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SPaM: soft patch matching for
non-rigid pointcloud registration

Behnam Maleki, Raphael Falque, Teresa Vidal-Calleja and
Alen Alempijevic*

Robotics Institute, University of Technology Sydney, Ultimo, NSW, Australia

3d reconstruction of deformable objects in dynamic scenes forms the
fundamental basis of many robotic applications. Existing mesh-based
approaches compromise registration accuracy, and lose important details due
to interpolation and smoothing. Additionally, existing non-rigid registration
techniques struggle with unindexed points and disconnected manifolds. We
propose a novel non-rigid registration framework for raw, unstructured,
deformable point clouds purely based on geometric features. The global non-
rigid deformation of an object is formulated as an aggregation of locally rigid
transformations. The concept of locality is embodied in soft patches described
by geometrical properties based on SHOT descriptor and its neighborhood. By
considering the confidence score of pairwise association between soft patches
of two scans (not necessarily consecutive), a computed similarity matrix serves
as the seed to grow a correspondence graph which leverages rigidity terms
defined in As-Rigid-As-Possible for pruning and optimization. Experiments on
simulated and publicly available datasets demonstrate the capability of the
proposed approach to cope with large deformations blended with numerous
missing parts in the scan process.

KEYWORDS

deformable registration, non-rigid registration, soft patches, patch matching,
pointcloud registration, as rigid as possible

1 Introduction

Given only point clouds, a common solution to the registration problem is to leverage
mesh reconstruction, which is challenging for many depth sensors due to sensor noise,
missing parts, and holes (stemming from occlusions). Mesh-based approaches [for example,
leveraging Poisson surface reconstruction (Kazhdan et al., 2006)] are mainly suited to noise-
free, water-tight surfaces. These methods generally involve interpolation and smoothing,
consequently compromising the registration accuracy and potentially losing important
details. Besides, othermesh reconstruction approaches (such as Ball Pivoting) leave someun-
indexed points and disconnectedmanifolds, posing a challenge for state-of-the-art non-rigid
registration techniques such as functional maps (Ovsjanikov et al., 2012).

If one were asked tomanually determine the corresponding parts of two 3D point clouds
(particularly of the challenging case of a large, featureless, semi-flat surface), one would start
by taking the most conspicuous areas on one scan and look for correspondences on the
other. By using these matched sections as the initialization step, the adjacent parts could
be compared and evaluated in a transitive and progressive manner to grow a network of
correspondences.
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FIGURE 1
RGB image (not used), current frame, canonical frame and their registration for Minion dataset.

Following this idea, we propose a framework that is based on
locally rigid patches and relies merely on geometrical features of 3D
point clouds. Our proposed approachassumes that the aggregation
of entire local rigidities accounts for the global non-rigidity of a
deformable object throughout consecutive scans. Hence, we employ
a concept of soft patches, whose primary benefit (compared with
individual points), is a significant reduction of computational
complexity and time.

The main contribution of our work is a meshless, visually-
featureless, model-free, topology-aware, and geometry focused
approach for 3D non-rigid registration that enables the 3D
reconstruction of deformable objects. Figure 1 shows an example
of this registration on a public dataset. According to Cadena et al.
(2016), our soft patch can be categorized as a low-level but flexible
dense representation (with negligible computational overhead). In
our pipeline, we obtain a sparse correspondence between (not
necessarily consecutive) scans, which enables the approach to cope
with small to large local deformations. We evaluate the proposed
3D registration method as well as the full reconstruction pipeline in
simulated and publicly available datasets, demonstrating the validity
of our approach.

2 Related work

The problem of registering successive belonging to deformable
objects is often encountered in 3D mapping algorithms. Model or

template-basedmethods for instance can handle severe deformation
of an object quickly and effectively (Petit et al., 2017). The authors
register a segmented point cloud in a rigid manner and then
model elasticity by non-rigidly fitting a mesh based on the finite
element method. In other approaches, an articulated motion model
or additional proprioceptive sensors are used as priors to constrain
and track the frame-to-framenon-rigid deformations to improve the
reconstruction quality for fast body motion (Yu et al., 2017; 2018;
Zheng et al., 2018). This reliance on other sensors or priors severely
limits the applicability of these approaches.

Their surface representation based on Truncated Signed
Distance Function (TSDF) is extracted by marching cubes and
stored as a polygon mesh with point-normal pairs in the canonical
frame. A single volume is registered to a single point in time
(canonical frame), Dou et al. (2016) claim that the frame-to-frame
motions in DynamicFusion are slow and carefully controlled due to
the assumption on closest point correspondences between volume
and frame. Thus, the approach cannot handle drastic deformation
attributed to the challenges of fusing data back into a single model.

While DynamicFusion solely uses geometric correspondences,
VolumeDeform (Innmann et al., 2016), upon generating a polygonal
mesh, additionally takes advantage of RGB data via sparse globally
consistent SIFT features to improve the alignment process. These
features serve as global anchor points to mitigate drift and enable
handling tangential motion. The methods relying on visual and
colour features of the scene fail in the corresponding stage in the
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FIGURE 2
Flowchart of the devised framework.

presence of visually featureless objects, poorly-illuminated scenes,
or drastic changes of view.

The noted approaches generally use a mesh for establishing
correspondences and extracting features for inter-frame motion
tracking. However, surface reconstruction in the case of sparse
and noisy point clouds is a cumbersome task. Further, the method
proposed byNewcombe et al. (2015) and Innmann et al. (2016)may
fail under larger inter-frame motion due to the underlying mesh-
based correspondence estimation (Slavcheva et al., 2017).

The recent works on rigid and non-rigid registrations make
extensive use of the SignedDistance Function (SDF) and its different
variants such as TSDF, probabilistic SDF (PSDF), and Euclidean
SDF (ESDF) (Gupta et al., 2016; Slavcheva et al., 2017; Yu et al.,
2017). This body of work has proven to be effective volumetric
representations of a scene. To address the sensor noise, they smooth
out errors in cumulative models. Overall, the performance of these
algorithms highly depends on the scenario, and the capability to
handle the range and speed of deformation is always a compromise
against fidelity. In contrast to existing dense SLAM approaches,
the recent work SurfelWarp (Gao and Tedrake, 2019) enhances
DynamicFusion by replacing volumetric data structures with surfel-
based representation of geometry and a deformation field. In their
pipeline for aligning the reference frame with the current one, they
first initialize the deformation field from the previous frame and
then similarly to DynamicFusion (Newcombe et al., 2015) deploy
an iterative closest point (ICP) based optimization to estimate the
non-rigid warp field.

Themajority of the non-rigid registration approaches are taking
advantage of the transformation regularization term in their cost
function. However, in motion boundaries (discontinuities of the

ground-truth optical flow between 2 frames), it may create artifacts.
Addressing this issue, Zampogiannis et al. (2019) used two notions
of contact and separation to annotate the changing topology of a
scene and then blended two forward and (inverted) backward warp
fields locally, according to the type and proximity of detected events.
The warp fields are computed separately by non-rigid ICP, and the
correspondence association is improved by the frame image.

3 Overview

Given two oriented unorganized point clouds of a deforming
object captured in different timestamps, one is used as the target
point cloud,P , and the second as the source,P .The objective is then
to find the local rigid transformations, to register the associated soft
patches from source, C, onto the corresponding soft patches of the
target, C, to transform and gradually register the entire source point
cloud onto the target.

The proposed framework includes three key constituents as
describing the patches, evaluating the metrics of associations to
establish the correspondence, and deforming the source locally. A
flowchart schematic of our framework is depicted in Figure 2.

4 Soft patch description

4.1 Soft partitioning

Thus the definition of locality plays a pivotal role. Given two
pointclouds from the same surface labelled as target and source
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which one has undertaken some deformation with respect to
the other, the locality concept is then applied by independently
subdividing these pointclouds into what we call partitions or
patches. Let us assume that the corresponding partitions on the
target and the source are rigidly transformed patches fromone to the
other.Then, it is possible to find the rigid transformation undergone
by each patch individually, which consequently allows deforming the
source non-rigidly to register with the target.

The aforementioned partitions have soft (in contrast to hard)
boundaries, implying that each point in the pointcloud can belong to
neighbouring patch (es) according to a measure called membership
score. More specifically, the source and target are softly partitioned
to create overlapping patches. Formally let us denote a pointcloud
byP = {p1,…,p}, such that the coordinate of the ith point is pi ∈ ℝ3

and the number of points in P .
To differentiate between the target and the source properties,

we make use of and superscripts, e.g., and denotes the number
of points in target and source pointclouds, respectively. Note
that multiple factors need to be considered while creating the
partitions; the number of partitions, noted, should be proportional
to the number of points in the pointcloud to generate meaningful
patch descriptors. Also, the average number of points in patches,
q, should be sufficient to create reliable local patch features as
well as avoiding computational overhead. The other factor is the
overlapping ratio of patches, so-called softness τ. Let C denote
the set of overlapping patches C = {C1,…,C}, then by following
the aforementioned factors, the number of partitions for each
pointcloud is computed by ≔ ⌈/(q× (1− τ) + 1)⌉. The choice of the
partitioning technique is irrelevant as long as the partitions are
overlapping and the softness is controlled. In this work, we opt for
k-medoids (Park and Jun 2009) with Euclidean distance, which is a
variant of k-means with data points chosen as the centroids.

As a brief note in notation, throughout thiswork, the sequence of
partition is denoted by centroidsM = (mi|i = 1) andM = (mi| i = 1:),
where and correspond to the number of partitions in the target and
the source, respectively.

4.2 Property assignment

Given the set of soft patches, the centroids are accompanied by a
distance matrix B× whose element dij is the Euclidean distance from
pi to the centroid of Cj:

B× := [dij|dij = ‖pi −mj‖2 , i = 1: , j = 1:] (1)

where ‖.‖2 denotes L2 norm. In order to determine whether a point
pi belongs to the soft patch Cj, the term dij should be smaller than
a threshold. To avoid having patches with largely varying sizes, we
consider a single cut-off threshold for the distance, d̄. So, for each
patch Cj, we find the distance with which q points fall inside its
boundary, and then computing the average of all these distances
yields the above mentioned cut-off threshold. Thus, the patches are
given by:

Cj = {pi| ‖pi −mj‖2 ≤ d̄ , i ∈ {1:} , j ∈ {1:}} . (2)

To evaluate the similarity between 3D soft patches in different
point clouds of the same surface, we use 3D SHOT descriptor

(Salti et al., 2014), which produces a 352-tuple SHOT descriptor
vector per point, pi. Let us define this descriptor vector of each point
as point SHOT, DSH(pi). Then for each (soft) patch, Cj, we define
a so-called descriptor called patch SHOT, DCSH(Cj), which is the
normalised element-wise average of all including point SHOTS in
Cj:

DCSH (Cj) :=

∑
pi∈Cj

DSH (pi)

j
×
‖‖‖

‖

∑
pi∈Cj

DSH (pi)

j
‖‖‖

‖

−1

2

. (3)

In this framework, the neighbourhood of every patch is a critical
property that offers a reliable measure in the association stage.
Hence, a complete neighbourhood map of every patch is generated,
which consists of the index of adjacent patches, their related patch
SHOTs, and the directional position of neighbours. The adjacent
patches are defined byN (Cj) ≔ {Ck| ‖mk −mj‖2 ≤ 2d̄ , j∧ k ∈ {1:}},

To preserve the neighbourhood and increase the
correspondence likelihood of adjacent patches of already matched
patches, each patch is attributed with a topological constraint
given its neighbourhood. We name this property directional
neighbourhood, and define it as a set of 3D Euclidean unit vectors
(illustrated in green in Figure 3) representing the direction of the
lines connecting the centre of a query patch to the centres of its
adjacent patches:

VCj
≔ { v⃗k| v⃗k =

mN k(Cj) −mCj

‖mN k(Cj) −mCj
‖2
, k = 1:} (4)

whereN k(Cj) is the kth element in the neighbors list of Cj.

5 Soft patch matching

5.1 Patch similarity

We propose two types of metrics to measure the pairwise
similarity of the soft patches Ci and Cj. These two metrics aim to
reflect the confidence on the patch association. The definitions of
the metrics are as follows.

5.1.1 SHOT vector distance
To measure the similarity of two patches SHOT descriptor

vectors, DCSH(Ci) and DCSH(Cj), in addition to the original 352-
D patch SHOT vector, we also use a 32-D Short SHOT (Seib and
Paulus, 2018) vector.The Short SHOT is less dependent on the point
normals and beneficial in the presence of noise. In our measure,
the similarity obtained from the short SHOT variant, Ds

CSH(.) is
combined with the one from the original Long SHOT, Dl

CSH(.).
Then, the SHOT Vector distance dSV , uses L1 and L2 norms of both
variants:

dSV (Ci,Cj) =
1

βl + βs
∑

y∈{l,s}

βy
α1 + α2
× (α1‖D

y
CSH (Ci)

−Dy
CSH (Cj)‖1 + α2‖D

y
CSH (Ci)

−Dy
CSH (Cj)‖2) (5)

where α1 and α2 are the weights associated with L1 and L2 norms and
also βl and βs denote the weights of Long and Short SHOT variants,
respectively.
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FIGURE 3
Schematic of a neighbourhood topological constraint of two patches (black circles) on source and target.

5.1.2 Neighborhood-topology-preserving SHOT
distance

In this metric, the goal is to measure the similarity between two
patches in terms of their neighbours’ patch SHOT vector. Since even
for two corresponding patches, the placements and sizes of adjacent
patches are not necessarily similar, we need to evaluate the similarity
of those neighbour patches, which are located in similar positions
with respect to two query patches. For example, in Figure 3, the
similarity measure between N 3(Ci) and N 1(Cj), and also N 5(Ci)
andN 3(Cj) should contribute prominently in the overall similarity
of Ci and Cj.

First, the pairwise angles between the normalised vectors inVCi

andVCj
are computed and stored into amatrixΘ×. Given a threshold

ν as themaximum allowed angular difference between these vectors,
the matrix is updated by Θ← ν−Θ. Here, ν depends on the number
of generated patches and the partitioning softness. After setting the
negative elements of this matrix to zero, Θ is normalized between
0 and 1. Thus, the rate of co-direction of the vectors associated
with Nm(Ci) and N n(Cj) is indicated by 0 ≤ Θ(m,n) ≤ 1. Then,
the indices and values of the non-zero elements (m,n,Θ(m,n))
of this matrix are used to compute the Neighborhood-Topology-
Preserving SHOT distance, dNSV :

I = { (m,n)|Θ (m,n) ≠ 0,m ∈ {1:} ,n ∈ {1:}} (6)

dNSV (Ci,Cj) =

∑
(m,n)∈I

dSV (Ci,Cj)Θ (m,n)

∑
(m,n)∈I

Θ (m,n)
(7)

5.2 Similarity matrix

Using the distance functions defined in the previous section,
we then build a similarity matrix, S, storing the pairwise similarity

between the target patches and the source patches. As the SHOT
vectors are normalized, the maximum possible value of dSV (., .) and
dNSV (., .) is √2. Therefore, the (i, j)th element of S is defined as a
measure of the similarity between Ci and Cj as follow:

sij = √2−
κ1dSV (Ci,Cj) + κ2dNSV (Ci,Cj)

κ1 + κ2
(8)

where κ1 and κ2 are the weights of the aforementioned distances.
Thus: S = [sij]×.

5.3 Robust correspondence selection

Given that the row and the column indices of S represent the
index of the patches on the target and the source, respectively,
in theory, the maximum element of a row (as the target patch
index) should give the index of the corresponding patch on the
source. However, due to the partial overlapping of pointclouds
there are some target patches that lack correspondence, and also,
such an approach would inevitably produce outliers. To obtain
a more robust matching approach, we propose an assignment
and rejection strategy that takes advantage of the rigidity terms
defined in a reformulation of As-Rigid-As-Possible (ARAP) as the
assignment error (Sorkine and Alexa, 2007). Our proposed strategy
can be regarded as a discrete combinatorial search that attempts to
minimize the piecewise rigidity between the target and the source.

Given two sets of the target and the source centroids as the
representative of the soft patches, M and M, and also n pairwise
correspondences, denoted by [xi]n×1↔ [yi]n×1 and alternatively
X↔ Y, representing Cxi ↔ Cyi

(i.e., mxi ↔myi
), let us reformulate

ARAP in this way: We first build a graph by n cells centred at a
target centroid,mxi , and kA vectors (edges), [Ei]3×kA , connecting the
centroid to its kA neighbors using an adjacency list (obtained by a
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k-d tree). Using this adjacency list and myi
a graph (formed by n

cells) is then built on the source yielding [Ei]3×kA (this process is
illustrated in Figures 9C, D). We then compute the local rigidity
term produced by the transformation of each cell from the target
to the source. According to ARAP (Sorkine and Alexa, 2007),
the optimal rotation Ri applied to the ith centroid mi and its kA
neighborsN (mi) is obtained by using singular value decomposition
(SVD):

UiΣiV*
i ← SVD([Ei][Ei]

⊺)

Ri = ViU
⊺
i

(9)

while enforcing that det(Ri) > 0 by changing the sign of the column
of U related to the smallest singular value.

Finally, the associated local rigidity error is obtained as:

ri =
kA
∑
j=1
‖E (:, j) −RiE (:, j)‖

2 (10)

and the global rigidity error is: ∑ni=1ri.
Thus, the selection can be formulated as a total rigidity

minimization problem (implicitly local rigidity) induced by patch
correspondence as:

Ĝ←min
X,Y,n

ARAP (X,Y)
n

(11)

subject to: xi ∈ {1:},yi ∈ {1:},n ∈ {1:} and if i ≠ j→ xi ≠ xj ∧ yi ≠ yj,
where Ĝ≔ [X̂ Ŷ]n̂×2 denotes the established correspondences. This
optimization is a special case of integer programming with an
undetermined number of variables, i.e., n.

Due to the constraints and the unknown number of variables,
we propose an optimization scheme. First, a batch of potential
correspondences is achieved by associating each row of S to the
column with the maximum element of the row. This batch is
then filtered by iteratively rejecting the correspondence with the
largest rigidity computed by ARAP, recomputing the ARAP for the
remained batch and repeating these two steps until all local rigidities
fall below a dynamic local rigidity upper-bound ul. After updating
the similarity matrix (considering the established and the rejected
correspondences), a new batch of potential correspondences is fed
into the above filtering. This process terminates when the global
rigidity of the established correspondences exceeds a dynamic total
rigidity upper-bound, ut .These two upper bounds are first estimated
in an initialization stage and then updated if no correspondence is
established in the filtering stage, by setting ul to themean of the local
rigidities associated with the currently established correspondences
and ut to the number of target patches times the median of the
current established local rigidities.

This scheme is exhibited in Algorithm 1 as the function
CORRESPONDINGPATCHSELECTION with three main stages: 1)
a bootstrapping stage to initialize and propel the optimization
by estimating the two upper-bounds obtained from n0 initial
correspondences, 2) filtering the potential correspondences
constrained by the current upper-bounds, 3) updating the two
upper-bounds upon no new added correspondence.

Given n0 as the initial number of correspondences in the
bootstrapping stage, ⌈ n0

2
⌉ of them are acquired by the ⌈ n0

2
⌉ largest

values of S as the most likely correspondences, and the remaining
are associated with n0 − ⌈

n0
2
⌉ lowest local rigidities given by ARAP

1: function CORRESPONDINGPATCHSELECTION(S)

2: [Δ]×1 ≔Max(Diff (Sort(row1:(S))))

3: ut← inf; [ri] ← ∅;
4: while ut > ∑n̂i=1ri do

5: if initialization = True then

6: (G′a,S,ut,ul) ← OptInitS,kA,n0
7: S← SimUpdaterS,G′a,Δ,“dis″,“rew″

8: Ĝ← G′a; initialization = False

9: end if

10: G′← The row-column subscripts of the maximum

elements of S per non-corresponded rows

11: ([G′a]n′a×2, [R
t2s
i
], [ri],G

′
r) ← CorrFilterG′, Ĝ,kA,ul

12: S← SimUpdaterS,G′r,Δ,“pen″

13: if n′a ≠ 0 then

14: Ĝ← Ĝ∪G′a
15: S← SimUpdaterS,G′a,Δ,“dis″,“rew″

16: else

17: ul← max ([ri])

18: ut← MEDIAN ([ri])×

19: end if

20: end while

21: return [Ĝ]n̂×2 and [Rt2s
i
]
3×3×n̂

22: end function

Algorithm 1. Scheme for corresponding patch selection.

function fed by the first batch of potential correspondences
(potential corresponding patches). Then the two upper-bounds are
initialized as mentioned before. InAlgorithm 1 this stage is defined
as the function OPTINIT.

The foundation of our scheme is the potential-correspondence
filtering (CorrFilter in Algorithm 1) which iteratively filters the
potential input correspondences [G′](−n̂)×2 achieved as the row-
column subscripts associated with the maximum value of the non-
associated rows and then as the output, set some as accepted,
G′a, or rejected G′r (≔ G′ G′a). In this filtering process, given the
already established correspondences, Ĝ, discarding the potential
correspondence related to the highest local rigidity (obtained from
the embedded ARAP function with kA neighbours) continues until
no rigidity is higher than ul.

Using a reward-penalty table, Δ, (acquired as the row-wise
maximum value of the differentiated descendingly sorted rows
in the original (un-updated) similarity matrix), S is updated by
SimUpdater in Algorithm 1, in three ways denoted by three
arguments dis, rew and pen as follows: 1) Disabling: in case of a
newly added corresponding patch, the associated rows and columns
are disabled by setting all elements to −inf. 2) Rewarding: when a
correspondence is established, the elements of S associated with the
co-directed neighbours are incremented by using Δ. 3) Penalizing:
the rejected correspondence is penalized by decrementing their
associated similarity score using Δ.

After updating S, the newly established correspondences are
appended to Ĝ, and the adopted mechanism ensures no correct
correspondences are falling below the current local upper bound.
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FIGURE 4
A quantitative evaluation is performed on 29 pairs of point clouds achieved from an animated 3D model. We show 30 different deformations of a hand,
correspondences of articulation 1 and 7 depicted by centroids and the errors of points in registrations for 29 pairs of point clouds.

Then, upon no accepted correspondence, the two upper bounds are
updated as there is a need to keep increasing the upper bounds to
allow the correct but largely-deformed patches to be matched.

The optimization process terminates by reaching the global
rigidity to the total upper bound.

6 Source warp

6.1 Correspondence-wise transformations

The useful by-product of the proposed optimization scheme
(in Algorithm 1 is the centroid-wise target to source rotation,
Rt2s
i , per correspondence i, whose inverse, Rs2t

i = (R
t2s
i )
−1, is the

rotation required to transform the source centroid to the position
of the corresponding target one. Using the position of the matched

centroids, the associated translation is:

ts2ti =mxi −R
s2t
i myi

(12)

with which the transformation matrix, Ts2t
i , to transform the ith

matched source centroid to the corresponding target one is obtained
by Ts2t

i = [
Rs2t
i ts2ti

01×3 1 ].

6.2 Transformations propagation

By having these transformations, the points of the source
pointcloud in the vicinity of a matched source centroid are impacted
proportionally to their distance with respect to the centroid. Given
the set of all matched source centroids, M(Ŷ) = {mŷi

|ŷi ∈ Ŷ}, the
indices of kp matched source centroids adjacent to a query source
point pi are shown by A (pi). So the kp nearest centroids to point pi
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FIGURE 5
Six colour-coded animation frames of the human dataset captured by
raytracing the associated original point clouds.

are:

M(A(pi)) = {maj|aj ∈ A (p) ⊂ Y, j = 1:kp} (13)

where, MA(pi) ⊂MŶ ⊂M. As each point of the pointcloud may
have several already matched centroids in its vicinity, it should
be transformed based on the weighted interpolation of all those
adjacent transformations. The weight, w, reflects the amount
of influence is received from the adjacent matched centroids.
According to Eberly (2017), the interpolation (loosely speaking the
average) function for two transformations in SE(3) is a curve that

follows the shortest geodesic path between two transformations.
By extending their work to a weighted multi-transformation
averaging, the transformation imposed on pi is computed by, T̄pi =
AveSE3(Tpi ,Wpi), where Tpi = (T

s2t
aj |j = 1:kp) andWpi = (waj|j = 1:kp).

For the weights, we opted for Embedded Deformation weighting
scheme (Sumner et al., 2007), where the weights of the K adjacent
centroids to the point i, are computed by: waj = 1− ‖pi −maj‖

2

2
/dmax

where dmax here is the distance to the kp + 1 nearest centroid and
then waj ←

waj

∑
kp
i=1wai

. Then, given T̄pi = [
R̄pi
̄tpi

01×3 1 ], the new position of

source point i is computed as p̃i = R̄pipi + ̄tpi and the warped source
to register on the target is P̃ = ⋃i=1p̃i.

7 Experimental results

In this section, we present the result of our experiments on two
types of simulated and real datasets. To robustify the association,
we used two concatenated SHOT descriptors (yielding a 704-D
feature vector) per point, with big and small radii to account for the
small and the large geometrical features. For the experiments in this
section, the two SHOT radii, and n0 are set to 0.02 m, 0.05 m, and
10, respectively. Also, we set both kA and kp to 10.

7.1 Simulated-data

The quantitative evaluation of the framework is performed
on an animated 3D model whose points are associated with a
specific identifier code. As a result, each point representing a
specific part of the surface shares the same index The frame-to-
frame animation of the 3D model, shown in Figure 4, is performed
with bounded biharmonic weights (Jacobson et al., 2011), which
produces a smooth deformation. Figure 4A shows 30 different
deformations of a hand generated through this method. By running

FIGURE 6
Deviations from ground-truth in 5 experiments from non-rigid ICP and SPaM on the selected pairs of deformation.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1019579
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Maleki et al. 10.3389/frobt.2023.1019579

FIGURE 7
RMSE of distances between corresponding points of warped source and target on 5 sets of deformation.

FIGURE 8
Color-coded patch-wise correspondences of soft patches on the source and the target including their centroids on Sunflower dataset.

our pipeline for 23894 points of this dataset, and choosing an
average number of 100 points to be included in the partitions,
in total 266 soft partitions for both source and target were
generated. To show the robustness of the optimization, the detected
correspondences of articulation 1, and articulation 7 of this
dataset are depicted by centroids as representatives of patches
in Figure 4B.

By warping all points of articulation i (source) to i+ 1 (target)
using the correspondences, there would be some deviation with
respect to the actual position of the target points. The box plots
associated with the errors of points in registrations for 29 pairs of
point clouds are shown in Figure 4C. In these 29 experiments, the
average number of the established correspondences is 210 out of 280
soft patches achieved in 100 iterations on average.
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FIGURE 9
Registering two point clouds of the Boxing dataset, 40 frames apart.

FIGURE 10
Qualitative comparison of our method (SPaM) compared to SurfelWrap (Gao and Tedrake, 2019) via the results of registration and reconstruction up to
frames 100 and 200.

In another experiment with ground truth, we quantitatively
compared the performance of our method against
Zampogiannis et al. (2019), which is available as part of the Cilantro
library (Zampogiannis et al., 2018). In this experiment, the goal is
to create similar conditions as the capturing process with a single
solid-state LIDAR camera (e.g., using a Realsense l515) in which the

output point clouds are partially overlapping during deformation.
For this experiment, we used the Deforming Human dataset with
ground truth [generated again with bounded biharmonic weights
(Jacobson et al., 2011)] in which each point of the surface has the
same index in different animation frames. Simulating a fixed depth
sensor by applying a raytracer algorithm (Skinner et al., 2014), the
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point clouds with different deformation were placed in front of the
sensor iteratively, and the result of raytraced frames 1, 2, 4, 6, 8, and
10 are displayed in Figure 5 with the related colour-map for the
frames. To make this experiment more realistic, sensor noise was
simulated by applying zero-mean Gaussian noise with a standard
deviation of 2 mm in the direction of the surface normal for each
point.

During this process, the original indices (from the original
articulation) of the raytraced points are saved. To evaluate the
performance of methods in terms of handling different amounts
of deformations, we paired the first (as the target) point cloud
with the rest (as the source), giving 5 pairs of point clouds to
be registered. Feeding these pairs into our pipeline and non-
rigid ICP, we first found the corresponding points of the target
and source (which share the same original indices) and then
measured the absolute distance of those corresponding points
in the warped source to the target. The box plot of deviations
from ground truth associated with our pipeline (SPaM) and non-
rigid ICP is illustrated in Figure 6, where the horizontal axis
shows the experimental pairs, and the vertical axis represents the
deviation from the ground truth in meters. In the box plots, the
bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively; the central mark shows the median; and
the outliers are represented by “+” symbol. The Root Mean Square
Error (RMSE) acquired from these experiments are displayed
in Figure 7.

7.2 Real-data

We use the VolumeDeform dataset (Innmann et al., 2016),
which contains a variety of deformable objects, to evaluate
the performance of our method qualitatively. Our framework
is capable of registering scans taken with a significant time
difference, indicating the robustness of our optimization scheme
for patch correspondence against large non-rigid local and
global deformations. To demonstrate this capability, we used two
pointclouds of the Sunflower dataset 30 frames apart. The scans are
down-sampled and partitioned into soft patches (with 200 points on
average), and then 95 corresponding patches were established (out
of 125 and 139 soft patches of target and source). The soft partition
concept is visualized in Figure 8.

We deployed our pipeline on boxing dataset as well;
Figures 9A, B show the graph generated by the corresponding
centroids and edges to 8 neighbour centroids (or rather
patch centroids) for target and source. Figure 9D shows the
target deformation onto the source by applying the average
transformations of adjacent centroids to the points.

Although the focus of our proposed method is an offline CPU-
based non-rigid registration (not reconstruction or fusion), we
qualitatively compare the performance of SPaM on registering the
consecutive frames with Surfelwarp (Gao and Tedrake, 2019). For
this purpose, we use a simple iterative forward registration and
fusion scheme. The current frame is regarded as the source and the
mergedmodel of all previous frames as targets (similar to a canonical
frame). The objective in each iteration is, then, to register and warp
the canonical frame towards the new frame. By using the boxing
dataset, we merged the warped reconstructed model iteratively with

the new scan. As there is not much deformation at the beginning
of this dataset, we used frames from 40 to 200, and the result of
reconstruction up to frames 100 and 200 acquired from twomethods
are compared in Figure 10, which shows the acceptable fidelity and
alignment of the reconstructedmodel by SPaM to the current frame.
It is worth mentioning that the average time for each CPU-based
registration of this dataset is 120 s.

With the same conditions as above, we experimented on
170 consecutive scans of the minion dataset, and the results of
three registrations are shown in Figure 1. The second column is
the current frame, the third column is the reconstructed model,
and the fourth column is the registration of the mentioned two
pointclouds.

8 Conclusion

We have devised a framework (SPaM) to establish the
correspondences of two non-rigidly deformed point clouds by using
soft patches and an aggregation of locally rigid transformations.
Our framework is evaluated on a challenging VolumeDeform
dataset as capable of registering scans taken with a large time
difference, indicating the robustness of our optimization scheme
for patch correspondence against heavily non-rigid local and global
deformations. However, on curved surfaces, the Euclidean distance
is a suboptimal choice for propagating patch transformations to
point elements. Re-organizing and optimizing our framework upon
geodesic distance is a feasible option which we plan as an extension
of our work. Also, by enhancing the optimization method, we plan
to present this pipeline as a real-time approach.
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