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This article focuses on learning manipulation skills from episodic reinforcement

learning (RL) in unknown environments using industrial robot platforms. These

platforms usually do not provide the required compliant control modalities to

cope with unknown environments, e.g., force-sensitive contact tooling. This

requires designing a suitable controller, while also providing the ability of

adapting the controller parameters from collected evidence online. Thus,

this work extends existing work on meta-learning for graphical skill-

formalisms. First, we outline how a hybrid force–velocity controller can be

applied to an industrial robot in order to design a graphical skill-formalism. This

skill-formalism incorporates available task knowledge and allows for online

episodic RL. In contrast to the existing work, we further propose to extend this

skill-formalism by estimating the success probability of the task to be learned by

means of factor graphs. This method allows assigning samples to individual

factors, i.e., Gaussian processes (GPs) more efficiently and thus allows

improving the learning performance, especially at early stages, where

successful samples are usually only drawn in a sparse manner. Finally, we

propose suitable constraint GP models and acquisition functions to obtain

new samples in order to optimize the information gain, while also accounting

for the success probability of the task. We outline a specific application example

on the task of inserting the tip of a screwdriver into a screwhead with an

industrial robot and evaluate our proposed extension against the state-of-the-

art methods. The collected data outline that our method allows artificial agents

to obtain feasible samples faster than existing approaches, while achieving a

smaller regret value. This highlights the potential of our proposed work for

future robotic applications.
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1 Introduction

Robotic manipulators have been established as a key

component within industrial assembly lines for many years.

However, applications of robotic systems beyond such well-

defined and usually caged environments remain challenging.

Simply reversing the process, i.e., asking a robot to

disassemble a product that has been assembled by a robot

manipulator in the past, uncovers the shortcomings of

currently available (industrial) robot manipulators: the

impacts of damage, temporal wear-offs, or dirt most often

diminish available model knowledge and thus do not allow an

accurate perception of the environment. Rather than relying on

the well-defined environment model, robot manipulators are

required to account for this uncertainty and thus find a suitable

control strategy to interact with the object in a compliant

manner. While RL has found remarkable success in dealing

with unknown environments, most of these approaches rely

on a tremendous amount of data, which are usually costly to

obtain, cf. Levine et al. (2015), Levine et al. (2016). In contrast,

GPs allow acquiring data efficiently but suffer from poor scaling

with respect to state-size and dimension. A previous work has

proposed to exploit existing model and task knowledge in order

to reduce the parameter space from which a robot has to extract a

suitable control policy.

Nonetheless, these approaches have usually been applied on

(partially) compliant robots, where constraint violations, e.g.,

unforeseen contact impulses, can easily be compensated and are,

thus, neglected. In the context of this article instead, a non-

compliant—i.e., position-controlled—industrial robot is

intended to solve manipulation tasks that require compliant

robot behavior, such as screwdriver insertion, given a noisy

goal location. Therefore, this study outlines an episodic RL

scheme that uses Bayesian optimization with unknown

constraints (BOC) to account for unsafe exploration samples

during learning. In order to apply the proposed scheme on an

industrial robot platform that does not provide the default

interfaces for compliant controllers, such as a hybrid

Cartesian force–velocity controller, we outline a slightly

modified version of existing controllers. The resulting

controller allows enabling force/velocity profiles along selective

axes, while using a high-frequency internal position controller as

an alternative fallback. The hybrid nature of this controller allows

the direct application of a graphical skill-formalism for meta-

learning in robotic manipulation from the previous work. Thus,

the state complexity can be reduced to a level where the

advantages of GPs outweigh their scaling deficiency. The core

contribution of this study lies in the extension and adjustment of

BOC to the outlined graphical skill-formalism such that safety

constraints can not only be incorporated but also directly added

to the graphical skill-formalism. Specifically, we outline how the

underlying graph structure can be extended to directly account

for safety constraints and thus improve exploration behavior

during early exploration stages, where a successful episode is

unlikely.

Before sketching our contribution against the related work

below, we present a brief outline of the notation and terminology

used in this article. Given the mathematical problem in Section 2,

we shortly sketch the methodical background of our work in

Section 3 and outline the technical insights of our approach in

Section 4. Eventually, we outline a specific application example in

Section 5 and present our experimental results collected with an

industrial robot manipulator in Section 6 before concluding this

article in Section 7.

1.1 Notation

In order to outline the notation used throughout this article,

we use an arbitrarily chosen placeholder variable p. Given this

placeholder variable is a scalar term, we denote vectors as p ∈ Rn

and matrices as P ∈ Rm×n. Explicit elements of matrices or

vectors are denoted as [P](i,j). The identity vector and identity

matrix are denoted as 1p and 1p×p, and similarly, as 0p and 0p×p

as the zero vector and zero matrix, respectively.

A temporal sequence of vectors p over time is described as a

trajectory �p: � (p1, p2, ...pT). Indexing over time is denoted as

pt, where the time is indexed as t. In order to increase readability,

the time indexing may be omitted and every variable is expected

to be denoted as pt. For these cases, the temporal successor is

denoted as p′: � pt+1. If we refer to a member of containers such

as sets, lists, and vectors, we denote pi as a specific scalar value of

the former. We denote norms as ‖p‖i, i.e., ‖p‖2 represents the

Euclidean norm. In order to express the dimension of vectors, we

use |p|. If |p| is applied on sets, the cardinality is used.

Expected values of a stochastic variable p are written as Ep[·],
whereas the conditional probability given p is denoted as P[·|p].
If a variable is estimated, we denote this by p̂. In order to denote

binary classification labels or success/failure returns, we denote ⊤
as Boolean true and ⊥ as Boolean false.

If p is used to optimize an objective, the optimal solution is

denoted as p*. Within regression or empirical evaluations, where

the actual ground-truth is known, we denote the ground-truth as

p+. In case either the true optimum or ground-truth is estimated

from collected experience, i.e., evidence, we denote p⊛ as the

currently best performing sample and p⊝ as the worst performing

observed data sample.

For kinematic robot chains, we refer to the origin of the chain

as base ba, the end-effector as ee, and the control frame as ct.

Coordinate transformation matrices are denoted as as zTy and

rotation matrices as Rzy, as a transformation/rotation from y to

z. We denote Rφ, Rθ, and Rψ as the rotation matrices around

coordinate axes ex, ey, and ez, respectively Regarding translational
notations, bapeect describes a vector p pointing from the end-

effector to the control frame, expressed in the base frame. If no

explicit reference frame is provided, the variable is given with
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respect to ba for robotic systems and as the world-frame for

generic settings.

Eventually, we summarize by shortly defining the terminology of

this work. For brevity, we only highlight technical terms, which

distinctly differ in their meaning across research fields.

• A (manipulation) task describes the challenge for a robot to

reach a predefined goal-state, closely related to the

definitions from automated planning (Nau et al., 2004).

As this work focuses on episodic RL, the result of an

episode is equal to the outcome of a task.

• Amanipulation primitive (MP) defines a sub-step of a task.

In contrast to automated planning, this work does not

intend to plan a sequence of (feasible) MPs but instead

focuses on the parameterization of a predefined sequence

of MPs. In contrast to hierarchical planning, we omit

further hierarchal decompositions—e.g., methods (Nau

et al., 2004)—such that a task can only be realized as a

sequence of primitives.

• Using such MPs in order to solve a manipulation task

directly leads to the introduction of the term of a skill.

While a (robotic or manipulation) skill denotes the ability

of a robot to achieve a task, we explicitly use the term

(graphical) skill-formalism to denote a specific realization

of sequential MPs to solve a manipulation task.

• Our work seeks to increase the learning speed for episodic

RL by limiting learning to a reduced parameter space,

which we denote as meta-learning as used in the existing

work (Johannsmeier et al., 2019). It still has to be noted that

this terminology is different to common terminologies

such as meta-RL (Frans et al., 2018).

• Within episodic RL, a robot is usually asked to find an

optimal parameter sample or a policy with respect to a

numeric performance metric that is obtained at the end of a

multi-step episode. In the scope of this work, we

specifically focus on the former, i.e., a robot is asked to

sample parameter values during the learning phase. Similar

to literature in Bayesian optimization, we often denote this

sampling process as the acquisition of samples (Rasmussen

andWilliams, 2006). Eventually, the performance metric is

obtained at the very end of a successful trial episode.

1.2 Related work

In the context of learning force-sensitive manipulation skills,

a broad variety of research work has been presented in the last

decade. Profiting from compliant controllers that were designed

to mimic human motor skills (Vanderborght et al., 2013), the

concept of adaptive robot skills has found an interesting way

beyond an adaptive control design. Thus, this section outlines the

state-of-the-art methods across multiple research fields before

setting the contribution of this article in relation to these works.

1.2.1 Force-adaptive control for unknown
surfaces or objects

As covering all aspects of interacting with unknown surfaces,

e.g., tactile sensing (Li Q. et al., 2018), is beyond the scope of this

article, we refer to existing surveys (Li et al., 2020) and specifically

summarize findings on learning force-adaptive manipulation

skills.

In this context, the peg-in-hole problem is one of the most

covered research challenges. Early work, such as Gullapalli et al.

(1992) and Gullapalli et al. (1994), proposed to apply machine

learning (ML), e.g., real-valued RL, to learn a stochastic policy for

the peg-in-hole task. The neural networks for the force

controllers were trained by conducting a search guided by an

evaluative performance feedback.

In addition to ML, many approaches have applied learning

from demonstration to obtain suitable Cartesian space

trajectories, cf. Nemec et al. (2013) or Kramberger et al.

(2016) who adjust dynamic movement primitives conditioned

on environmental characteristics using online inference. While

initial attempts have focused on adjusting the position of the

robot end-effector directly, recent approaches have also

investigated the possibility of replicating demonstrated motor

skills that also involve interaction wrenches (Cho et al., 2020) or

compliant behavior (Deniša et al., 2016; Petric et al., 2018).

Alternative work proposes adaptive controllers that adjust

the gains of a Cartesian impedance controller as well as the

current desired trajectory based on the collected interaction

dynamics. Yanan Li et al. (2018) evaluated observed error-

dynamics, current pose, velocity, and excited wrenches.

Even though these works have achieved great results for

modern and industrial robot manipulators in their

application fields, they do not allow robots to

autonomously explore and refine a task. While learning

from demonstration always requires a demonstration to be

given, adaptive controllers assume to have access to a desired

state or trajectory. In addition, the majority of proposed

controllers usually require high-frequency update rate on

the robot joints, cf. Scherzinger et al. (2019b); Stolt et al.

(2012); Stolt et al. (2015), which usually is only accessible for

the robot manufacturer. In contrast to this, this study seeks

for a setup that can be deployed on off-the-shelf industrial

robot manipulators.

A few years ago, the idea of end-to-end learning viameans

of deep RL techniques had been studied thoroughly to

combine the efforts of the former and the latter in a

confined black-box system. In these studies, the concept of

controlling the gains is omitted and instead replaced by a feed-

forward torque policy that generates joint-torques from

observed image data using a deep neural network (NN).

Levine et al. (2015) and Levine et al. (2016) used a guided

policy search that leverages the need for well-known models

or demonstrations. Instead, the system learns contact-rich

manipulation skills and trajectories through time-varying
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linear models that are unified into a single control policy.

Devin et al. (2017) have tackled the issue of slow converging

rates due to the enormous amount of required data by

introducing distributed learning, where evidence is shared

across robots, and the network structure allows distinguishing

between task-specific and robot-specific modules. These

models are then trained by means of mix-and-match

modules, which can eventually solve new visual and non-

visual tasks that were not included in the training data. The

issue of low precision has been improved by Inoue et al.

(2017), who evaluated the peg-in-hole task with a tight

clearance.

Recently, the application of deep RL has reverted to use

existing controllers and improve their performance by applying

deep NNs in addition, e.g., Luo et al. (2019) proposed to learn the

interaction forces as Pfaffian constraints via a NN. Beltran-

Hernandez et al. (2020) applied an admittance controller for a

stiff position-controlled robot in a joint space and applied RL via

soft actor-critic (Haarnoja et al., 2018) to achieve a compliant

robot behavior that successfully learns a peg-in-hole task by

adjusting the gains of the admittance controller. Similarly, the

feed-forward wrench for an insertion task is learnt from human

demonstrations (Scherzinger et al., 2019a) using NNs and a

Cartesian admittance controller tailored to industrial

platforms (Scherzinger et al., 2017).

Aside from the aspect of meta-RL (Frans et al., 2018; Gupta

et al., 2018), which investigates the idea of bridging data

generated in simulations to physical platforms, the

performance benefits and ability to learn almost arbitrarily

complex tasks and existing methods for deep RL still require a

tremendous amount of experimental data to be collected to

achieve reliable performance.

1.2.2 Robot skill learning on reduced parameter
spaces

The size of required data is directly subject to the size of the

parameter space that needs to be regressed. Thus, another

promising line of research is given by decreasing the search

space and problem complexity.

A recent research work has proposed to use available expert

knowledge rather than learning a skill from scratch. LaGrassa

et al. (2020) proposed to categorize the working space into

regions where model knowledge is sufficient and into

unknown regions, where a policy is obtained via deep RL.

Johannsmeier et al. (2019) proposed to incorporate expert

knowledge in order to reduce the search space for adaptive

manipulation skills by introducing MPs. On this basis, they

showcased a peg-in-hole task, where a robot adjusts the

stiffness and a feed-forward interaction wrenches of a

Cartesian impedance controller by means of Bayesian

optimization (BO) and black-box optimization.

The application of such MPs also encouraged the application

of deep RL approaches. Zhang et al. (2021) proposed two RL

approaches based on the principle of MPs, where the policy is

represented by the feed-forward Cartesian wrench and the gains

of a Cartesian impedance controller. Martín-Martín et al. (2019)

similarly proposed to learn the controller selection and

parameterization during a peg-in-hole task. Hamaya et al.

(2020) applied a model-based RL via GP on a peg-in-hole

task for an industrial position-controlled robot by attaching a

compliant wrist to the robot end-effector, which compensates for

perception inaccuracy. Mitsioni et al. (2021) instead proposed to

learn the environment dynamics from an NN in order to apply a

model predictive control, if the current state is classified as safe

via a GP classifier. Alt et al. (2021) also applied NNs via

differentiable shadow programs that employ the

parameterization of robotic skills in the form of Cartesian

poses and wrenches in order to achieve force-sensitive

manipulation skills, even on industrial robots. They include

the success probability in the output of the NNs, in order to

minimize the failure rate.

While these approaches have shown promising results by

solely collecting experimental data within reasonable time,

neither of those approaches include interaction

constraints—e.g., maximum contact wrenches—during the

acquisition or evaluation of new data samples nor allow the

application of the presented results on an industrial platform

without an additional compensation unit. As for the former, the

majority of research projects have applied BOC to account for

safety critical or unknown system constraints during learning,

and we continue with a dedicated overview of research in this

field.

1.2.3 Bayesian optimization with unknown
constraints for robotics

Within robotic applications, BO has shown potential in

achieving online RL due to effective acquisition of new

samples (Deisenroth et al., 2015; Calandra et al., 2016), that is

still used within robotic research applications (Demir et al.,

2021).

In the context of BOC, safe RL methods have been proposed

that estimate safe or feasible regions of the parameter space into

account to allow for safe exploration, cf. Berkenkamp et al.

(2016a,b), Sui et al. (2015), or Baumann et al. (2021).

Similarly, Englert and Toussaint (2016) proposed the

probability of improvement with a boundary uncertainty

criterion (PIBU) acquisition function that encourages

exploration in the boundaries of safe states. Their approach

was further evaluated on generalizing small demonstration

data autonomously in Englert and Toussaint (2018) as well as

on force-adaptive manipulation tasks by Drieß et al. (2017). A

similar acquisition function has been proposed by Rakicevic and

Kormushev (2019), even though they do not approximate the

success as a GP.

Approaches such as those by Wang et al. (2021), who used

GPs to regress the success of an atomic planning skill from data,
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have further shown that BOC is well-suited to regress high level,

i.e., task-planning constraints from data. While they

approximated this success probability as a constraint with a

predefined lower bound 0, Marco et al. (2021) outlined a

constraint-aware robot learning method based on BOC that

allows improving sampling even if no successful sample is

available yet. Recent practical application examples of BOC

are found in Khosravi et al. (2022), Stenger et al. (2022), and

Yang et al. (2022).

While these approaches have achieved promising results within

small-scale (robot) learning problems, they suffer from poor scaling

properties as GPs require to use the covariancematrix for prediction

and acquisition of new data samples, which grows exponentially in

the state space of the underlying problem.While various works have

focused on finding proper approximation methods to leverage this

problem, we propose that within a robotic context, it is preferable to

explicitly incorporate structural knowledge whenever possible. To

conclude this overview of the state-of-the-art methods, we shortly

summarize the contribution of this article in relation to the work

stated previously.

1.3 Contribution

This study introduces a novel episodic RL-scheme for

compliant manipulation tasks tailored to industrial robots. In

order to allow for compliant manipulation tasks, the control

interfaces of an industrial robot are adjusted to follow a Cartesian

hybrid force–velocity controller (Craig and Raibert, 1979; Khatib

and Burdick, 1986). By exploiting the hybrid nature of this

controller and available expert knowledge, a complex

manipulation task can be reformulated into graphical skill-

formalisms—i.e., a sequence of simplified MPs—from existing

work. Eventually, we outline an extension of these graphical skill-

formalisms by taking into account parameter constraints and

success-probabilities at each sub-step. This improves learning

especially at early stages and allows refining the individual sub-

steps of a robotic manipulation task even when no successful

episode could have been observed yet. Furthermore, we define

suitable BOC models to estimate the success probability of each

MP as well as the overall task, as well as the outline of suitable

acquisition functions that allow collecting data efficiently during

learning.

2 Problem formulation

The mathematical problem tackled in this article is the

optimization of an unknown objective function J (ξ) with respect

to meta-parameter vector ξ subject to unknown constraints g

min J ξ( ) ξ ∈ Rm

s.t. gi ξ( )≤ ci,∀i ∈ 1, |c|[ ] , (1)

specifically tailored to robotic applications. In here, the objective

J (ξ) describes the performance metric of a task, whereas a finite

set of constraints g(ξ) ≤ c defines a safe subset of the meta

parameter space ξ. In the context of this article, this function

mapping J (ξ), as well as the constraints—i.e., g and c—,are

regressed from data by means of episodic RL. In contrast to most

RL approaches, where the environment is assumed to be

Markovian, episodic RL needs to execute a multi-step

exploration before obtaining a feedback, which can be used to

update the current model(s). In the scope of this work, an episode

is given as a manipulation task, which can be either be evaluated

in simulation or directly on a robot platform. In the remainder of

this work, we mainly focus on the direct application on the latter.

Similar to related work in this area (Marco et al., 2021), we

assume that the feedback of an episode is expected to be given in

the form of

J spl, gspl, sspl ←
J ξ( ), g ξ( ), ⊤ iffgi ξ( )≤ ci,∀i ∈ [1, |c|]
∞, ∞, ⊥ else

{ , (2)

as the current performance sample J spl and the constraint

and success-return vectors gspl, sspl ∈ R|c|. Therefore, a major

challenge lies in handling episodes where infeasible/unsafe

parameters have been selected, and neither information

about J nor the constraint metric is gained. It is often

expensive to select and evaluate new samples within

robotic applications. GP regression has shown great

potential in ML and robotics, if only a handful of samples

should be evaluated. Thus,

J ξ( ) ← Ĵ ξ |DJ( ) ~ N μJ ,ΣJ( )
gi ξ( )≤ ci ← ĝi ξ |Dgi( ) ~ N μgi,Σgi( ) ∀i ∈ [1, |c|] , (3)

approximate the objective J and constraints gi via GPs using

collected empirical data DJ � ξ,J (ξ){ } and

Dg i � ξ, (gi(ξ), ⊤,⊥{ }){ }. Finally, the optimal guess for (1) can

be obtained by minimizing the posterior of Ĵ (ξ):

ξp ← argmin
ξ

EĴ Ĵ ξ( )∏|c|
i�1

P ĝi ξ( )[ ]⎡⎣ ⎤⎦, (4)

weighted by the success probability of ξ given as the joint

probability over all constraints. Thus, (4) does not only

optimize the main task-objective but also accounts for the

probability of violating imposed constraints. This directly

allows optimizing the performance of an unknown

manipulation task for robotic systems, while accounting for

constraints such as limited interaction wrenches during

contact tooling.

3 Preliminaries and background

Before outlining our approach in detail, we provide a brief

introduction into the graphical skill-formalisms from
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Johannsmeier et al. (2019) and the BOC approach fromMarco

et al. (2021) and Englert and Toussaint (2016), which we use

as a baseline comparison in our experimental evaluation.

3.1 Meta-learning for robotic systems
using graphical skill formalisms

Within robotic tasks, the hyper-parameter space is usually large

due to the degrees of freedom in SE (3) or the configuration space of

the robot. Therefore, Johannsmeier et al. (2019) proposed to model

tasks in fine-grainedMoore finite-state automaton (FSA), according

to the schematic shown in Figure 1. The vertices V of the FSA graph

G define MPs as atomic primitive tasks. In these FSAs, the output

alphabet is defined by the meta parameters ξ and desired set-values,

e.g., xdes, that are sent to the robot at each MP, denoted as the

dedicated space Xdes in Figure 1. Therefore, the more task

knowledge can be exploited for each MP, the smaller the space

of the resulting meta-parameter per node.

Eventually, the manipulation skill is further defined by a set of
constraints that define the start- and end-constraints, as well as any
time constraints that the robot shall never violate. This provides the
benefit of exploiting available object knowledge, while also providing
a skill-formalism that is closely related to that of automated task
planning (Nau et al., 2004). In fact, these constraints are closely
related to autonomous planning and first-order logic, where
planning primitives are often described by a set of pre-conditions
and effects. In the context of concurrent planning, this is also
extended to any time constraints that must not be violated while
the task primitive is executed. This results in a skill representation as
shown in Figure 1, where the task-constraints are defined as
deterministic mapping functions C: � X ↦ ⊥,⊤{ }, which map
the state space of the robot to a Boolean return value. In
particular, individual manipulation skills are defined by

• Initialization constraints Cpre or pre-conditions. They

define the initialization of the task. In general, Cpre is

given as a set of constraints that only evaluates to ⊤, if
all conditions evaluate to ⊤, i.e., if s0 denotes the initial

state of the robot, then c(s0) ↦⊤,∀c ∈ Cpre has to hold.

• Success-constraints Csuc or termination-conditions. They

evaluate if the manipulation skill has been executed

successfully. This terminates the overall FSA shown in

Figure 1 and requires all conditions to evaluate to ⊤, i.e., if
sTmax denotes the final state of the robot in the manipulation

skill, then c(sTmax) ↦⊤,∀c ∈ Csuc has to hold.

• Safety and performance constraints Cerr or error

conditions. They evaluate if the current MP has violated

any constraints, e.g., timeouts or accuracy violations, which

may exceed information provided by a task planner. In

contrast to Cpre and Csuc, the error constraint set Cerr
evaluates to ⊤ if any condition is violated at any time,

i.e., if st denotes the state of the robot at any time during

the manipulation skill, then ∃c ∈ Cerr: c(st) ↦⊤ has to be

fulfilled. Furthermore, the robot enters a recovery node, in

which the robot tries to reach the initial state to initiate a

new trial-episode—as emphasized by the dashed line in

Figure 1.

In the context of the graphical skill-formalism from

Johannsmeier et al. (2019), Cpre are defined by the adjacency

matrix of the graph and the success-constraint from the

predecessor-node, i.e., if a node raises the success-constraint,

there is a unique successor-node, whose precondition holds by

design.

3.2 Bayesian optimization with unknown
constraints

Within BO, an unknown function or system is regressed from

data as a stochastic process. A common model is a GP, which is

defined as a collection of random variables, namely, joint normally

distributed functions over any subset of these variables. They are fully

described by their second-order statistics, i.e., a prior mean and a

covariance kernel function k(ξ, ξ′), which encodes prior function

properties or assumptions.1 A key benefit of stochastic processes is

their ability to draw samples efficiently. This strongly depends on the

choice of the acquisition function α, which usually intends to

FIGURE 1
Schematic skill-formalism for manipulation tasks as presented in Johannsmeier et al. (2019). Each MP—i.e., node vi defines the current set-
values for the underlying controller, e.g., desired wrench or velocity, as well the currentmeta parameters that define the performance of the skill, e.g.,
controller parameterization. Eventually, the Recovery node intends to steer the robot to the initial state whenever an error occurs.

1 For more information about GPs and GP classification, we refer to
Rasmussen and Williams (2006).
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maximize the information gain for the estimated posterior y.

Famous examples are the expected improvement (EI) and

expected improvement with constraints (EIC).

αEI ξ,D( ) � Ey~NJ (μ,σ|ξ) max y − J ⊛, 0( )[ ], (5)

αEIC ξ,D( ) � Ey~NJ (μ,σ|ξ) max y − J ⊛, 0( )∏G
j�0

p gj ξ( )≤ cj[ ]⎡⎢⎢⎣ ⎤⎥⎥⎦, (6)

where the probability of improvement (PI) is maximized

PIGP J( ) ξ( ) � Φ
μξGP J( ) − J ⊛

D
σξGP J( )

⎛⎝ ⎞⎠. (7)

Here, Φ denotes the normal cumulative distribution function

(CDF), whereas J ⊛
D represents the best output sample in the

dataset D, which serves as the lower bound for the

improvement. The mean μξGP(J ) and variance σξGP(J ) are

obtained as the posterior of the GP at new sample

candidates ξ. While modeling the task-performance via a

GP commonly applied in BOC, regressing a discriminative

success function is non-trivial. In Englert and Toussaint

(2016), Drieß et al. (2017), and Englert and Toussaint

(2018), GP classification with a sigmoid function to classify

the output of a latent GP is proposed. Given this, the authors

propose a constrained sensitive acquisition function, which

they denote as PIBU

αPIBU ξ,D( ) � PIGP J( ) ξ( ) ĝ ξ( )> 0
σGP ĝ( ) ξ( ) ĝ ξ( ) ↦ 0{ , (8)

that uses the PI in admissible regions of the parameter space and the

variance σ of the latent GP in the boundary regions to encourage a

safe exploration. They further use a constant negative mean prior for

the latent GP to limit sampling to the boundary regions of the safe

parameter space. In contrast to this, Marco et al. (2021) proposed to

use a constraint-aware GP model that allows using EIC, which they

denote as a Gaussian process for classified regression (GPCR). GPCR

allows updates even if no successful constraint sample has been

drawn yet, based on the environmental feedback in (2). Furthermore,

Marco et al. (2021) proposed to regress the constraint thresholds cj
directly from data. Thus, having Nspl ≤ |D| successful samples, the

likelihood is defined as follows:

P D|gj[ ] � ∏Nspl

j�0
H cj − gj( )N gj, σ

2
noise( ) ∏|D|

j�Nspl+1
H gj − c( ), (9)

where H denotes the Heaviside function. Using a zero-mean

Gaussian prior, the posterior is given as follows:

P g|D[ ] � N (g|μn,Σn)∏Nspl

i�0
H cj − gj( )

× ∏|D|

j�Nspl+1
H gj − cj( ) ≈ N (g|μEP,ΣEP), (10)

where the Gaussian distribution N (g|μn,Σn) is obtained by the

multivariate Gaussian from the observation noise and the

observation samples. As the Heaviside functions in (10) do not

allow obtaining an analytic solution for (10), the authors propose to

use a variational approximation, namely, expectation propagation

(EP), such that the predictive distribution at unobserved samples ξ′
is obtained via a Gaussian distribution defined by mean and

variance:

μgj ξ′( ) � kX ξ′( )⊤K−1μEP
σgj ξ′( ) � k ξ′, ξ′( ) − kX ξ′( )⊤K−1 1|D|×|D| − ΣEPK

−1( )kX ξ′( ) , (11)
where X denotes observed parameter samples in D. The success

probability is then given as follows:

P g ξ( )≤ c ξ′( )[ ] � ∏|c|
i�0

Φ
cj − μgj ξ′( )
σgj ξ′( )⎛⎝ ⎞⎠. (12)

4 Technical approach

In order to allow online RL to be applied from a handful

of exploration samples, it is favorable to exploit available

knowledge and thus decrease the overall meta parameter

space of the observed system. As mentioned before, we thus

extend the concept of modeling robotic tasks as skill-graphs

from Johannsmeier et al. (2019) to allow compliant

manipulation tasks to be tuned online. In contrast to

preliminary work, we outline how a stiff position-

controlled industrial robot platform can be controlled in

order to allow for compliant robot behavior. Building

upon this, we emphasize how a graphical skill-formalism

can exploit the structure of the presented controller, such

that the controller parameters can be adjusted online. As

crash constraints are critical, if a stiff robot is asked to

interact with unknown objects, we conclude our technical

contributions by not only outlining how the structure of the

skill-graph can be further exploited to simplify the BOC-RL

algorithm but also proposing suitable BOC models and

acquisition functions in order to improve the overall

learning performance.

4.1 Compliant Controller design for an
industrial Robot

In the context of this article, we use a COMAU robot2.

While this robot prohibits the control of the motor torques or

impedance-based controller interfaces, it allows controlling

the position of the end-effector x of the robot via an external

2 The extension to arbitrary robots is subject to the internal robot control
and dynamics. As the methods in this article are dynamically
independent, this extension is left for future work.
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client in the form of a Cartesian deviation relative to the

current end-effector pose, such that the controlled system

simplifies to

xt+1: � xt + δx ≈ xt + u _x,desδt, (13)

where δx forms the control command being sent to the robot. As

the robot runs at a real-time safe, constant update rate δt, the

Cartesian deviation command u _x,des can also be used to

command a feed-forward Cartesian velocity command to the

robot. In order to achieve a hybrid force–velocity control policy

for the robot system, this feed-forward end-effector velocity

follows to a hybrid Cartesian force–velocity controller (Khatib

and Burdick, 1986):

u _x,des : � SvelR _xeedes + SfrcRKP Fdes − F( )
� SvelR _xeemax + SfrcRKP Fdes − F( ) , (14)

where s ↦ [0, 1]6 is a scaling vector given the maximum end-

effector velocity _xmax and KP is a positive definite proportional

control gain matrix. The selection matrices SfrcR and SvelR in (14)

are given as follows:

SfrcR : � Rba
ct diag sfrc1: 3( )Rct

ba 03×3

03×3 Rba
ct diag sfrc3: 6( )Rct

ba

⎡⎣ ⎤⎦
SvelR : � Rba

ct diag svel1: 3( )Rct
ba 03×3

03×3 Rba
ct diag svel3: 6( )Rct

ba

⎡⎣ ⎤⎦ , (15)

for position and force control.

Thus, a Cartesian velocity and the force-profile F can be

followed along selective axes. The presented controller differs

from classic hybrid force-position control by the fact that

disabling the force control along an axis does not directly

result in position control. If sveli � sfrci � 0, the robot

automatically holds the current position according to the

internal control loop and (13). Nonetheless, for a correct

decoupling of the individual control policies, the selection

matrices need to hold sveli sfrci � 0. The final control

architecture, as visualized in Figure 2, is well-suited for a

graphical skill-formalism from Johannsmeier et al. (2019), as

it can directly exploit hybrid policies along selective axes.

4.2 Applying Bayesian optimization with
unknown constraints on graphical skill
representations

Even though a skill graph can decrease the search space

complexity, the resulting space may still suffer from the curse of

dimensionality. Furthermore, collecting data from actual

experiments is at risk of gathering various incomplete and,

thus, useless data samples. In the context of episodic RL, one

(successful) graph iteration represents a single episode. This

requires all steps to succeed for a useful return value. Thus,

we outline how the BOC problem from Section 2 can be

reformulated to exploit available model knowledge in this

skill-graph to improve sampling and learning. We assume that

the feedback from (2) can be obtained at each node of the skill-

graph and that each parameter in ξ is bounded. Given a graphical

skill representation as in Figure 1, represented by MP nodes V
and transitions E, the objective J can be decomposed into the

sum of all nodes, while the dedicated constraints need to be

fulfilled at each step.

J ξ( ) : � ∑
v∈V

Ĵ v ξv( ) ξv ∈ Rn, n≤m

s.t. gv ξv( )≤ cv ∀v ∈ V.
. (16)

Thus, (4) results in

ξp ← argmin
ξ

Λξ
V ∑

v∈V
EĴ v

Ĵ v ξv( )[ ], (17)

where Λξ
V denotes the joint success probability over all MP

nodes. While preliminary work (Johannsmeier et al., 2019)

has shown that the application of the summation in (17)

improves learning speed and quality, we claim that it is,

FIGURE 2
Schematic overview of a hybrid force–velocity controller (Craig and Raibert, 1979; Khatib and Burdick, 1986) using the Cartesian deviation
control interface of an industrial COMAU robot. Here, the selection matrices Svel

R and Sfrc
R activate velocity—and force control modalities along

selective axes using a scaled feed-forward velocity profile s _xTmax and a proportional force controller with the gain matrix KP, Cartesian FT readings F,
and the desired wrench Fdes. Eventually, the Cartesian velocity is emulated on the COMAU robot by using the Cartesian deviation command
interface δx.
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furthermore, beneficial to exploit the structure of the MP-

graph in order to regress Λξ
V and thus design suitable

acquisition functions from it. Due to the structure of the

graph and the underlying BOC problem, the objective and

success probability are conditionally independent. This allows

outlining specific graph-based representations for the success

probability of Λξ
V , which we outline below.

4.2.1 Naive Bayes approach
In order to approximateΛξ

V from the underlyingMP-graph, a

commonly applicable solution is given as a naive Bayes approach,

i.e., assuming conditional independence for all nodes. This is

usually valid due to the condition-checking within the MP-graph

from Section 3.1. Recalling the constraint in (16), the success

probability of each MP node is subject to

Γξv � ∏|g|
j�1

P ĝvj
ξv( )[ ] if active g , j, v( )

1 else

⎧⎨⎩ , (18)

where active(g , j, v) ↦ ⊤,⊥{ } encodes if the constraint is

active in the current node or not. This allows directly

encoding the structure of the graph—i.e., available task-

knowledge—in the success probability of each node. Given the

sequential structure of an MP-graph, the overall success

probability results in the following:

Λξ
V � ∏

v∈V
Γξv, (19)

while the success probability of each intermediate node is

obtained as the product of individual terms Γξv from the initial

to the current node. In order to estimate Λξ
V from data, we thus

regress each active success-constraint per node as an

individual GP. These GPs are independent and use the

success or failure as well as the constraint metric of the

current subset of the meta parameter at each MP node.

This results in at most |V||g| GPs for the overall task.

Nonetheless, the naive Bayes approach suffers from two

disadvantages. First, the success function for the current

node may depend on the full vector ξ instead of ξv in (18).

This contradicts the assumption of conditional independence

and limits the applicability of the naive Bayes approach to

tasks, where not only the task but also the constraints can be

modeled individually for each MP. Given the structure of the

MP-graph, namely, the existence of error constraints at each

transition, the naive Bayes approach is still applicable to a

broad variety of tasks but may not allow adding constraints

that affect the choice of parameters across multiple MP nodes.

Second, in case an episode fails at a dedicated node, no labels

can be added to the subsequent nodes as each node is handled

fully independently. While this still allows collecting samples

earlier during the learning stage, the number of samples

needed is expected to increase until successful samples can

be obtained. In order to diminish these effects, we propose to

model the success probability by a specialized factor graph in

the next section.

4.2.2 Modeling the success function as a factor
graph

In addition to the naive Bayes approach, it is also possible to

directly impose the structural task knowledge that results from

the graph structure. Namely, we propose to model the overall

success probability as a factor graph representation Kschischang

et al. (2001) for the task-constraints, where the scalar elements of

ξ form the variables, and the constraints from (1) form the

factors, cf. Figure 3.

Having obtained the general factor graph for a manipulation

skill, this graph is fully described by an adjacency matrix AG,

where element [AG](i,j) ↦ 1 denotes an existing edge from i to j.

Within factor graphs, an edge is only connecting a variable with a

factor-node, such that it is sufficient to denote the adjacency

matrix as AG ∈ R|ξ|×|c|. Therefore, columns denote individual

constraints, and the rows define the subset of ξ for each

individual constraint. Consequently, the success probability

results in

Λξ
V � ∏|c|

j�0
min ∑|ξ|

i�0
AG[ ](i,j) , 1⎛⎝ ⎞⎠P ĝc ξcj( )[ ] where AG[ ](i,j) ↦ 1 ∀ξi ∈ ξcj . (20)

If, for example, only the active success-constraint per MP node is

introduced and each constraint has the same input dimension, the

naive Bayes approach is reconstructed. In contrast to the naive

Bayes approach, each MP constraint can depend on arbitrary

subsets of ξ. In order to fully exploit the structure of the MP-graph,

we propose to embed the underlying success probability for each

vertex in the skill-graph. This can be directly achieved by extending

the current set-values commanded to the robot system by an MP-

specific adjacency matrix AG
i. The success-constraint at each MP

Γξv can then be obtained by replacing AG with AG
i in (20). As a

result, samples can be added to each constraint metric dependent

on the current progress within theMP-graph. Thus, if a skill fails at

a specific node, the samples obtained until the aforesaid notes can

be added to the dataset as successful, while the samples for the

failed node can be assigned to the current and subsequent MP

success-estimators.

4.3 BOC model and acquisition function

Given the extended MP-graph, the objective of acquiring

samples efficiently is again subject to the choice of the

acquisition function and underlying GP model. Recalling Section

3.2, a key benefit of themethod fromMarco et al. (2021) is the ability

to push the probability mass above the current threshold estimate,

which allows gaining more knowledge from failed samples.

Nonetheless, this model relies on approximating the posterior

due to nonlinear components in (10). Instead, we propose to
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induce artificial data points and fit GPs on this artificial dataset

instead. The algorithmic skeleton is sketched in Algorithm 1, where

we again assume to have safe and failed data samples in the data

buffer D for each constraint.

Algorithm 1. Induce artificial data points to fit GP on datasets with failed

samples.

We propose fitting a GP into the safe dataset first. Given this

safe distribution, we propose to estimate the constraint value ĉi.
This can be achieved by evaluating the posterior at the safe input

samples and applying the inverse CDF and a predefined

probability threshold psafe that should be held for legal

samples. As the variance is usually small in the near distance

of collected evidence, mean-free Gaussian noise is added on the

existing samples. Taking the maximum of the predictive mean

and the collected samples from the safe dataset, the predictive

variance can be used to calculate the value of the constraint from

the inverse CDF. Using the estimated constraint value ĉi, the
predictive variance at the infeasible data samples can be used to

estimate the predictive mean value that would result in a

posterior infeasibility probability threshold pfail. In this

estimation, we treat zero as the decision threshold for the

current constraint GP and limit the inverse CDF to a lower

bound ζ spl ∈ R+. As the safe GP does not contain any data sample

within the unsafe parameter space, the variance of the posterior is

expected to be large. Thus, we propose to apply a model-fit with

the artificial dataset and repeat the aforementioned process to

obtain new virtual output values. As the decision threshold is set

to 0, the safe data samples are shifted by the current constraint

estimate. Within our implementation, we also normalize the

collected safe samples, but we omitted this in Algorithm 1 for

brevity. The predictive posterior distribution of this artificial

dataset will usually impose a conservative variance given the

added data sample support. Thus, the final artificial value is

obtained by a Polyak average of the two estimated posterior

values. Given this, another parameter fit returns the final

constraint GP. In order to embed ambiguity over unobserved

parameters, the GPs use a zero-mean prior, which is equal to the

constraint threshold of the virtual GP. In case there is no feasible

dataset found, Algorithm 1 shortens. Instead of fitting existing

data, the constraint is explicitly set to zero and the artificial data

are set to min(psafe, pfail). Eventually, a parameter fit is obtained

to get an estimate of the constraint GP. For the naive Bayes

approach, each MP and for the factor graph approach, each

factor is finally realized by a constrained GP according to

Algorithm 1. Given the structure of the factor graph and the

dedicated skill, we propose to use a sequential form of (6). For the

naive Bayes approach, this results in applying (6) at all nodes

αEIC,G ξ,DG( ) � Λξ
V ∑

v∈V
Ey~NJ v μ,σ|ξv( ) max y − J ⊛

vD , 0( )Γξv[ ], (21)

FIGURE 3
Graphical skill-formalism with an additional factor graph representation for the task success probability. The individual node parameters ξv
denote the meta parameters for each node, whereas Xdes

v denote the set-values and Sv denotes the selection matrices Sfrc
R and Svel

R for the
controller from Figure 2. The factor graph denotes the overall task completion probability, while the adjacency matrix AG

i for each vertex defines the
active sub-graph for each vertex, which define the success probability for the current node Γξv . Again, the Recovery node intends to steer the
robot to the initial robot state whenever an error occurs in order to initiate a new episode.
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and weigh the sum of acquisition functions by the overall success

probability to encourage acquisition of samples that are expected

to succeed in the overall task. Due to the linear structure and the

conditional independence of each node, Γξv is directly obtained by
ĝi according to Algorithm 1, given that each node can be

represented by a dedicated constraint metric. For the factor

graph version, we do not assume conditional independence

for the success-probabilities. Instead, the adjacency graph of

each node is used to calculate Γξv in (21)

Γξv � ∏|c|
i�1

ĝi if ∃j ∈ [1, |ξ|]: AG
v[ ](·,j) ↦ 1

1 else
{ , (22)

using ĝi according to Algorithm 1. Eventually, the best

sample estimate is given by optimizing over the best guess

of each MP-objective estimate at each MP and setting all

samples with a success probability below psafe to J ⊝
D. Thus,

the EI in (21) is replaced by the objective of each node, and Γξv
is set to 1 for feasible estimates. For infeasible samples, we

assume the worst observed objective for the current objective

estimate, such that the optimal parameter estimate is

obtained as follows:

ξp ← arg min
ξ

∑
v∈V

J v ξv( ) if Γξv ≥ psafe
J ⊝

D else
{ . (23)

4.4 Exploit conditional dependencies for
collected samples

Algorithm 2. Overall BOC algorithm.

The final BOC algorithm for the proposed online RL

approach is sketched in Algorithm 2. In contrast to

learning the full parameterization of the task, the

sequential skill-graph receives the additional feedback as to

which node was explored last in Line 4. This information is

crucial to assign samples correctly for the success- and

constraint data buffers in Line 7 and Line 6. While the

assignment for the MP node objectives is straightforward,

i.e., only valid samples for explored nodes are assigned to the

datasets, invalid samples may also be assigned even though

the related MP or constraint factor has not yet been evaluated.

The necessary condition for a sample to be added to the

dedicated dataset is that at least one scalar component has to

be explored or visited. Due to the sequential procedure of the

skill-graph, the mapping of the last explored node vi to the

dedicated datasets is deterministic and known beforehand.

For the factor graph representation, it is further possible to

add artificial samples to the dataset if a conditional

dependence exists. If a subsequent node contains scalar

components that have not yet been explored or visited,

while other scalar components have been explored before a

failure is detected, artificial data can be added to the dataset of

the said constraint GP. Thus, the unexplored sample can be

exchanged by drawing samples from a SoBol sequence

(Sobol’, 1967) or linearly distributed data. Using the

adjacency matrices of the factor graph, the visited

parameters can be obtained by diag(AG
viA

G⊤
vi
)≥ 1 for each

MP and thus, for the partially explored MP-graph as∑vi
i�1diag(AG

viA
G⊤
vi
)≥ 1. Similarly, the samples that can be

replaced by artificial samples are obtained as follows:

diag AG
viA

G⊤
vi

( ) −∑vi
j�1

diag AG
vjA

G⊤
vj

( )⎛⎝ ⎞⎠≥ 1. (24)

Before outlining an application example, we briefly outline the

theoretical improvements of our approach, i.e., the scaling with

respect to size of the meta parameter space.

4.5 Complexity analysis

In this section, we analyze the proposed method in terms of

scaling with respect to size of the meta parameter space. It has to

be noted that we do not emphasize improving GP scaling against

big data, for which there is existing work (e.g., Ambikasaran et al.

(2016)) available. For brevity, we denote the dimension of the

original learning problem as nξ, i.e., ξ ∈ Rnξ and denote the

largest dimension of all nodes within a graphical skill-formalism

as mξ,G, i.e., ξi ∈ Rmξ,G .

Definition 4.1. Valid MP-Graph

AnMP-graph is a valid representation for (4), if the following

constraints are given.

• The graph has no absorbing nodes.

• There exists a finite path from the start-to the end-node.

• The underlying objective can be represented by a convex

composition of sub-objectives.

Definition 4.2. Feasible MP-graph

An MP-graph is a feasible representation for (4), if the

following constraints are given.

• The meta parameter space for each node of the MP-graph is

bounded by mξ,G < nξ
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• The meta parameter space for all constraints is bounded

by mξ,G < nξ
• The number of active constraints per node is bounded by |C|

Claim 4.1

Regressing a general robot task 1) as a stochastic representation

4) via GPs according to Definition 4.2, the resulting complexity can

be reduced from O(nξ3) to O(max(|C|, 1)|V|mξ,G
3) bymodeling the

task as an MP-graph, using the naive Bayes approach.

Proof. Recalling (16), the objective function of the algorithm

scales linearly with the numbers of nodes within the graph.

According to Definition 4.2, the meta-parameter space of each

MP node is bounded; thus,

O J( ) � O |V|mξ,G
3( ). (25)

This proves claim 4.1 if there are no success-constraints active,

i.e., |C| � 0. In case there is a success-constraint active, the upper

bound of the complexity is defined by the complexity of the success

probability as itmay contain feasible and infeasible data samples. For

the naive Bayes approach, |C| constraints have to be evaluated at |V|
nodes via GPs, for which the meta parameter space is bounded by

mξ,G, thus resulting in an overall complexity of O(|V||C|mξ,G
3).

Claim 4.2. Using the factor graph method and a task-

representation as outlined in claim 4.1, the complexity from

O(nξ3) can be reduced to O(|C|mξ,G
3) if there are active

constraints, i.e., |C|≥ 1.

Proof. In contrast to the naive Bayes approach, the system

complexity grows linearly with respect to the number of

constraints |C|. While the complexity follows (25), the success

probability for |C|≤ 1 and thus the overall system complexity

results in O(|C|mξ,G
3).

Eventually, it has to be noted that adding artificial data

adds data to the datasets of MP nodes or factors, which

decreases scaling behavior. Nonetheless, it has to be noted

that adding artificial data is not mandatory and intends to add

support during early exploration when datasets are usually

small. Therefore, we omitted the possibility of adding artificial

data in the aforementioned complexity analysis.

5 Application example—screw
insertion

In this section, we outline an application example for the

proposed manipulation learning framework that uses the

proposed controller from Section 4.1: the insertion of a

screwdriver into a screwhead. Even though the environment

suffers from high uncertainty, there exists available pre-

knowledge that can be incorporated to reduce the problem size

and thus use a skill-graph according to Section 4.2. While the

previous sections have outlined the generic modalities of our

method, this section intends to present an application example,

which is eventually used to evaluate our approach. The main

motivation of constructing a graphical skill-formalism is the

reduction of the actual search space for the episodic RL task,

i.e., the dimension of the parameter vector ξ. Therefore, we

assume the following constraints to be given:

• the screw is accessible by the robot end-effector,

i.e., there exists a robot configuration that does not

result in a self-collision of the robot with any

surrounding object when the screwdriver is inserted.

Furthermore, the robot configuration is singularity-free

as this would not allow using the underlying Cartesian

robot controller reliably.

• In case the position of the screwhead is subject to

uncertainty, the condition above needs to be guaranteed

for the full range of the uncertain region.3

• The robot is equipped with a screwdriver, and the

transformation from the screwdriver pin, i.e., control

frame ct, to the robot end-effector, i.e., eeTct is known.

• The type of screw matches the pin of the screwdriver of the

robot.

Given these assumptions, motion planning or pose

optimization against infeasible states or collisions can be

omitted. Instead, the framework focuses on finding a correct

parameterization of the controller presented in Section 4.1. In

approaches such as end-to-end learning, the problem could be

represented as an RL-problem, with sparse rewards that penalize

any constraint violations and add positive feedback for a

successful task. While this allows to learn such a skill from

visual data on arbitrary robot platforms, first, a supervised

learning method is required to classify task success or

constraint violation, and infeasible amount of data needs to be

collected from experimental trial and error, where a supervised

learning method is required, which will violate feasible time-

budgets. In contrast, directly applying a GP policy would result in

extremely large datasets, which will in return affect the evaluation

or acquisition calculation. Thus, we propose to exploit the

available expert knowledge and construct a skill-graph

formalism similar to that of Johannsmeier et al. (2019). First,

the normal vector n of the surface and the screw4 is

approximately known from visualization. Furthermore, we

assume that an expert has set the desired contact wrench-

magnitudes beforehand. Similarly, a designer has chosen a

tilting angle for the robot end-effector to ease the contact tooling.

3 This condition also includes that a Cartesian path applied within this
region will not result in a collision of the robot or a singularity since the
actual control input is commanded directly in task- and not in joint
space.

4 We set these normal vectors as constant within this evaluation, but it is
possible to update the normal vectors online if needed.
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Given this, we outline the resulting skill-graph as

visualized in Figure 4 from left to right. In this skill-graph,

we explicitly denote the output alphabet, i.e., the desired set-

values per node as well as the MP-parameters ξi. For brevity,

only non-zero values are explicitly mentioned, e.g., if not

explicitly noted, all values of SvelR and SfrcR are set to 0.

The first node v1 is non-parametric and describes the

approach-MP, where the robot is asked to steer the tip of

the tool and hover above the surface. As obtaining a suitable

trajectory is beyond the scope of the presented method, we

refer, e.g., to Bari et al. (2021) for further insights. The success

of this node, thus advancing the graph to v2, is evaluated via

Csuc
v1
: � xdes − xcur‖ ‖2≤ ζpos. (26)

The second node v2—approach-surface—contains the first

parametric node and describes the motion of the robot toward

the surface until contact with the environment is established.

Thus, a constant velocity along the negative surface-normal is

applied, such that the set-values for the robot controller for this

node are given as follows:

X des � _xdes ← − sposvmaxn{ }
ξ2 � spos

SfrcR � diag 0, 0, 1, 0, 0, 0( )
. (27)

The success of this MP is given as an established contact with the

environment, which is defined as follows:

C suc
v2

: � μF > σF , (28)

where the variance σF denotes the approximated sensor noise

and μF the filtered force–torque (FT) sensor readings over

a sliding window of fixed size NFT. This node further

checks against the maximum allowed contact force Fmax, as

follows:

Cerr
v2
: � μF − σF

∣∣∣∣ ∣∣∣∣≥ Fmax| |, (29)

to raise a failure of the skill. The subsequent node v3—force

correction—corrects the encountered force impulse stemming

from the contact at the end of the previous MP. Thus, the

controller switches from the feed-forward velocity command

to force-control along the normal vector of the surface:

X des � Fdes ← − Fdesn, KP[ ](z){ }
ξ3 � KP[ ](z)

SRFdes � diag 0, 0, 1, 0, 0, 0( )
. (30)

The success of this MP is evaluated by the accumulated force-

error for a fixed window-size Ncont:

Csuc
v3
: � ∑Ncont

i�1
Ff
cur,t−1 − Fdes( )n≤ ζF , (31)

using only the force-measurement Ff
cur of the wrench F. The error

constraint not only checks against the force-threshold in (29) but

also evaluates the following:

FIGURE 4
Schematic screw-insertion skill as an MP-graph. Each vertex shows the dedicated control direction, and thus the selection matrix from (14),
where bold arrows represent force control and thin lines velocity control. Straight arrows in each MP denote translation with respect to
axes ctex , ctey and ctez. Circular arrows denote a rotation along the dedicated axis. Parametric nodes are highlighted by a solid edge, whereas a bold
edge denotes a hybrid control policy.
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Cerr
v3
: � Cerr

v2
∧ μF − σF( )⊤ n, 03[ ]≥ 0.0, (32)

to detect contact loss with the environment as an error

constraint. During the next node v4—surface search—the

robot steers along the surface of the object in order to detect

the screw. This implies a hybrid force–velocity profile, where the

robot seeks to regulate the normal force with the surface, while

following a velocity profile along the surface. Using a

parameterized velocity profile _xdes,κxy, the output of v4 is given

as follows:

Xdes � _xdes ← _xdes,κxy, Fdes ← − Fdesn, KP[ ](z){ }
ξ4 � κxy, KP[ ](z){ }

SRxdes � diag 1, 1, 0, 0, 0, 0( )
SRFdes � diag 0, 0, 1, 0, 0, 0( )

. (33)

The success of this MP is evaluated via the force impulse

encountered in the current motion direction, i.e., _xcur
‖ _xcur‖2 and the

perpendicular torque.

Csuc
v4
: � Ff

cur

_xcur
_xcur‖ ‖2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ + Fτ

cur n ×
_xcur
_xcur‖ ‖2( )∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣≥ ζ impls. (34)

For the error constraint, this node applies (29) and (32) and also

checks against the robot position.

Cerr
v4
: � Cerr

v2
∧ Cerr

v3
∧ pcur − pv3
'''' ''''2≥ ζdspl, (35)

where pcur denotes the translational component of the tool-tip of

the robot, whereas pv3 represents the tool-tip position at the end

of node v3. The node v5—alignment—is non-parametric and

optional. It denotes the alignment of the tool-tip to be

perpendicular to the surface. Thus, if the initial tilting angle is

set to 0, this step is omitted. The success-constraint is identical to

v1, but the translation component is ignored. The final node

v6—insert—describes the insertion MP that applies a Cartesian

wrench control. Thus, the MP is defined as follows:

X des � Fdes ← − Fdesn, diag KP[ ](xy), KP[ ](xy), KP[ ](z), 0, 0, KP[ ](ψ),( ){ }
ξ6 � KP[ ](xy), KP[ ](z), KP[ ](ψ){ }

SRFdes � diag 1, 1, 1, 0, 0, 1( )
. (36)

While the error constraint is identical to v3, that is, Cerrv6
: � Cerrv3

,

the success-constraint is checked via comparing the

displacement along the normal vector

Csuc
v6
: � pcur − pv5( ) 13 − n( )''''' '''''2 ≥ ζdspl ∧

pcur − pv5( )n( )⊤ pcur − pv5( )n( )≥ ζ insrt,min ∧
pcur − pv5( )n( )⊤ pcur − pv5( )n( )≤ ζ insrt,max

, (37)

FIGURE 5
Representation of the success probability of the unscrewing skill as factor graphs. Here, the naive Bayes approach is also highlighted as a factor
graph, while the actual factor graph exploits available task knowledge to introduced conditional dependence and independence in the regression
problem that allows adding samples efficiently during learning.

Frontiers in Robotics and AI frontiersin.org14

Gabler and Wollherr 10.3389/frobt.2022.993359

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.993359


where pv5 again denotes the tool-tip position when the current

node is initiated.

Having introduced the general MP-graph, we now outline how

the success-constraint of the overall skill can be derived as a factor

graph for the outlined skill graph. First, the naive Bayes approach

retrieves the success-constraint as the joint probability of

Λξ
V � ∏

i� 2,3,4,6{ }
Γξv ξ i( ). (38)

This results in the factor graph from Figure 5a. For the factor graph

representation, the actual parameter vector needs to be decomposed

into the scalar components to obtain the underlying factors. Thus,

this strongly depends on the actual parameterization of v4 and v6.

As both nodes v2 and v3 are scalar parameters, we evaluate the

presented approach by introducing two further simplifications:

• the search pattern on the surface of the object is restricted

to a constant velocity, where the direction is set by an

expert, while only the velocity needs to be adjusted to

prevent the robot to miss the screw. Thus, we replace

κxy ← spos.

• For the force controller, the proportional gain is set equally

for all translational components x, y, and z.

As a result, the overall success probability results in the factor

graph from Figure 5b.

The according adjacency matrices are then given as follows:

AG
v2 : �

1 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ AG
v3 : �

1 0 0 0
0 1 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
AG

v4 : �
1 0 1 0
0 1 1 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ AG
v6 : �

0 0 0 0
0 1 0 1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
. (39)

Recalling Section 4.4, the graph structure needs to be respected

when assigning samples. Failed trials at v2 can be added to the

failure of v2 and v4, while failures at v3 and forward can be added

to all nodes. In addition, the factor graph from Figure 5b allows

creating artificial data samples for [KP](xyz) in Γξv4 if a failure at
v2 is detected and similarly to generate samples for [KP](ψ) in Γξv6
if a failure for v3 or v4 is encountered. Eventually, the RL-

problem for the unscrewing task results in regressing the

parameter vector ξ ∈ R3, as well as ξ4 ∈ R2 and ξ6 ∈ R2 for

the naive Bayes approach.Using the bounds from Table 1 a

normalized parameter vector ξ ↦ [0, 1]3 can be

incrementally evaluated using the acquisition functions from

Section 4.3 and existing work. We continue with comparing

the improvements of our method against existing work in the

next section.

6 Experimental results

Given the exemplary MP-graph for the unscrewing task

from Figure 4, a suitable controller parameterization is

regressed from data by setting the objective J as the

negative overall runtime. A parameterization is set as

successful if the full graph has been executed without

indicating an error. In addition, each node can be repeated

up to five times in case a timeout is encountered.The set-

values chosen by a designer in our experimental recordings are

listed in Table 2, where the insertion force is set higher than

the environment contact force to enforce an insertion into the

screwhead. In order to arrange for a fair comparison over the

presented algorithms, the start pose has been chosen

identically for all algorithms and the search direction is set

to the static straight line on the object surface as shown in

Figure 4. Similarly, the tilting angle is chosen to 2° for all

approaches and is tilted perpendicular to the motion direction

along the object surface. Furthermore, the constraint

thresholds are set to ζpos = 0.1 mm in translation and ζrot =

0.1 rad in rotation. The variance of the FT sensor has been

obtained before running the experiment from collected sensor

data and evaluated to 0.3 N for the force-measurements and

0.2 N/m for the Cartesian torque-measurements. The

window-size NFT to evaluate the sensor readings has been

chosen as 50 using a reading-rate of 170 Hz. Unfortunately,

the presented force controller from Section 4.1 suffers from

noisy sensor data and thus misses a proper damping term that

could stabilize an aggressive proportional gain controller. To

diminish the sensitivity to unstable controller behavior, an

explored sample is set to failed if the standard-deviation of the

observed force signal during contact is above 2.5 N using a

sliding window of 1 s, with a sampling rate of 50 Hz,

i.e., Ncont = 50 and ζF = 0.25 N. In order to detect a contact

impulse during planar search, we set ζimpls = 5.0 N and allowed

a maximum search range of ζdspl = 25.0 mm. For the GP

TABLE 1 This table summarizes the unknown controller parameters
for the unscrewing skill given the presented controller from
Section 4.1.

Parameter Lower bound Upper bound

‖ _x‖2(spos) 1 mm s−1 20 mm s−1

[KP]( xyz{ }) 1e-5 1e-3

[KP](ψ) 1e-5 1e-3

TABLE 2 Predefined parameters for the unscrewing skill. The value for
_xdes

‖ _xdes‖2 denotes the motion direction that is to be followed during
the search on the surface of this object.

Parameter ‖Fdes,cont‖2 ‖Fdes,insrt‖2 n _xdes
‖ _xdes‖2

Value 10.0 N 30.0 N [ 0 0 1 ]⊤ [ 0.71 0.71 0 ]⊤
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models, we assumed a zero-mean prior and used a Matern

kernel 5
2 assuming a prior gamma distribution with

concentration of 3 and a rate of 6 for the length-scale and

a concentration of 2 and a rate of 0.15 for the variance of the

kernel. For the related work, we initialized their models

according to their manuscripts (Englert and Toussaint,

2016; Marco et al., 2021). In order to allow for a fair

comparison of the proposed algorithms and existing work,

a grid search was recorded to collect empirical evidence

database and mapped to a normalized hypercube of ξ,

given the parameter-bounds from Table 1.

Given this, each algorithm was run 25 times using Neps = 60

iteration steps for each run. In each run new samples were added

to the dedicated datasets, and the current optimum guess is

stored at each step. Using the collected empirical evidence as

ground-truth, the best empirical sample ξ* �

[ 0.421 0.316 0.495 ]⊤ is used to calculate the regret regret �
J (ξ̂*) − J+.

The averaged regrets over 25 trials per method are plotted in

Figure 6, where the shaded area highlights the CI of 70%. The

presented data underline that our graphical representations allow

acquiring feasible data distinctly faster than GPCR and PIBU.

This improved learning performance mainly stems from the

decreased meta parameter space and the ability to collect

evidence of the individual factors rather than learning the

full task.

This is further underlined by the evolution of successful

samples that are collected by the algorithms as visualized in

Figure 7. Again, a CI of 70% is added over the averaged temporal

evolution of the successful samples. It also has to be noted that

this number is only increased if all nodes of the proposed

graphical structures receive a successful sample, i.e., the

FIGURE 6
Regret evolution of the experimental screw-insertion task over the number of trials. The data are averaged over 25 runs per algorithm, with the
shaded areas denoting a CI of 70 %.

FIGURE 7
Number of safe samples for the experimental screw-insertion task over the number of trials. The data are averaged over 25 runs per algorithm,
with the shaded areas denoting a CI of 70%.
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overall exploration sample returns a successful sample. In this

experiment, the naive Bayes approach could collect new

successful samples earlier than the factor graph version.

Nonetheless, the difference diminishes by the end of the

60 trials, and the evolution of successful samples equals out

for both graphical approaches. Within our experimental

evaluations, the GPCR method suffered from numerical

instability after latest 60 iterations, while our approaches

could evaluate further trials. As samples above 60 do not

allow for a fair comparison, we omit the continuation of the

plots. Still, we ran extended simulations for the proposed

graphical methods with 80 steps, and the evolution of the

successful samples converged to similar values for the final

trial-episodes. While Figure 6 denotes the performance of the

evaluated methods, Figure 7 denotes how many safe samples are

explored. Nonetheless, Figure 6 only contains valid evaluations of

the MPs or the tasks, as even if only a single MP fails, the regret

would return an infinite value. In order to compare our

algorithms in terms of safety awareness, the rates of

estimating a valid optimal sample are listed for each algorithm

in Table 3. As it can be seen, the pure GP classification within

PIBU outperforms the remaining methods distinctly.

This effect mainly stems from the structure of the task, where

the approaching speed scaling is linearly increasing the objective,

while the constraint is given as a strict upper threshold, that also

represents the optimal value. With only a handful samples,

estimating the constraint rather than the classification labels

remains numerically challenging.

In contrast, the application of a pure classification GP may

also be overly conservative, and being only provided with a small

number of successful samples, the classification may not be

capable of returning a useful solution for the task to be

learned. In addition to receiving a distinctly smaller regret,

our approaches also converge closer to the actual optimum

parameter samples. This is visualized by the temporal

evolution of the estimated optimal parameter samples in

Figure 8, where the shaded areas again denote a CI of 70%. In

contrast to related work, our approaches quickly converge to a

TABLE 3 Rate of estimating a correct optimal sample. The best performing, i.e., highest success-percentage is highlighted in bold.

GPCR PIBU Naive Bayes Factor graph

Success-probabilities (in %) 29.1 53.7 29.7 23.6

FIGURE 8
Temporal evolution of the estimated optimum parameter value, where the dashed lines denote the upper bound for the parameter, while the
lower dashed line in the bottom plot denotes the dedicated lower bound. Shaded areas denote the CI of 70 %. The optimal values to be regressed
from data are ξ* � [0.421 0.316 0.495 ]⊤.
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solution for ξ1 and ξ2, while ξ3 is only slowly converging toward

the optimal value. This delay stems from ξ3 being conditionally

dependent on the performance of the remaining data samples.

Even though the estimation of ξ3 also suffers from higher

variance than that of related work, our approaches distinctly

outperform the related work in this aspect. This underlines that

our approaches do not result in suitable parameter estimation by

chance but due to efficient data acquisition.

6.1 Discussion

Having collected the experimental data, our approaches

outperform existing work in terms of data efficiency and

allow obtaining suitable results from only a handful of

samples. Furthermore, our approaches apply standard GPs on

smaller meta parameter spaces. Even though our regression

method requires multiple parameter fits for multiple nodes,

each GP is conditionally independent by definition within a

factor graph. This allows for full parallelization, even though we

evaluated our method in a purely sequential manner.

Nonetheless, the presented results also highlighted a

particular downside of our method, which is exposed by the

small chance of drawing successful samples. While our method

outperformed existing work in drawing successful samples

during exploration, this effect can be neglected during

exploitation. If the current estimate is to be applied on safety-

critical applications, the provided success rate needs to be

improved. While it has to be noted that neither GPCR nor a

classification GP can provide a safety guarantee when drawing

success-estimate, the combination of our method with one of the

former methods allows alleviating this issue. Thus, the overall

graph success probability can be replaced by a product of experts,

where the experts are given as the individual success-models.

Another possible solution is given by using a negative prior mean

similar to PIBU in the constraint GP and evaluating the

constraint metric by shifting the probability of the posterior.

Using this, the search of the optimal value is constrained to a

tightened set of the parameter space, which automatically results

in an increased probability to draw a correct sample.

Eventually, it has to bementioned that the presented problem

on regressing ξ1 is a special case, while in general cases, where the

optimum value is not in the near distance of the success-

constraint, our method reliably converges to the correct

parameter guess. Given the overall improvements of our

method that is evident in the collected experimental data and

the overall framework, it can be summarized that our method

improves existing methods on regressing task-parameters for

autonomous robots in a constraint-aware manner. Referring to

the ability of converging to correct values within a reasonable

time and amount of data, this makes our application a reasonable

method to be applied on future robot platforms and

manipulation tasks.

Finally, the question of whether either our factor graph or the

naive Bayes approach is favorable needs discussion. Referring to

the overall results, the performance of both methods is

comparably similar. This mainly stems from the fact that the

first parameter and thus the first sample is the most critical

evaluation parameter of the task to be learnt. As this node is

conditionally independent of the last parameter, the benefit of

generating artificial data samples can only be applied rarely.

Nonetheless, the preferable major advantage of the factor graph is

given by the ability to apply it to arbitrary tasks and allows

regressing constraints that have a different input space than the

current objective node. Given that both approaches obtained

almost identical performance results, the factor graph method

forms the generic representation and preferable method, whereas

the naive Bayes version is distinctive by its simplicity and simple

adjustment to alternative models.

7 Conclusion

In this study, we proposed an episodic RL-scheme that uses

BOC to account for unsafe exploration samples during learning.

In order to apply the proposed scheme online, we further

outlined a suitable control architecture for an industrial robot

platform that uses a Cartesian displacement control interface at a

comparably low update rate. The hybrid controller interface is

well-suited to apply selective control strategies along individual

axes, which can then be embedded into a graphical skill-

formalism from previous work to reduce the required

parameter space for the task to be learned.

In contrast to existing work, we further claimed that it is

beneficial to not only exploit available task knowledge to decrease

the parameter- or search space for the current task but also to

incorporate task knowledge on regressing the failure constraints.

For this reason, we proposed a graphical skill-formalism for the

overall success probability as factor graphs. Here, we proposed a

pure naive Bayes method that regresses the failure of the overall

task as the joint probability of each node failing for a given

sample. While this method improves the overall sampling, it may

hinder assigning failed samples to subsequent nodes, even

though conditional dependencies are well-known beforehand.

Thus, we further proposed to incorporate these relations into a

graphical skill-formalism for the success probability and thus

improve scaling behavior to eventually regress feasible samples.

In addition, we proposed suitable acquisition functions for the

individual representations and proposed a novel conservative

acquisition method.

Finally, we outlined an application example for the proposed

method as the screw-insertion task for an industrial robot, where the

exact goal-pose is unknown and the controller parameterization of

our proposed controller needs to be regressed from data.

Given the outlined screw-insertion task, we compared our

approaches against existing state-of-the-art methods for BOC-
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based RL using an industrial robot manipulator in a laboratory

environment. Given the collected experimental data, our method

distinctly outperformed the state-of-the-art in performance,

which we have evaluated by the collected objective regret.

Furthermore, our method required distinctly smaller number

of data samples and thus learning time and steps compared to

existing work. These results underline that it is preferable to not

only incorporate available task knowledge for the objective but

also the constraints of robotic manipulation tasks during learning

whenever possible in order to decrease the number of samples

needed.

Future work

Building upon the data collected and the presented

method, a promising path for future research projects lies

in combining our method with visual feedback. This may

further allow defining robust success- and error constraints,

as, for example, missing the screwhead or hole remains

unreliable solely from FT data, especially if a constant

velocity vector results in a robot missing the screwhead

completely. If such feedback is obtained, the presented

method would strongly benefit in learning advanced

motion policies, i.e., comparing different search patterns,

e.g., spirals or straight-line patterns. Nonetheless, regressing

the optimal search pattern usually is preferably solved by

visual servoing. In these scenarios, the interaction does not

rely on accurate FT data and feedback control. Thus, this

allows collecting data within simulated environments and

applying recent results from machine learning, especially

meta-RL.

Eventually, future research should evaluate the possibility

of self-evaluating models, i.e., artificial agents should be aware

that some of the imposed model knowledge may be subject to

false design. Thus, another line of research is given by

designing new methods that allow not only exploiting

available task knowledge but also evaluating the accuracy

and discrepancy of the assumed model against the

empirical evidence.
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Nomenclature

Acronyms

BO Bayesian optimization

BOC Bayesian optimization with unknown constraints

CDF Cumulative distribution function

CI Confidence-interval

EI Expected improvement

EIC Expected improvement with constraints

EP Expectation propagation

FSA Finite-state automaton

FT Force–torque

GP Gaussian process

GPCR Gaussian process for classified regression

ML Machine learning

MP Manipulation primitive

NN Neural network

PDF Probability density function

PI Probability of improvement

PIBU Probability of improvement with a boundary uncertainty

criterion

RL Reinforcement learning

List of indices

art Artificial variable

cont Contact with object or environment

cur Current value, e.g., measured state of a plant

des Desired value, e.g., a desired trajectory

dspl Displacement related variable, e.g., a maximum distance

eps Current variable is related to current or all episodes

err Error-term for current value

fail Failed trial/sample

frc Force/wrench-related variable

impls Impulse variable, e.g., force-impulse during contact

insrt Insertion related variable, e.g., time needed for a

screwdriver insertion

max Maximum value of the current variable

min Minimum value of the current variable

noise Noise-related variable, may be systematic or artificially

injected noise

pos Position-related variable or term

pre Pre-condition, e.g., within a planning domain

ba Reference frame—robot base frame

ct Reference frame—control frame

ee Reference frame—end-effector frame

R Rotated variableRotation matrix in SO(3), i.e., in R3×3

rot Rotation-related variable or term

safe Safe variable with respect to a constraint metric

spl Sampled version of the current variable

suc Indicating success for the current task or episode

vel Velocity-related variable

List of operators and functions

α Acquisition function to generate new data samples in Rn

g Scalar inequality constraint in R1Inequality constraint

vector in Rn

g Scalar inequality constraint in R1Inequality constraint

vector in Rn

diag Get diagonal elements from a matrix as vector in Rn

H Heaviside function in R1, i.e., H(p) � 15p> 0

Λξ
V joint success probability for a sequential manipulation task

k Kernel function k(ξi, ξj) in R1k applied on a batch of samples

p, and ξ, such that [kp(ξ)](i) � k(pi, ξ)
Ĵ model of the actual objective function J in R1

ĝ model of a success function, i.e., a binary function

mapping Rn ↦⊤,⊥

J general objective function for an optimization problem in R1

Γξv success probability of an MP node in R1

Notation

p Placeholder variable in notationVector in Rn

⊤ Boolean trueBoolean true

⊥ Boolean falseBoolean false

⊤ Boolean trueBoolean true

⊥ Boolean falseBoolean false

|p| Cardinality of a set or dimension of a vector, i.e., n for p ∈ Rn

p⊛ Best observed data samples from collected experience data

p⊝ Worst observed data samples from collected experience data

: = Equal by definition

p+ Ground-truth data within a regression problem, where the

correct data assignment is known

κ Hyper-parameter; indexing defines actual meaning

pt Value of p at time t
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pi Content indexing of vectors, lists, sets, e.g., p2 denotes the

second value of pLi-norm, where i is usually 1 (sum of absolutes),

2 (euclidean) or ∞ (maximum value)

1p×p Identity matrix of dimension p × p

0p×p Zero matrix of dimension p × p

P Matrix in Rm×n

[P](i,j) Matrix element, usually R1

‖p‖i Content indexing of vectors, lists, sets, e.g., p2 denotes the

second value of pLi-norm, where i is usually 1 (sum of absolutes),

2 (euclidean) or ∞ (maximum value)

p* Optimal or true value of p

R Rational numbers

R+ Positive non-negative rational numbers

∅ Empty set

p̂ Estimated value of p

p9 Temporal successor of p, i.e., in a discrete setting p′ � pt+1
ζ Threshold-value; indexing defines actual meaning

t Current time or temporal indexing variable

Tmax Maximum runtime (continuous) or number of time steps

(discrete) in R1

�p Trajectory as a sequence of T variables p in T × Rn

p Placeholder variable in notationVector in Rn

1p Identity vector of dimension p

0p Zero vector of dimension p

List of symbols

AG Adjacency matrix of a graph G, where [a](i,j) � 15∃ei,j ∈ E
δx Cartesian displacement in SE(3), i.e., in R1

x Cartesian pose of and object or the end-effector in SE(3)Cartesian
x-coordinate in R1. If not phrased explicitly, bax is assumed

p Cartesian position in R3

F Cartesian wrench as force–torque measures in SE(3)

O Algorithmic complexity (Big O—convention)

c Scalar constraint value in R1Constraint value as a vector in Rn

c Scalar constraint value in R1Constraint value as a vector in Rn

C Set of constraints

u Control input signal

e SE(3) Coordinate system axis in R3, where norm 2e = 1 holds

xCartesianposeofandobjector theend-effector inSE(3)Cartesian
x-coordinate in R1. If not phrased explicitly, bax is assumed

y Cartesian y-coordinate in R1. If not phrased explicitly, bay is

assumed

z Cartesian z-coordinate in R1. If not phrased explicitly, baz is

assumed

ex SE(3) Coordinate system x-axis in R3

ey SE(3) Coordinate system y-axis in R3

ez SE(3) Coordinate system z-axis in R3

Σ Covariance matrix of a multivariate probability density

function (PDF)

D Data buffer containing experiences usable for RL

X Observed data samples

Dart Data buffer with artificially generated data samples

pfail Desired probability threshold for posterior of failed failures

to be infeasible

psafe Desired probability threshold for posterior of safe failures to

be safe

Xdes Desired state space or sub-space of the state space X
f Force magnitude or scalar force component of translational

component of F in R1

X Fully observable state space

KP Proportional force controller gain matrix (quadratic, positive

semi-definite)

y Evaluation of GP while applying an acquisition function

G Arbitrary graph consisting of vertices V and edges E
e Specific edge of the edges-set E of a graph G

E Edge-set of a graph G

v Specific vertex of the vertex-set V of a graph G

V Vertex-set of a graph G

K Gram matrix, where [K](i,j) � k(ξi, ξj)
k Kernel function k(ξi, ξj) in R1k applied on a batch of samples

p, and ξ, such that [kp(ξ)](i) � k(pi, ξ)
μ Mean of a PDF

Φ Normal cumulative distribution function

n Normal vector of a surface/object in Cartesian space in R3

Ncont Number of evaluation measurements to check against

environment contact

Nspl Number of samples

Neps Number of steps, e.g., within an episode

ξ Unknown meta parameter vector in Rn, obtained by means of

episodic RLUnknown scalar meta parameter in R1, ξ ∈ ξ

ξ Unknown meta parameter vector in Rn, obtained by means of

episodic RLUnknown scalar meta parameter in R1, ξ ∈ ξ

υ Polyak-averaging weight, e.g., used to update target network

S Hybrid force/position controller selection matrix

s Diagonal element of the force/position controller selection

matrix S
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R Rotated variableRotation matrix in SO(3), i.e., in R3×3

Rφ Rotation matrix around ex in R3×3

Rθ Rotation matrix around ey in R3×3

Rψ Rotation matrix around ez in R3×3

ψ Yaw angle in R1, i.e., angular rotation around ez

gspl Episodic constraint-vector sample

J spl Episodic objective sample

sspl Episodic success sample, where each scalar evaluates gi(ξ) ≤ ci

s Scaling term s ∈ [01]State value in a general state space

mξ,G Largest dimension all nodes within a graphical skill-formalism

to reduce the state space of a regression problem ξi ∈ Rmξ,G

nξ Dimension of the parameter of a regression problem ξ ∈ Rnξ

s Scaling term s ∈ [01]State value in a general state space

δt Update time step for discrete control processes in R1

τ Torque magnitude or scalar force component of rotational

component of F in R1

T Coordinate transformation matrix using homogeneous

transformation in SE(3), i.e., in R4×4

v Translational velocity in SE(3)

σ Variance of a one-dimensional PDF

NFT Size of sliding window to evaluate data obtained from a FT

sensor
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