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There is an increasing demand for multi-agent systems in which each mobile

agent, such as a robot in a warehouse or a flying drone, moves toward its

destination while avoiding other agents. Although several control schemes for

collision avoidance have been proposed, they cannot achieve quick and safe

movement with minimal acceleration and deceleration. To address this, we

developed a decentralized control scheme that involves modifying the social

force model, a model of pedestrian dynamics, and successfully realized quick,

smooth, and safemovement. However, each agent had to observemany nearby

agents and predict their future motion; that is, unnecessary sensing and

calculations were required for each agent. In this study, we addressed this

issue by introducing active sensing. In this control scheme, an index referred to

as the “collision risk level” is defined, and the observation range of each agent is

actively controlled on this basis. Through simulations, we demonstrated that the

proposed control scheme works reasonably while reducing unnecessary

sensing and calculations.
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1 Introduction

Recently, labor shortages in the transportation industry have become a serious

problem because of declining birth rates and an aging population. Although the

transportation industry is an important economic sector, workers experience physical

fatigue caused by long working hours. Moreover, recent developments in information and

communication technology have increased the workload. Therefore, the development of

control schemes for autonomous mobile systems such as automated transport robots in

logistics warehouses and flying drones is necessary. In these systems, each mobile agent

must reach its destination while avoiding other agents. Thus, safe collision avoidance

OPEN ACCESS

EDITED BY

Zain Anwar Ali,
Sir Syed University of Engineering and
Technology, Pakistan

REVIEWED BY

Yuqing Chen,
Dalian Maritime University, China
Muhammad Shafiq,
Sir Syed University of Engineering and
Technology, Pakistan

*CORRESPONDENCE

Takeshi Kano,
tkano@riec.tohoku.ac.jp

SPECIALTY SECTION

This article was submitted to Multi-
Robot Systems,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 12 July 2022
ACCEPTED 24 October 2022
PUBLISHED 11 November 2022

CITATION

Kano T, Kanno T, Mikami T and
Ishiguro A (2022), Active-sensing-based
decentralized control of autonomous
mobile agents for quick and smooth
collision avoidance.
Front. Robot. AI 9:992716.
doi: 10.3389/frobt.2022.992716

COPYRIGHT

© 2022 Kano, Kanno, Mikami and
Ishiguro. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 11 November 2022
DOI 10.3389/frobt.2022.992716

https://www.frontiersin.org/articles/10.3389/frobt.2022.992716/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.992716/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.992716/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.992716/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.992716/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.992716&domain=pdf&date_stamp=2022-11-11
mailto:tkano@riec.tohoku.ac.jp
https://doi.org/10.3389/frobt.2022.992716
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.992716


must be considered in the design of control schemes. In addition

to safety, other factors can further improve the utility of these

systems. Specifically, if the speed of each agent is maintained at a

maximum with minimal acceleration and deceleration, that is, if

quick and smooth movement is achieved, agents can reach their

destinations quickly with low energy consumption.

Multi-robot systems have been studied from various aspects,

such as formation control (Ali et al., 2018), collective transport

(Jurt et al, 2022), and task allocation (Valentini et al., 2022).

Collision avoidance in multi-robot systems has also been

extensively studied, and several methods such as path

planning using centralized (Solovey et al., 2016; Yu and

LaValle, 2016; Tang et al., 2018) and decentralized (Bekris

et al., 2012; Zhou et al., 2017) control, learning (Arai et al.,

1997; Godoy et al., 2016; Chen et al., 2017; Long et al., 2018; Fan

et al., 2020; Liang et al., 2020), and approaches based on velocity

obstacles (Fiorini and Shiller, 1998; Snape et al., 2009, Snape et al.,

2010; van der Berg et al., 2011a; van der Berg et al., 2011b; Hennes

et al., 2012; Snape et al., 2014; Alonso-Mora et al., 2013; Claes and

Tuyls, 2018) have been proposed. However, in these studies, the

focus was primarily on avoiding collisions, and the quickness of

the agents’ movement was not considered. Conversely, several

studies have been conducted to achieve multi-objective tasks. For

example, genetic algorithms (Nazarahari et al., 2019; Yang et al.,

2019), swarm intelligence algorithms (Hidalgo-Paniagua et al.,

2015, Hidalgo-Paniagua et al., 2017), the electrostatic field

approach (Bayat et al., 2018), and path planning (Ahmed and

Deb, 2011; Ravankar et al., 2016) have been used to achieve

multiple objectives, such as reducing the path length and

increasing the safety and smoothness of trajectories. Zhu et al.

(Zhu et al., 2020) developed a control scheme for multi-robot

collision avoidance using a vertical-ellipse-based velocity obstacle

method integrated with a dynamic window approach (Fox et al.,

1997). Using mobile robots, they demonstrated that multiple

objectives (i.e., reducing time consumption and path length and

increasing safety) can be achieved with suitable parameters.

However, their study aimed to achieve quick movement and a

smooth trajectory, and reducing the acceleration and

deceleration of the agents was beyond its scope.

To address this issue, we previously developed a simple

decentralized control scheme for multiple mobile agents by

modifying the social force model (Helbing and Molnár, 1995),

which is a model of pedestrian dynamics, such that the prediction

of collisions between mobile agents can be considered (Kano

et al., 2021). Through simulations, we demonstrated that this

control scheme enables safe collision avoidance while

maintaining speed and reducing acceleration and deceleration.

However, each agent still had to predict the motion of all agents

within the observation range, regardless of the risk of collision

(Figure 1A). Thus, unnecessary sensing and calculation were

required, and this scheme was unreasonable considering

hardware implementation.

This paper proposes a control scheme for mobile agents

capable of enabling quick, smooth, and safe movement with

limited sensing capability for each agent. For this purpose, we

drew inspiration from the active sensing of living organisms,

such as the echo location of bats (Yamada et al., 2020). Active

sensing is an effective way to reduce the waste associated with

sensing costs because important sensory information is actively

brought into focus and useless information is neglected. We

developed a simple control scheme for the active sensing and

motion of each agent (Figure 1B). Subsequently, we investigated

whether the proposed control scheme worked effectively through

simulations. Moreover, we quantitatively evaluated the speed,

smoothness, and safety and compared the proposed control

scheme with our previous scheme (Kano et al., 2021).

The remainder of this paper is organized as follows. In Section 2,

we briefly review our previousmodel (Kano et al., 2021) and propose

a mathematical model incorporating active sensing. In Section 3, we

present several simulation results and demonstrate that the

proposed control scheme works satisfactorily. Finally, the

conclusions and future work are presented in Section 4.

2 Problem statement

We assume that N agents are on a two-dimensional (2D)

plane with a periodic boundary condition. The position of the

agent i is denoted by ri. Although the unit vector ei, which

represents the direction in which agent i intends to move, can be

varied temporally in a real scenario, it was kept constant in this

study for simplicity. The direction of ei is determined randomly,

that is, each agent aims to move in a different direction. The

target speed v0, that is, the speed in the absence of other agents, is

common to all agents. Here, we do not consider the cases in

which obstacles exist in the plane.

FIGURE 1
Basic concept of (A) our previous control scheme and (B) the
control scheme proposed in this study. (A) In our previous scheme,
future motions of agents within a circular range of vision are
predicted regardless of the risk of collision (both red and
green agents). (B) In the control scheme proposed in this study, the
range of vision is fan-shaped, and its direction is actively changed.
Futuremotions of agents with a high risk of collision (red agent) are
predicted, whereas those of the other agents (transparent green
agents) are ignored.
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Our objective was to realize collision avoidance while

maintaining speed and smoothness with low sensing and

calculation costs. Specifically, we propose a decentralized

control scheme for each mobile agent in which the following

indices are kept as small as possible while reducing sensing and

calculation costs:

E1 � 1 −
∫T

0
∑N
i�1

_ri · ei( )
v0NT

, (1)

E2 �
∫T

0
∑N
i�1
|€ri|2

nNT
, (2)

E3 �
∫T

0
∑N
i�1
|fphysij |

nNT
, (3)

where T denotes the total time of the simulation experiment and

fphysij denotes the physical force vector when agents i and j collide

(Eq. 15). Indices E1, E2, and E3 are small when the agents move

quickly, smoothly, and safely, respectively.

In our previous study (Kano et al., 2021), we succeeded in

realizing quick, smooth, and safe movement. In other words, we

succeeded in reducing the aforementioned indices relative to

those obtained with previously proposed models (Helbing and

Molnár, 1995; Zanlungo et al., 2011). However, unnecessary

sensing and calculations were required in our previous

scheme. Herein, we propose a decentralized control scheme

that uses active sensing, which is an effective way to reduce

the waste associated with sensing costs. Because the sensing cost

is reduced, performance deterioration (i.e.,, an increase in E1, E2,

and E3), is inevitable. However, we attempted to reduce this

deterioration to the maximum possible extent.

3 Model

In this section, we briefly review our previous model (Kano

et al., 2021) (Section 3.1) and propose a mathematical model that

incorporates active sensing (Section 3.2).

3.1 Outline of our previous model (Kano
et al., 2021)

We previously modified the social force model (Helbing and

Molnár, 1995), a model of pedestrian dynamics, and proposed a

mathematical model of mobile agents, in which each agent was

controlled such that it could move quickly and smoothly while

avoiding other agents (Kano et al., 2021). In the proposedmodel, the

social force term in the social force model, which originates from

psychological effects, was changed to the control input to mobile

agents, and it was designed according to the following steps:

Step (i): Each agent detects the relative position and velocity of

agents within a distance R from itself at every constant time

interval.

Step (ii): Each agent predicts the future motion of nearby

agents for duration T by numerically solving a differential

equation in which the social force term is omitted from the

social force model, with the initial position and velocity of the

agents set to be the same as those obtained in Step (i)

(Figure 2).

Step (iii): Based on the numerical calculation performed in

Step (ii), the expected time until the distance between

agents i and j has a minimum value or until they collide,

τij, is derived (Figure 2). Furthermore, the expected

distance between agents i and j after the time interval

τij, d̂(τij), is derived.
Step (iv): The control input is calculated using the values of

τij and d̂(τij) obtained in Step (iii). The equation that

determines the control input is derived by modifying the

social force term in the social force model (Helbing and

Molnár, 1995). It consists of the exclusive volume effect

and the avoidance force based on the prediction of future

motion, the latter of which increases as τij and d̂(τij)
decrease.

In our previous study (Kano et al., 2021), we demonstrated

through simulations that agents could move quickly and

smoothly while avoiding each other. However, the

calculation cost for each agent is high; each agent must

calculate the future motion of all agents within a distance R

from itself by solving a differential equation [Step (ii)]. A

reduction in the calculation cost is required to consider the

hardware implementation.

FIGURE 2
Schematic of the previousmodel (Kano et al., 2021). (A) Based
on the present position and velocity of the cars (blue filled circles
and arrows, respectively), their future trajectories are estimated by
numerically solving a differential equation [Step (ii)] (blue, red,
and green dashed circles). (B) Schematic of the time evolution of
the distance between cars i and j for the situation shown in (A).
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3.2 Proposed model

Herein, we propose a mathematical model that incorporates

a decentralized control scheme for autonomous mobile agents to

achieve quick, smooth, and safe movement with low sensing and

calculation costs. For this purpose, an index referred to as the

“collision risk level” is introduced for each pair of agents, and

each agent is controlled such that it ignores agents whose

collision risk level is low. The observation range of each agent

is constrained to a fan shape, and its direction is actively

controlled to focus on agents whose collision risk is high

(Figure 1). Active sensing was used to identify high-risk

agents. Furthermore, instead of solving the differential

equation in Step (ii) of the previous model, the focused agents

were predicted to move at a constant velocity; thus, each agent

does not need to know the directions in which other nearby

agents intend to move.

Each agent has a circular shape with radius r and can move

omnidirectionally on a 2D plane. Agents have their own

destinations, and their task is to reach these destinations without

losing velocity or smoothness, while avoiding other agents. It is

assumed that each agent can detect the relative position and velocity

of other agents within its fan-shaped observation range.

The control algorithm for each agent consists of the following

four steps (Figure 3).

Step 1: An agent detects other agents within its observation

range and calculates the collision risk level.

Step 2: The agent controls the direction of the fan-shaped

observation range to focus on agents whose collision

risk is high, that is, it performs active sensing.

Step 3: The agent predicts the future motion of agents whose

collision risk is high and calculates the avoidance force.

Step 4: The agent moves based on the calculated avoidance force.

In the following section, each step is described in detail.

3.2.1 Calculation of collision risk level (Step 1)
For every time interval, agent i calculates the collision risk

level between agents i and j, defined as Kij, according to the

following equation:

Kij t( ) � α _φij tobsij( ) t � tobsij( ),
βt−t

obs
ij Kij tobsij( ) t> tobsij( ),

⎧⎨⎩ (4)

φij tobsij( ) � 2 arctan
r

dij tobsij( ), (5)

where α is a positive constant, β is a constant that satisfies 0 < β <
1, tobsij is the latest time when agent i observes agent j, and φij is the

range of vision of agent j as viewed from agent i (Figure 4). The

meaning of Eq. 4 is as follows: when agent j is within the

FIGURE 3
Flow of the algorithm for the proposed control.
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observation range of agent i, the collision risk level Kij is defined

as the change rate of the range of vision _φij. Thus, Kij increases

when agent j approaches agent i. When agent j is outside the

observation range of agent i, it is difficult to determine the extent

to which agent j approaches agent i. Therefore, we assume thatKij

decreases exponentially (Figure 5). When Kij is above the

threshold Kth, agent i recognizes that agent j has collision risk.

3.2.2 Determination of the observation range
(Step 2)

The direction of the fan-shaped observation range with

respect to the direction of the movement of agent i is defined

as θi ( − π ≤ θi < π) (Figure 6). Angle θi is updated at every time

interval Δtview based on a probabilistic distribution function p(θi,

t), which is given by.

f θi, t( ) � ε − γ|θi − θi,goal|
+ ∑

j∈Kij ≥Kth

Kij t( )max w1 − w2|θi − ~θij t( )|( ), 0{ }, (6)

p θi, t( ) � f θi, t( )
∫π

−πf θi, t( )dθi
, (7)

where ε, γ,w1, andw2 are positive constants and θi,goal denotes the

direction of the destination with respect to the moving direction

of agent i. ~θij(t) denotes the estimated direction of the location of

agent j with respect to the direction of movement of agent i,

which is described as

~θij t( ) � arccos
_ri t( ) · ~rij t( )
|_ri t( )‖~rij t( )|, (8)

where ri denotes the position of agent i and ~rij(t) is the estimated

relative position vector of agent j with respect to agent i at time t.

The derivation of ~rij(t) is given by Eq. 9.

Here, p(θi, t) is the normalized function of f(θi, t) and f(θi, t)

consists of three terms (Figure 7). The first term on the right side

of Eq. 6 indicates that agent i pays equal attention in all

directions. The second term indicates that agent i pays more

attention to the destination direction. The third term indicates

FIGURE 4
Definitions of dij(tobsij ) and φij(tobsij ). Here, tobsij is the time when
agent j is detected by agent i for the latest time.

FIGURE 5
Time evolution of collision risk level Kij.

FIGURE 6
Observation range and definitions of R, θview, and θi.
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that agent i focuses on agents with collision risk levels. Here, the

max function is introduced such that the probability distribution

is selectively increased in the direction of agents whose collision

risk levels are high. Thus, active sensing focuses on agents

expected to collide in the near future.

3.2.3 Calculation of avoidance force (Step 3)
The avoidance force of the agent is calculated for agents

whose collision risk level is above threshold Kth. We explain

how agent i generates an avoidance force from agent j when

Kij ≥ Kth. The basic idea is that the avoidance force vector of

agent i is generated in the direction opposite to that of agent j

when agent j approaches the closest point (Figure 8A), and

that its magnitude is proportional to Kij. The closest point was

estimated by assuming that agent j moved at a constant

velocity after it was observed by agent i. However, when

agent j has already passed through the closest point, it is

expected to move away from agent i in the near future.

Therefore, in this case, the avoidance force vector of agent

i is generated in the direction opposite to the current

estimated position of agent j (Figure 8B).

This concept is mathematically described as follows:

~rij t( ) � _rij tobsij( ) t − tobsij( ) + rij tobsij( ), (9)
~rij τij( ) · _rij tobsij( ) � 0, (10)

~rij τ ij( ) � _rij tobsij( ) τij − tobsij( ) + rij tobsij( ), (11)

where rij(tobsij ) is the relative position vector of agent j with

respect to agent i when agent i observes agent j and ~rij(t) is the
estimated relative position vector of agent jwith respect to agent i

at time t. Time τij denotes the time at which agent j is expected to

reach the closest point.

The avoidance force vector favoij (t) is given by

favoij t( ) � −CKij t( )n̂ij t( ), (12)

where C is a positive constant and the unit vector n̂ij(t) is

defined as

n̂ij t( ) �

~rij τij( )
|~rij τij( )| t≤ τij( ),
~rij t( )
|~rij t( )| t> τij( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

Here, agent j approaches agent i when t ≤ τij (Figure 8A) while

agent j has already passed the closest point and moves away from

agent i in the case of t > τij (Figure 8B).

FIGURE 7
Probability distribution of the direction of the observation
range.

FIGURE 8
(A) Prediction of the future position of mobile agents that have a risk of collision in the case where t ≤ τij.(B) Prediction of the future position of
mobile agents that have a risk of collision in the case where t > τij.
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3.2.4 Equation of motion (Step 4)
By modifying the social force model (Helbing and Molnár,

1995) and using the avoidance force derived in Step 3, the

equation of motion for agent i can be expressed as

m€ri � a v0ei − _ri( ) +∑
j

fphyij + ∑
j∈Kij ≥Kth

f socij , (14)

where m denotes the mass of the agent; ei denotes a unit vector

representing the direction in which agent i intends to move; v0
denotes the target speed; and a denotes a positive constant. The

first term on the right side indicates that the velocity of the agent

approaches the desired velocity v0ei. The second term denotes the

physical interaction between the agents when they make contact

with each other, and is described in the samemanner as the social

force model (Helbing and Molnár, 1995) as

fphysij � −pθ 2r − dij( )nij + qθ 2r − dij( ) _xj − _xi( ) · tij{ }tij, (15)

where p and q are positive constants, nij = (rj − ri)/|rj − ri|, tij is a

unit vector perpendicular to nij, dij = |rj − ri|, and θ(x) = x for x > 0

and θ(x) = 0 for x ≤ 0.

The third term on the right side of Eq. 14 denotes the control

input to the agent and f socij is expressed as

f socij � −A exp −
~dij − 2r

B
( )~nij + favoij , (16)

where A and B are positive constants, ~dij � |~rj − ri|, and
~nij � (~rj − ri)/|~rj − ri|. The first term on the right side of Eq.

16 originates from the social force term in the social force model

(Helbing and Molnár, 1995), and represents the repulsive force

exerted by agent j. However, when agent j was not within the

observation range, a repulsive force was generated using the

estimated relative position (Eq. 9). The second term on the right-

hand side denotes the avoidance force derived in Step 3.

It should be noted that the third term on the right side of Eq.

14 uses only the sensory information of agents whose collision

risk level is above threshold Kth. Thus, agents with a collision risk

below Kth are ignored. Moreover, the avoidance force favoij is

derived by simply assuming that agent j is expected to move at a

constant velocity after it is finally observed by agent i (Section

3.2.3). The future motion of a nearby agent is calculated by

solving the differential equation in our previous model [Step (ii)

in Section 3.1]. Thus, the calculation cost for each agent in the

proposed model is significantly lower than that in the previous

model (Kano et al., 2021).

4 Simulation

Simulations were conducted using the settings described in

Section 2 to evaluate the performance of the proposed control

scheme. The differential equations are discretized with time step

δt. Because it was difficult to evaluate all the parameters, we first

explored the parameters that enabled quick, smooth, and safe

movement by hand tuning. We then changed several parameters

that would affect the performance, whereas the other parameters

were fixed. Unless otherwise noted, the parameter values listed in

Table 1 are used.

The performance indices E1, E2, and E3 were calculated by

discretizing Eqs. 1–3:

E1 � 1 −
∑n
k�1

∑N
i�1

vi k( ) · ei( )
v0nN

, (17)

E2 �
∑n
k�1

∑N
i�1
|ai k( )2|
nN

, (18)

E3 �
∑n
k�1

∑N
i�1
|fphysij k( )|
nN

, (19)

where k denotes the time step, n the maximum time step, and N

the number of agents. The velocities vi(k) and accelerations ai(k)

are given by vi(k) = (ri(k + 1) − ri(k))/δt and ai(k) = (vi(k + 1) −

vi(k))/δt, respectively.

In Section 4.1, we demonstrate that the proposed model

performs reasonably well when the parameter values are

appropriate. In Section 4.2, we change several key parameters

for active sensing and quantitatively evaluate their dependencies

TABLE 1 Parameter values used in the simulation.

Variable Dimension Value

N - 20

L m 100

r m 2.00

a kg・s−1 6.67 × 102

m kg 1.00 × 102

v0 m・s−1 13.3

p kg・s−2 2.22 × 104

q kg・m−1・s−1 1.67 × 102

A kg・m・s−2 8.00 × 103

B m 6.00

C kg・m・s−2 1.00 × 106

R m 40.0

θview - π/2

Δtview s 0.15

α s 4.00 × 10–3

β - 0.9999

γ - 3.00 × 10–3

ε - 1.00 × 10–2

w1 - 50.0

w2 - 60.0

Kth - 6.00 × 10–4

δt s 0.0015

n - 2 × 104
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FIGURE 9
Snapshot of the simulation when N = 2. The fan-shaped observation range is shown for one of the agents. Two agents are connected by a line
when Kij is above the threshold Kth. The probability distribution of the observation direction (Eqs. 6,7) is indicated by the color of each agent. Red and
green denote the directions where the probability distributions are high and low, respectively.

FIGURE 10
Result when the radius of the observation range R is varied. The average over five trials is shown. The error bars denote the standard deviation.

FIGURE 11
Result when the central angle of the observation range θview is varied. The average over five trials is shown. The error bars denote the standard
deviation.
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to understand the properties of the proposed model. In Section

4.3, the performance of the proposed model is quantitatively

compared with that of the previous model.

4.1 Representative results

First, we perform a simulation with N = 2. The video and

snapshots are shown in Supplementary Movie S1 and Figure 9,

respectively. In this section, we focus on one of the agents, and

explain how they move. First, the agent in focus did not observe

any other agents (Figure 9A). When the other agent entered the

observation range, the collision risk level increased, and the agent

was recognized as having a high risk of collision. Subsequently,

the probability distribution of the center angle of the fan-shaped

observation range changed, and the agent tended to focus on the

other agent (Figure 9B). Consequently, the agent succeeded in

avoiding the other agent, and the collision risk level decreased

(Figures 9C, D). This result suggests that the proposed control

algorithm performed well.

Next, we perform a simulation using N = 20 (Supplementary

Movie S2). In this case, each agent found other agents with a high

collision risk level and tended to focus on them. Subsequently,

each agent successfully avoided the other agents.

FIGURE 12
Result when the time interval for the update of the fan-shaped observation range Δtview is varied. The average over five trials is shown. The error
bars denote the standard deviation.

FIGURE 13
Result when the threshold of collision risk Kth is varied. The average over five trials is shown. The error bars denote the standard deviation.
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4.2 Parameter dependence

To understand the properties of the proposed model, we

performed simulations by changing the radius R and central

angle θview of the fan-shaped observation range, time interval for

updating the fan-shaped observation range Δtview, and threshold

of the collision risk level Kth. For each simulation, the speed,

smoothness, and safety were evaluated quantitatively using E1,

E2, and E3, respectively.

Figure 10 shows the results when the radius of the

observation range R is changed. Supplementary Movies S3,

S4 show the cases with R = 10 and 80 m, respectively. We find

that E1 increases, whereas E2 and E3 decrease as R increases.

For a small R, agents cannot find or avoid other agents until

they are in proximity to them. Thus, each agent tends to move

straight at a high speed until it finds the other agents. When it

finds nearby agents with a high risk of collision, it abruptly

attempts to avoid other agents but sometimes collides

with them.

Figure 11 shows the results when the central angle θview of the

observation range was changed. Supplementary Movies S5, S6

show the cases where θview = π/6 and 3π/2, respectively. We

found that E1 increased, whereas E2 and E3 decreased as θview

increased. It is difficult to identify and avoid agents with a high

risk of collision for a small θview. Thus, the dependence of θview
was similar to that of R.

Figure 12 shows the results when the time interval for

updating the fan-shaped observation range, Δtview was

changed. Supplementary Movies S7, S8 show the cases where

Δtview = 0.225 s and 0.675 s, respectively. We found that E1 did

not depend considerably on Δtview, whereas E2 and E3 increased

as Δtview increased. For a large Δtview, it is difficult to find and

avoid other agents; thus, each agent sometimes needs to avoid

other agents abruptly but fails to avoid them, and they collide

with each other.

Figure 13 shows the results when the threshold of the

collision risk level Kth is changed. Supplementary Movies S9,

S10 show the cases in which Kth = 0.0001 and 0.001,

respectively. Although E2 does not depend considerably on

Kth, E1 decreases, and E3 increases as Kth increases. For a small

Kth (Supplementary Movie S9), the agents tend to focus on

many nearby agents; thus, they can avoid collisions when

speed is lost. In contrast, for a large Kth (Supplementary Movie

S10), the agents focus only on a few nearby agents; thus, they

can move at high speeds, although collisions cannot be

avoided. Moreover, as Kth increases, the sensing and

FIGURE 14
Color map of (A) E1, (B) E2, and (C) E3 in the previous study when N = 50. The color indicates the values of the indices (E1, E2 and E3) when the
parameters A andC, which determine themagnitude of the repulsive force fromother agents and the avoidance force based on the prediction of the
future motion of other agents, respectively [see Eq. 5 in (Kano et al., 2021)], were varied. The white areas indicate that the value exceeded the range
shown in the color map.
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calculation costs decrease because many nearby agents are

ignored.

4.3 Comparison with the previous model
(Kano et al., 2021)

The performance of the proposed model was compared with

that of a previous model (Kano et al., 2021). In this experiment,

N = 50, θview = π, Δtview = 0.375 s, and the parameters A and C,

which determine the magnitude of the repulsive force from other

agents and the avoidance force based on the prediction of the

future motion of other agents, respectively, were varied. The

results of the previous and proposed models are shown in

Figure 14 and Figure 15, respectively. Because the sensing and

calculation costs of the proposed model are considerably lower

than those of the previous model (Kano et al., 2021), the

performance of the proposed model is inevitably worse than

that of the previous model. However, when A = 4.00 × 103[m

kg s−2] and C = 5.00 × 105[m kg s−2], E1 and E2 of the proposed

model are approximately 1.9 times and E3 of the proposed model

is 2.3 times larger than that of the previous model. Thus, when A

and C are properly chosen, the deterioration in performance is

not severe, even though the sensing and calculation costs are

considerably reduced.

5 Discussion

We proposed a decentralized control scheme for mobile

agents that enables quick, smooth, and safe movement with

limited sensing capability of each agent by introducing active

sensing. To the best of our knowledge, this is the first study in

which a control scheme based on active sensing was designed to

achieve smooth collision avoidance in multi-robot systems.

Through simulations, we confirmed that the proposed model

performed reasonably well. Moreover, when the parameters were

selected appropriately, the performance deterioration compared

with that observed in a previous study (Kano et al., 2021) was not

as severe, even though the amount of sensing was considerably

reduced. Because the calculation cost for each agent is low, we

believe that the proposed model can be used for various

applications, such as those involving robots in warehouses and

drones.

An advantage of the proposed control scheme is that its

calculation cost is considerably lower than that of our previous

FIGURE 15
Color map of (A) E1, (B) E2, and (C) E3 for the proposedmodel whenN = 50. The color indicates the values of the indices (E1, E2 and E3) when the
parameters A andC, which determine themagnitude of the repulsive force fromother agents and the avoidance force based on the prediction of the
future motion of other agents, respectively (Eqs. 12, 16) were varied. White areas indicate that the value exceeded the range shown in the color map.

Frontiers in Robotics and AI frontiersin.org11

Kano et al. 10.3389/frobt.2022.992716

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.992716


scheme (Kano et al., 2021). Although deriving the decrease in the

calculation cost is difficult, we can approximately estimate that

the number of agents on which each agent focuses is

approximately or less than θview/(2π). Furthermore, because

each agent focuses only on agents whose collision risk is

above threshold Kth, the calculation cost decreases as Kth

increases. Another advantage of the proposed control scheme

is that each agent does not need to know the directions in which

nearby agents intend to move, (i.e., the unit vector ei of the

nearby agent i). In our previous control scheme, however, it was

necessary for each agent to know this information.

However, several problems remain unresolved.

• Limitation of the control scheme: We found that the

proposed control algorithm did not perform well when

the density of the agents was large. This is likely because the

prediction of the agents’ motions was oversimplified. We

intend to further improve the control scheme such that its

performance is improved without increasing the

calculation cost.

• Technical problem: It is technically difficult to instantly

change the direction of the fan-shaped observation

range because mobile robots usually have a lidar

sensor that is statically linked to the robot. Thus, the

proposed model remains somewhat unrealistic. These

problems should be addressed in future hardware

realizations.

• Further extensions: We intend to extend the proposed

control scheme to the three-dimensional case and the

case where obstacles exist.
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