, and evaluate various scenarios

involving responsible behavior.

2 Methodology

With the basic model of transcendence presented so far, we

now turn to the question of how can we engineer multi-agent AI

systems using computational transcendence. For this, we propose

a generic multi-agent framework that incorporates

transcendence in autonomous decision-making.

We consider a community of autonomous agents forming a

network represented by a simple, undirected graph, with the

nodes representing agents, and edges representing pair-wise

interactions between agents.

Each agent performs two classes of activities: (a). Initiating

network traffic, and (b). Forwarding of network traffic from

others. When agents forward network traffic from others, they

are said to be intermediaries. Intermediaries face two classes of

choices: a responsible choice that may incur a cost, but bring

overall benefit to the network; and a selfish or irresponsible choice

that minimizes cost to the agent, but may negatively affect overall

network performance.

When an agent initiates network traffic, it gets a payoff when

the packet successfully reaches its destination. If the packet gets

droppedmidway, the initiator incurs a net cost. In contrast, when

an agent forwards a packet from another agent, it incurs a cost in

performing this operation, but does not obtain any payoff. Given

this, there is no ordinary incentive for an agent to forward

packets sent by others, while agents initiating network traffic

need the cooperation of intermediaries to successfully complete

their task.

Formally, the multi-agent framework is represented as

follows:

G � A, E, γ, d( ) (7)

Here, A is the set of agents, E ⊆ A2 is the set of pairwise

interaction among agents, γ is the elasticity or the transcendence

level that is set for the community as a whole, and

d: A × A → R+ is the set of non-negative, semantic distances
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between agents. Note that semantic distance is a perceived logical

distance, and need not be symmetric between pairs of agents.

Let i ∈ V be any agent in the network, and let Γ(i) denote
the set of other agents with which it is interacting. For any s ∈
Γ(i), the term d(i, s) represents the semantic distance

perceived by i towards s, the term utility(i, s) represents the

total utility accrued by i with its interaction with s, and the

term cost(i, s) represents the total cost incurred by i from its

interaction with s. Analogous terms are defined from the

perspective of s towards i.

When i receives a packet from s, it becomes the intermediary,

and s becomes the source. The intermediary has two choices:

forward (f), or drop (d). The choice made by i affects not only its

own utility, but also the utility of the source s, as shown in

Table 4.

In the payoff matrix from Table 4, μ is the extrinsic utility or

payoff received by the source node, for successful delivery of a

packet; and κi is the cost incurred by the intermediary for

forwarding of a packet. When agent i forwards the packet

sent by agent s, agent i incurs a cost of κi, and agent s gets a

payoff of μ. But since agent i identifies with s, it too gets a utility of

γd(i,s)μ. Similarly, when agent i drops the packet, the source agent s

incurs a loss μ, which is also shared by agent i due to

transcendence, deprecated by a factor γd(i,s).

The term κi depends not only on the cost of forwarding a

packet, but also on other loads on the agent, like battery power in

case of mobile agents, and interactions happening on other

channels. To account for all this, κi is derived from the base

packet forwarding cost κ as is defined as follows:

κi � κ + δ ∑
∀s∈Γ i( )

cost i, s( ) − utility i, s( )( ) (8)

Here, κ is the base operational cost of forwarding a packet,

and 0 ≤ δ ≤ 1 is a dampening factor that accounts for other costs

being borne by the agent. The initiator agent s incurs the base cost

of κ at sending time, while the intermediary i incurs a modulated

cost κi that factors other costs that the agent has to bear, while

forwarding the packet.

E f( ) � 1

1 + γd i,j( ) −κi + γd i,j( )pmsgUtility( )

E d( ) � 1

1 + γd i,j( ) −γd i,j( )pmsgUtility( )
(9)

Eq. 9 shows the expected payoff of forwarding (f) and

dropping (d) of a packet from the intermediary i to the next

agent j. Based on these expected utilities, the agent i decides

whether to forward or drop the packet, by converting expected

utilities to probabilities, using a softmax function as follows:

prob f( ) � eE f( )
eE f( ) + eE d( )

prob d( ) � eE d( )

eE f( ) + eE d( )

(10)

If the packet is forwarded, i adds its utility obtained by it

(γd(i,s)μ) to utility(i, s), and the base operational cost incurred by it

(κ) to cost(i, s), while the source agent s adds the utility obtained

by it (μ) to utility(s, i). Similarly, if agent i drops the packet, a loss

of -γd(i,s)μ and − μ are recorded for utility(i, s) and utility(s, i)

respectively.

3 Experiments

The framework introduced above is used to perform three

stages of experiments involving transcendence. In the first stage,

we build a network of agents where all of them have been

programmed with a given value of transcendence (γ) and

respond to externalities by adjusting their semantic distances

between one another; in the second stage, agents discover their

optimal level of transcendence with respect to their environment,

by making evolutionary adaptations; and in the third stage, a

network of agents with elastic identity is infused with a

population of adversaries which do not transcend, in order to

test its resilience.

The first two stages constitute the life cycle of a transcended

agent, and is schematically depicted in Figure 4.

3.1 Basic network: Curating semantic
distances

In the description of the multi-agent framework from the

previous section, we can see that when an intermediary

chooses to act responsibly, the costs incurred by it are

real–involving actual expending of energy and resources;

but the utility received by it is “virtual”– obtained by

TABLE 4 Utilities and Costs for intermediary agent (i) and source agent (s) as a result of decisions taken by intermediary.

Utility (u) Agent i Agent s Cost (c) Agent i Agent s

Forward (f) γd(i,s)μ μ Forward (f) κi 0

Agent i Agent i

Drop (d) − γd(i,s)μ − μ Drop (d) 0 0
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identifying with the other agent. However, experiencing this

virtual utility is crucial, as it results in real benefits for the

sender and for the network as a whole, thus leading to

responsible autonomy.

The real nature of the costs incurred as opposed to the

virtual nature of the benefits accrued, presents a barrier for

an agent from naïvely identifying to the maximum extent,

with everybody in its neighborhood. Too high a level of

transcendence also makes an agent vulnerable for

exploitation by other rational agents. In order to practice

transcendence in a rational manner, agents employ a defense

mechanism by adjusting the semantic distance d that they

perceive with every other agent in their identity set. This is

implemented by interpreting utility and cost on each edge as

a reinforcement signal and responding accordingly with

distance adjustments.

The framework functions in batches of operations called

epochs. Each epoch starts with a distribution of semantic

distances for each edge, and comprises of a certain number of

packets being transmitted across the network, and agents

accumulating utilities and costs. The initial distribution of

distances may be based on some form of physical or logical

separation, specific to the application.

At the end of every epoch, semantic distances between agents

are updated based on accumulated utility. Each agent i updates its

semantic distance to its neighbor s as follows:

Δd i, s( ) � eutility i,s( )

∑
∀s∈Γ i( )

e|utility i,s( )| −
ecost i,s( )

∑
∀s∈Γ i( )

e|cost i,s( )|

dt i, s( ) � dt−1 i, s( ) − λΔd i, s( )
(11)

Here, each agent i computes a marginal utility accrued from a

specific neighbor s as a softmax function that normalizes its

utility with overall utility obtained, as well as its cost accrued with

s, with overall costs accrued from all neighbors. This marginal

utility is then scaled with a learning rate λ and is used to update

the distance between agents i and s.

3.2 Discovering elasticity

In the next stage of the framework development, rather than

having a fixed level of transcendence across the network, agents

adjust the elasticity (γ) of their identity, based on their

experience, to balance between the benefits and costs of

transcendence. This obviates the need for the system designer

FIGURE 4
Block Diagram of a Transcended agent.
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to impose a particular transcendence level for all the nodes in the

network.

This evolutionary network starts like the basic network

model with a given initial value of γ and updates its distances.

Once the distances stabilize as discussed in the basic network

model, the agents update their transcendence levels as follows:

Agents compare the total utility they have received from their

interactions with other agents (uR), to the total utility they have

given to other agents in the network (uG). Based on these two

parameters, agents update their transcendence levels as follows:

uR a( ) � ∑
∀i∈Γ a( )

utility a, i( ) − cost a, i( )
uG a( ) � ∑

∀i∈Γ a( )
utility i, a( ) − cost i, a( )

Δγ a( ) � 1

1 + e− uR a( )−uG a( )( )
γ a( ) � γ a( ) + λgΔγ a( )

(12)

The rationale here is that, agents are assumed to feel gratified

and be more inclined to identify with their environment, when

their environment is more generous than their expectations.

However, this gratification may be subject to diminishing

valuation of returns, modeled by the sigmoid function. The

output of the sigmoid funtion, Δγ(a) is used as a

reinforcement signal by the agent to adjust its elasticity γ,

scaled by learning rate, λg. This process is repeated till γ

updates between consecutive epochs fall below a threshold.

3.3 Network resilience

Earlier, we had noted that even with simple, 2-player games,

transcendence can lead to cooperation only if both players were

to transcend, and identify with the other. If one of them

transcends and acts responsibly, it makes even more rational

sense for the non-transcended other player to act irresponsibly.

Thus, an agent unilaterally deciding to transcend, runs the same

risk as that of an agent unilaterally deciding to cooperate in a

rational standoff. However, transcendence has subtle differences

from a simple rational standoff, as the transcended agent would

still derive some virtual payoff from the other agent’s

gains–which under certain conditions could still be sufficient

incentive to keep the population functioning, and to eventually

isolate the adversaries based on distance updates.

Given this, in the third stage of the framework design, we ask

the question of how resilient is a network of transcended agents.

A network of agents is said to be resilient, if it cannot be

“invaded” by a small population of adversaries who can

exploit the network’s cooperative nature, to an extent that

there is no rational incentive for cooperation anymore.

In order to model this, we introduce adversarial agents into a

network of transcended agents that act selfishly, and do not

display elastic identities. Adversaries are also modeled as rational

maximizers even in positioning themselves in the

network–occupying network positions of high influence,

indicated by degree centrality. We then vary the proportion of

adversaries to evaluate the resultant network for multiple metrics.

3.4 Baseline comparison

In order to compare how computational transcendence

performs as a model for responsible autonomy, we compare it

the paradigm of reciprocity Gouldner (1960), which is one of the

commonly used paradigm for ethics. Reciprocity is based on the

logic that an individual’s sense of responsibility is a normative

construct that is learned based on observing how other

individuals behave in their vicinity. Each agent observes other

agents in its neighborhood to learn the rates at which they take up

responsibility, or act selfishly, and adopt similar rates for

themselves. We compare the basic network of computational

transcendence as discussed in Subsection 3.1 with such a model

of reciprocity.

4 Results

We implement a simulation of the proposed framework,

created from a random graph generated using the Erdös-Renyi

model Newman (2003) over 100 nodes. A set of 200 packets is

generated per epoch, where the start, intermediate, and

destination nodes are chosen uniformly at random. The utility

μ of a packet being successfully delivered, is set to 10 units, and

the base operational cost of transmitting packets (κ) is set to one-

tenth of the utility.

4.1 Basic network: Curating attenuation
rates

After each epoch, distances are updated by agents based on

the marginal utility obtained from its neighbors, and the learning

is stopped when changes in distances fall below a threshold ϵ set
to 0.01. The hyper-parameters δ (discount factor for modulating

intermediary cost), and λ (learning rate), are both set to 0.01. In

the simulation runs, the initial set of semantic distances were set

to 1 for all the edges, and the simulation was run by varying γ

from 0.1 to 1.0 with a step size of 0.1.

Increase in utility overshadows the increase in cost as γ

increases, even though at lower levels of γ, collective utility is

negative. This is shown in Figure 5A. Both virtual utility (accrued

by the intermediate agents identifying with the source) and real

utility (accrued by the source nodes) increase with higher

transcendence.

Figure 5D plots the total cost per epoch against increasing

transcendence. While increasing extents of identification with

others makes it more attractive to act responsibly, this
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responsibility also comes with increased costs of operations. Cost

of operations increases rapidly with increasing transcendence,

and saturates at a point where packet forwards reach 100%.

Figure 5G plots the proportion of packets forwarded and

dropped by intermediaries per epoch, with increasing values of

elasticity γ. Without transcendence (γ = 0), there is no incentive

for any intermediary to forward packets for others, and packet

drops outnumber packet forwards. However, with increasing

transcendence, packet forwarding rate rises rapidly, with a

similar rapid decline in packet dropping rate.

4.2 Discovering elasticity

In second stage of the framework, the system runs in two

levels of epochs. At the basic level, distances are updated until

they stabilize. This then triggers γ updates, where following each

such update, distances are updated again till they stabilize. The

results are plotted after both distance and γ updates stabilize.

The second column in Figure 5, plots the results for the

network with evolutionary γ updates, that is configured similarly

to the basic network model. In these runs, the network was

initialized with an common initial value of γ for all agents, which

forms the x-axis. The network then goes through several epochs

of distance and γ updates until it stabilizes. The x-axis shows the

initial value of γ with which the network was updated, and values

in the y-axis represents values of corresponding metrics after

both distance and γ updates have stabilized.

Figure 5B plots cost, utility and virtual utility per epoch for

different initial values of γ on the x-axis. We note that utility and

virtual utility levels are higher even for lower initial values of γ

since the system evolves and eventually reaches a point where

agents have a higher level of transcendence and thus get higher

utilities–both real and virtual.

Cost trends in Figure 5E are similar to other cases–the cost

incurred by agents increases as their initial elasticity levels

increase–posing a rational barrier for agents to naïvely

identify with others to the fullest extent.

FIGURE 5
Result Plots for Computational Transcendence in Basic, Evolutionary and Adversarial Networks (A) Basic: Total Metrics (B) Evolutionary: Total
Metrics (C) Adversarial: Total Metrics (D) Basic: Cost per epoch (E) Evolutionary: Cost per epoch (F) Adversarial: Cost per epoch (G) Basic: Forwarded
Ratio (H) Evolutionary: Forwarded Ratio (I) Adversarial: Forwarded Ratio.
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Figure 5H shows that it does not matter what is the initial

transcendence level of the agents, the agents are able to reach the

stable state of almost 100% forwarded ratio, by the time γ updates

stabilize. Thus, the algorithm for evolutionary updates obviates

the need for the system designer to identify the optimal value of

transcendence.

Figure 6 shows the average value of γ of all the nodes in the

graph when γ updates stabilize. Here, error bars represent

standard error. It shows that for low initial values of γ, the

system settles to an elasticity of around 0.6, with a sizeable

disparity of transcendence levels among different nodes; and

for higher initial values of γ, elasticity settles down to an even

higher value for all nodes–with lower variation among the

different nodes.

The final value at which γ stabilizes, depends on the topology

of the network and the neighborhood for each node. Exploring

the impact of network topology on transcendence levels is an

interesting problem, but beyond the scope of this paper.

4.3 Network resilience

For the third stage of the framework design that evaluates

network resilience, to begin with, we consider 20% of the agents

in a network to be adversaries, occupying nodes with the highest

degree. We then fix the value of γ for the rest of the agents at

different values, and see how they respond to adversaries, with

only distance updates.

The third column in Figure 5 shows the main plots of the

resultant system with adversaries. Figure 5C shows that the cost,

utility and virtual payoff trends per epoch are very similar to the

trends of basic network, indicating that the presence of

adversaries is not changing the basic nature of transcendence.

However, if we look at the exact values on the y-axis, we note that

the utility levels are lower with adversarial agents than with the

basic network. The average cost per epoch in Figure 5F is similar

to the basic network. In Figure 5I, it is interesting to note that

despite the presence of 20% adversary agents at key locations, the

forward and drop ratio is not significantly affected as compared

to the basic network.

In the basic network, agents curate their semantic distance

(d) to their neighbors based on how they were treated by their

neighbors. This is the primary defence mechanism that the

network has against adversaries as well. Figure 7 shows the

average distance of agents to adversary and non-adversary

agents for different levels of transcendence (γ). For all

transcendence levels, we note that when distances stabilize,

adversaries are more alienated than non-adversarial agents.

The above empirical results show that the network is resilient

in the sense that, it continues to function cooperatively, with

more packet forwards than drops, even in the presence of

adversaries. In addition, agents distance themselves from the

adversaries, thus reducing their degree of membership to

transcended agents’ identity set.

It is also worthwhile to also ask how do the adversaries fare in

such a network. In Figure 8, we compare cost and utility values

for adversary and non-adversary agents. Figure 8A plots the

expected cost per 100 packets, for adversary and non-adversary

agents when initialized with different levels of transcendence (γ).

We note that with increasing levels of transcendence, costs for

non-adversary agents increase, due to their cooperative behavior

as intermediaries. Adversaries only incur costs when initiating a

packet, and their expected costs remain almost constant, with

increasing transcendence.

Even when we consider real payoffs as shown in Figure 8B,

adversaries fare better than non-adversaries since their packets

are much more likely to be forwarded. It is only the virtual

component of the utility, shown in Figure 8C that provides a

FIGURE 6
Average value of gamma at equilibrium given initial value of
gamma with standard error bars.

FIGURE 7
Distance to adversarial and non-adversarial agents.
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rationale for non-adversary agents to continue acting

cooperatively. Figure 8D combines real and virtual payoffs for

both kinds of agents, and as expected, while the total utility

increases for both kinds of agents with increasing transcendence,

total utility is a lot higher for the transcended agents because of

their virtual component.

This shows some significant nuances about network

resilience in the presence of adversaries. Although 20% of the

most influential nodes (with highest degree) are adversaries, the

network continues to function cooperatively, and derives a high

total utility due to transcendence. But, there is no disincentive for

adversaries to stop them from exploiting the cooperative nature

of the network. The only disincentive is the increased semantic

distances from other agents, which does not have much impact

on their payoffs. Both the network and the adversaries continue

to thrive as transcendence levels increase. The virtual component

of the utility also ensures that there is no disillusionment for the

cooperative players either, that is essential to keep the network

functioning.

This brings us to the question of to what extent can such a

network accommodate adversaries and continue functioning,

and when would it no longer make rational sense for

transcended agents to cooperate? We consider this scenario

next. We first build a network with a fixed elasticity of

transcended agents, set to γ = 0.8, and vary the proportion of

adversaries. In all the cases, adversaries occupy nodes with the

highest degree in the network.

Figure 9 shows varying trends of cost, payoff, virtual utility

and total utility when the proportion of adversaries is varied, as

represented on the x-axis. Figure 9A shows an increasing cost

trend for transcended agents as they try to forward packets in

adverse environments and a decreasing cost trend for adversaries,

as their proportions increase. However, as the proportion of

adversaries increase, utility for both kinds of agents decreases as

seen in Figure 9B and Figure 9D. Thus, while a small number of

adversaries can get away by exploiting the cooperative nature of

other agents, the decreasing utility trend creates a disincentive for

adversaries to increase their proportion in the population.

We now vary both transcendence levels (along with distance

updates), as well as the proportion of adversaries in the network,

to see overall trends. These are presented as 2D heatmaps with

the proportion of adversaries denoted on the x-axis and varying

levels of transcendence on the y-axis as shown in Figure 10.

Figure 10A depicts a network that only performs distance

FIGURE 8
Expected metrics per 100 packets for adversarial and non-adversarial agents by varying transcendence (A) Cost (B) Payoff (C) Virtual Utility (D)
Total Utility.
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FIGURE 9
Expectedmetrics per 100 packets for adversarial and non-adversarial agents by varying adversary proportion (A)Cost (B) Payoff (C) Virtual Utility
(D) Total Utility.

FIGURE 10
2D heatmap of adversarial proportion vs. transcendence for the ratio (f–d)/(f + d) (A) With attenuation (B) With attenuation and network
elasticity.
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updates, while Figure 10B depicts a network that performs both

distance and γ updates. Both networks are trained until γ values

and distances stabilize. Then, the trained network is used to

transmit 5000 packets to compute the proportion of packets

forwarded and dropped. Each block in the 2D heatmaps

represents the following expression: (forwarded − dropped)/

total packets.

In the case shown in Figure 10A, on an aggregate, 58.68%

more packets were forwarded than dropped, across the matrix,

denoting a good level of resilience. With both distance and

elasticity updates shown in Figure 10B shows that the

forwarding of packets further improves to 67.77% more than

dropping. Thus network elasticity accounts for a 10% increase in

packet forwarding in the same network, highlighting the

importance of curating elasticity of identity, in agents.

4.4 Baseline comparison

It is useful to compare how the model of computational

transcendence fares in comparison to a baseline. As discussed,

reciprocity is used as the baseline, where the players estimate the

behaviour (packet forwarding probability) of their neighbours,

and then reciprocate with similar behaviour.

Every player in the graph is initialized with a random packet

forwarding probability. For a few rounds, players forward or

drop the packets based on their initialized packet forwarding

probability. Then they estimate the forwarding probability of

their neighbours and adjust their forwarding probability

accordingly, thus demonstrating reciprocity. Adjustment of

forwarding probabilities stop when their updates fall below a

threshold. After stabilization, a batch of test packets are sent, and

the proportion of forwarded packets is calculated.

Figure 11 shows the proportion of test packets forwarded in

case of baseline model of reciprocity vs. proportion of test packets

forwarded in case of computational transcendence, with varying

level of transcendence denoted by the x-axis and with error bars

denoting standard error. When forwarding probability of agents

is initialized to uniformly distributed random values, reciprocity

settles the network to a state where approximately 50% of the

packets are dropped. Transcendence starts off with much lower

levels of packet forwarding rates to begin with, but quickly reach

100% packet forwarding rates, as transcendence levels increase.

5 Discussion

The model of computational transcendence, as developed in

this paper, represents a significant paradigmatic departure in

modeling responsible autonomy. In this section, we reflect on

some more pending issues. First, we compute a few analytic

bounds for transcendence and then interpret a few other

paradigms of responsibility, through the lens of transcendence.

Rational incentive for an agent to perform an action depends

on the disparity between expected utility and cost of performing

an action. In the model presented, we set the cost at a tenth of the

payoff accrued, with the argument that an action is rational only

if its payoff far exceeds the cost. Here, we parameterize this

further, to ask how does elasticity relate to the difference between

cost and payoff. For an intermediary, we first note the expected

utility from forwarding or dropping its packet as given in Table 4,

computed in Eq. 9.

We can see that a system of payoffs would make rational

sense to participate in, when E(f) ≥ E(d). This leads us to the

following inequality:

γd i,j( ) ≥ κi
2pmsgUtility

(13)

Given that the highest value of γ is 1, this further leads us to a

limiting condition of κi ≤ 2*msgUtility, for a transcendence-based

solution to be feasible. Also, since the right hand side of Eq. 13

sets a lower bound on the value of γd(i,j), this implies that when the

intermediary cost κi is small compared to utility accrued by the

source, even a small level of transcendence provides sufficient

incentive for the agent to act responsibly.

We now compare the paradigm of transcendence, with other

commonly occurring paradigms for promoting responsible

behavior.

Cooperative behavior appears in different forms in ecology.

A common paradigm of cooperation is mutualism Bronstein

(2015), a term coined by Beneden Beneden (1876) in 1876, where

species that are otherwise not dependent on one another, often

cooperate to derive mutual benefit. Common examples of

mutualism include the relationship of birds and bees with

flowers and pollen. Disparate species discovering mutually

beneficial activities may have been by accident, but it is not

FIGURE 11
Proportion of packets forwarded in Computational
Transcendence vs. Reciprocity.
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implausible to imagine some kind of identity transcendence

between independent species that are strongly attracted

towards one another.

Pro-social behavior–defined as the behavior to alleviate

another’s need or improve their welfare Cronin (2012) may

also be interpreted from the lens of transcendence. Apart

from humans, many animals, primarily nonhuman primates,

display pro-social behavior towards others of the same or other

species in specific contexts. Humans and some animals are

sensitive to others’ distress strongly enough to act in their

welfare, leading to empathetic or pro-social behaviour Decety

et al. (2016). Some examples of pro-social behavior include the

following. Chimpanzees are known to help other chimpanzees by

passing the right tools when the chimpanzee can visually see

which tools are required by the other chimpanzee Yamamoto

et al. (2012). Similarly, rats are known to display pro-social

behavior by freeing another rat placed in a restrainer, if they

had previously lived with a rat of same strain, and even if they

were pitted against one another earlier Bartal et al. (2011, 2014).

We can interpret the above as familiarity–coming from even

adversarial interactions, leading to some form of identity

transcendence over time. While familiarity is ordinarily

thought to breed contempt, familiarity is just as likely to

breed empathy and transcendence.

6 Conclusions and future work

The elusive notion of our sense of self has long been

considered a critical element in the innate sense of ethics and

responsibility in humans. The model presented in this paper is

our attempt to computationally model this elastic sense of self, to

explore how it leads to responsible behavior. We demonstrate in

game-theoretic scenarios like prisoners’ dilemma and collusion,

computational transcendence can lead to responsible behaviour

even in a one-shot game. Further, we experiment with different

variations of the model using multi-agent framework which

models dilemma between selecting responsible vs.

irresponsible choices. Our simulation results show that

autonomous agents with computational transcendence

demonstrate adaptability and resilience. Finally, we also show

that our model outperforms baseline model of reciprocity.

This paper presents the core model of computational

transcendence developed for a static multi-agent network.

Simulation results provide a baseline validation of the

model. This model can be further extended and fine-tuned

(for example by incorporating context specific entities and

designing use-case specific utility functions) such that it can

be applied to more realistic scenarios and in-turn be tested on

use-case specific metrics. We conjecture that the proposed

model involving distance and elasticity updates can seamlessly

extend to dynamic networks like mobile ad hoc networks. We

intend to test this in future endeavors. Also, in this version,

agents’ identity sets comprise only of other agents in their

immediate neighborhood, which can be extended to include

agents further away, or other classes of objects. Finally, we

plan to incorporate computational transcendence in

application scenarios like supply chains, vehicular traffic

management, etc.

We present computational transcendence primarily as a

preliminary model with an intent to encourage more research

interest in this direction, that has the potential to build versatile

responsible autonomous AI systems.
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