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On the precision of 6 DoF
IMU-LiDAR based localization in
GNSS-denied scenarios

Matteo Frosi*†, Riccardo Bertoglio† and Matteo Matteucci†

Dipartimento di Elettronica, Informazione e Bioingegneria of Politecnico di Milano, Milan, Italy

Positioning and navigation represent relevant topics in the field of robotics, due
to their multiple applications in real-world scenarios, ranging from autonomous
driving to harsh environment exploration. Despite localization in outdoor
environments is generally achieved using a Global Navigation Satellite System
(GNSS) receiver, global navigation satellite system-denied environments are typical
ofmany situations, especially in indoor settings. Autonomous robots are commonly
equipped with multiple sensors, including laser rangefinders, IMUs, and odometers,
which can be used for mapping and localization, overcoming the need for global
navigation satellite system data. In literature, almost no information can be found
on the positioning accuracy and precision of 6 Degrees of Freedom Light Detection
and Ranging (LiDAR) localization systems, especially for real-world scenarios. In this
paper, we present a short review of state-of-the-art light detection and ranging
localization methods in global navigation satellite system-denied environments,
highlighting their advantages and disadvantages. Then, we evaluate two state-
of-the-art Simultaneous Localization and Mapping (SLAM) systems able to also
perform localization, one of which implemented by us. We benchmark these two
algorithms on manually collected dataset, with the goal of providing an insight
into their attainable precision in real-world scenarios. In particular, we present two
experimental campaigns, one indoor and one outdoor, to measure the precision of
these algorithms. After creating a map for each of the two environments, using the
simultaneous localization and mapping part of the systems, we compute a custom
localization error for multiple, different trajectories. Results show that the two
algorithms are comparable in terms of precision, having a similar mean translation
and rotation errors of about 0.01 m and 0.6°, respectively. Nevertheless, the system
implemented by us has the advantage of being modular, customizable and able to
achieve real-time performance.

KEYWORDS

GNSS-denied environment, indoor navigation, outdoor navigation, lidar, IMU, SLAM,
benchmarking

1 Introduction

Positioning represents one of the key problems in robotics. Real-world applications, ranging
from small indoor spaces to large outdoor scenes, include unmanned vehicle trajectory
planning, 3D reconstruction, or search and rescue during emergencies, and they all require
an accurate 6 Degrees of Freedom (6 DoF) positioning of the robot, which can be classified
as follows. When the robot moves through an unknown environment, it is referred to as
Simultaneous Localization and Mapping (SLAM); here, the robot must build a map of the
surrounding area while simultaneously localizing itself inside it. When the robot goes through
a known environment, for example, having available a pre-computed map, only the term
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localization is used, as the robot must only determine its position in
the existingmap. It is important to understand that in SLAMbothmap
and trajectory of the robot are unknown, and must be computed from
scratch; when using the term localization, however, one means that
only the trajectory of the robot must be estimated, while the map is
already given through some means (e.g., a previous run of a SLAM
algorithm).

Although outdoor localization is easily achieved using a Global
Navigation Satellite System (GNSS) receiver, the range of situations
where the sensor can be used is limited, as environments may contain
physical obstacles that shade the GNSS signal (e.g., urban canyons).
Also, the attained accuracy with the majority of GNSS systems is
inadequate for applications where precise localization is crucial. Over
the last decade, many algorithms have been proposed to get precise
positioning in real-world indoor andGNSS-denied environments.The
idea behind the majority of these works is to use multiple sensors to
obtain good estimates of the poses of the robot. The combination of
IMU and Light Detection and Ranging (LiDAR) sensors is usually
adopted to achieve accurate results and to build detailed 3D maps.

Although the number of systems available for 6 DoF LiDAR
positioning is considerable, to the best of our knowledge, there is no
work on the attainable positioning precision of these systems in real-
world scenarios and with real data Röwekämper et al. (2012). For this
reason, the main research question that this paper is answering is not
related to the development of a novel localization-based algorithm, but
it focuses on the detailed evaluation of existing localization systems.
The framework of the paper is in relative localization accuracy, i.e.,
the localization accuracy referred to a local reference system, which is
defined w.r.t., a map. This is done in order to stress the coherence of
the systems over multiple runs, but also because ground truth is often
hard to obtain in real-world scenarios. As explained later in Section 4,
the map is assumed to be built using a SLAM algorithm, and then the
accuracy of the localization is computed w.r.t., such map.

Our paper presents the following contributions; first, we provide
a literature review of existing 6 DoF LiDAR localization and SLAM
systems, highlighting features, advantages and negative aspects. After
a brief discussion aboutwhich algorithms aremore suitable to perform
localization, we benchmark those systems with two experimental
campaigns, one indoor and one outdoor, evaluating the precision of
the results obtained on real-world data, manually collected by us.
Although there are plenty of dataset in literature, the majority is
gatheredwith high-end sensor suites, is pre-processed, and it is usually
representing the same type of environments (e.g., cities). To truly stress
the accuracy of SLAM and precision of localization, we chose to use
data collected by us through a low-end sensor suite and without pre-
processing it. The two collected dataset represent environments which
are not commonly seen in dataset available in literature. Moreover, we
took multiple trajectories of more or less the same paths, to perform
localization, which is not typical of standard dataset. It is important
to stress the fact that, as we want to represent real-world situations as
close as possible, we chose scenarios where the ground truth was too
challenging to estimate (GNSS-denied, complex structures, and other
constraints). This is also the reason why the focus of the work is about
relative re-localization accuracy, i.e., w.r.t a previously computed map
or trajectory (and not referred to the ground truth, as it is usually done
with common dataset).

The rest of the paper is outlined as follows. We first discuss related
works in Section 2, to give a brief but detailed insight about existing

systems for SLAM and/or localization, describing advantages and
disadvantages. Then, in Section 3 we show the sensors used in the
experiments and describe the localization algorithms used, along with
the adopted evaluation metrics. Follows Section 4, which is dedicated
to the validation of the selected systems. Lastly, Section 5 concludes
the manuscript.

2 Related works

Vehicles and robots are commonly equipped with IMU sensors to
measure linear acceleration and angular velocity. These data can be
used to calculate the location of the vehicle relative to the starting
point. However, the accumulated error will make the localization
algorithm unreliable after a few meters. GNSS sensors are commonly
used to correct the accumulated error of IMU sensors, in outdoor
environments. Nevertheless, this is not possible in GNSS-denied
environments. Thus, the scientific community explored alternative
approaches exploiting also LiDAR information, which allows to
achieve accurate results.

A well-known method for 3D localization and mapping is LiDAR
Odometry and Mapping (LOAM) Zhang and Singh (2014). This work
aims to divide complex tasks that are typically solved simultaneously
using SLAM methods. These algorithms work by optimizing a large
number of variables at the same time, resulting in low-drift but high-
computational complexity algorithms. LOAM is designed to limit the
drift errorwhile achieving real-timeperformance.Thus, one algorithm
performs odometry at a high frequency, but low fidelity, to estimate the
velocity of the LiDAR. Another algorithm runs at a lower frequency
for fine processing to create a map with point clouds. Mapping is
conducted with a method similar to Iterative Closest Point (ICP)
Besl and McKay (1992), to produce high-precision maps. Then, the
information from velocity estimation and mapping are combined
to produce accurate motion estimates. Even if the methods showed
relatively low error estimations compared to the length of trajectories,
the lack of a loop closure causes noticeable drifts over time, making
LOAM unusable for long paths.

LeGO-LOAM Shan and Englot (2018) is a LiDAR odometry and
mapping method based on LOAM. The system is divided into five
modules. The segmentation module produces a 2D representation of
the LiDAR clouds. The obtained range images are then segmented via
a clustering algorithm, and groups with few points are discarded from
the image. This is done in order to perform fast and reliable feature
extraction, which is the next step. Features are successively used to
match scans for finding the transformation between them in a module
called LiDAR odometry. The LiDAR mapping module also uses said
features, registering them to a global point cloud map. Finally, the
transform integration module fuses the pose estimation results from
LiDAR odometry and LiDAR mapping and outputs the final pose
estimate. LeGO-LOAM aims to improve the efficiency and accuracy
relative to the original LOAM framework. However, as with most
of similar approaches, LeGO-LOAM is an odometry and mapping
method. Thus, there is not an easy way to adapt the implemented code
just for the localization task. A new map is created at every run of the
algorithm, and it is not possible to localize the robot on an already
created map.

PoseMAP is a localizationmethod designed for 3D LiDARs. Based
on the matching of extracted distinctive 3D features in point clouds,
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PoseMAP is thought for lifelong localization. It has been tested for
18 months through a mix of human-made structured and off-road
unstructured environments without a single failure Egger et al. (2018).
Even the changes that occurred in the environment during this long
period did not affect the localization accuracy. Indeed, the system can
update the map and extend it in case of newly seen environments.
However, the authors did not make the code available to the public.

BLAM! is an open-source software package for LiDAR-based real-
time 3D localization and mapping. BLAM!1 was developed by Erik
Nelson from the Berkeley AI Research Laboratory. However, the
author provides neither a scientific paper nor a guide describing how
the algorithm works. Thus, the only way to know how this method
works is to read the source code entirely and thoroughly test it.

GICP-SLAM Ren et al. (2019) is a 3D LiDAR SLAM method
thought for indoor and harsh environments, like mines. As the
name suggests, it performs scan matching via the GICP algorithm
Segal et al. (2009). GICP-SLAM is a graph-based SLAM Grisetti et al.
(2010) method; thus, it performs optimization of a graph, known
as pose graph, where nodes are the robot poses, and edges are
the transformations between the poses. Also, other constraints than
transformations can be added to the pose graph. The general
framework of GICP-SLAM is the following. The input point cloud
from the 3D LiDAR is sent to three modules. One is in charge of
plane detection to exploit this as an additional constraint. The second
performs LiDAR odometry by matching two successive scans via
GICP. The last one is in charge of handling loop detection constraints.
After the robot motion between scans is calculated, another module
refines it by scan matching the current scan with the map. All the
constraints and the refined transformations are sent to the Pose Graph
Optimisemodule that outputs the final pose result that is used to build
the map. Also in this case, the authors did not make the code available
to the public, making GICP-SLAM unusable.

HDL Koide et al. (2019), consists of a 3D LiDAR-based SLAM
algorithm for long-term operations. The system comprises two main
modules, one dedicated to offline mapping, the other for real-
time localization. The mapping is done with a graph-based SLAM
algorithm that exploits a scan matching technique, similarly to GICP-
SLAM. Being a SLAM algorithm, a loop detection and closure
procedure has been implemented. Moreover, in order to compensate
for the accumulated rotational error, the authors introduced a ground
plane constraint, to build consistent maps in long-term scanning
processes. The localization algorithm is implemented as an Unscented
Kalman Filter (UKF) Wan and Van Der Merwe (2000), combining
the information from the scan matching of the current scan to the
previously constructed map and a prediction step, which uses the
angular velocity and linear acceleration from an IMU sensor.

ART-SLAM Frosi and Matteucci (2022) 2 is also a 3D LiDAR-
based SLAM algorithm, similar to HDL, implemented by the
corresponding author of this paper. The mapping follows the same
Graph SLAM approach, allowing for different context-based scan-
matching techniques (e.g., ICP, GICP), while also performing fast
and efficient loop detection, making the whole method scalable
and suitable for real-time applications. ART-SLAM includes other

1 The source code can be found at this link: https://github.com/erik-nelson/blam.

2 The source code of the mapping module can be found at this link: https://
github.com/MatteoF94/ARTSLAM.

differences w.r.t., HDL, including parallelized point cloud pre-
processing and improved floor detection. Being ART-SLAM easy to
extend and to work with, we implemented a localization module,
named ART-SLAM LOC, to be part of the evaluation presented in
this article. The module works the same way as the HDL localization
module, with someminor performance improvements, such as ground
removal from both map and input scans, for efficient pose correction,
and up-sampled prediction. Unlike HDL, both ART-SLAM and
ART-SLAM LOC are not bound to any framework and have a
high degree of modularity, making them customizable and easy to
improve.

3 Materials and methods

In Section 2, we have shown how 6 DoF positioning for indoor
and GNSS-denied scenarios can be achieved with precision using
LiDAR sensors, integrated with other data sources (e.g., IMU). With
the purpose of understanding and evaluating existing algorithms
for LiDAR-based 6 DoF localization, we decided to perform two
experimental campaigns, collecting data from an indoor space and
from a GNSS-denied outdoor environment, to evaluate the precision
of these methods. Our intent is also to contribute to the literature,
as little information is available regarding this context of navigation
and positioning (GNSS-denied, 6 DoF LiDAR-based) in real-world
environments. In this section, we first describe the sensors we used
in our experimental campaigns. Then, we compare the presented
systems to choose which of them is suitable to perform both
SLAM and localization, and lastly we detail the evaluation metrics
adopted.

3.1 Materials

The sensor suite used in our experiments to perform all the
mapping and localization tasks consisted of an Ouster OS-1 sensor
that provided both LiDAR and IMU data. The LiDAR component has
a range resolution of 1.2 cm, a vertical resolution of 64 beams and
a horizontal resolution of 1024. The vertical FOV is 33.2° and the
horizontal FOV is 360°.The angular sampling accuracy is ±0.01°, both
vertical and horizontal, and the rotation rate is configurable at 10 Hz or
20 Hz. We configured the sensor to retrieve data at 20 Hz, thus having
point clouds of about 65 K points.The IMU component gathers higher
frequency data (100 Hz), allowing for a fast localization. We mounted
the sensor on a four-wheeled cart, which wasmanually pulled through
selected locations of the experiments area, trying to keep the same
speed.

3.2 Methods

To find the most suitable approaches to test for benchmarking,
we analyzed the characteristics of the systems discussed in Section 2.
In Table 1, we report a summary of the 3D LiDAR odometry and
mapping methods reviewed in the previous section. We indicate the
framework adopted in each work, the type and purpose of the system,
whether a localization algorithm is provided, and whether the code is
available. SLAMmethods differ fromOdometry andMapping systems
because the firsts add loop closure.
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TABLE 1 Summary of the 3D localization andmapping approaches. Methods are also compared based on whether they adopt the Robot Operating System (ROS)
Quigley et al. (2009) as framework or not.

System Framework Purpose Localization Code

LOAM Zhang and Singh (2014) ROS Odometry∖mapping No Yes

LeGO-LOAM Shan and Englot (2018) ROS SLAM No Yes

PoseMAP Egger et al. (2018) None Localization Yes No

BLAM! ROS SLAM No Yes

GICP-SLAM Ren et al. (2019) None SLAM No Yes

HDL Koide et al. (2019) ROS SLAM Yes Yes

ART-SLAM Frosi and Matteucci (2022) None SLAM Yes Yes

For the testing phase, we opted for the approach of Koide et al.
(2019) and ART-SLAM Frosi and Matteucci (2022) (including the
localization module implemented by us). Both are SLAM algorithms,
and, as already said, they can rely on a drift correction procedure using
loop detection and closure. This can guarantee long-term mapping
operations for large-scale outdoor environments and very accurate
results in indoor and short scenes. Both are graph-based,meaning that
trajectories and maps can be efficiently computed, manipulated, and
stored. Both have the best performance relative to other state-of-the-
art 6DoF LiDAR SLAMapproaches.They also both havemapping and
localization modules, allowing us to benchmark the positioning using
the maps generated by the algorithms themselves.

The SLAM components of both algorithms present great accuracy,
even on long trajectories, w.r.t., other methods. A detailed comparison
between different SLAM algorithms [including LOAM Zhang and
Singh (2014), LeGO-LOAMShan and Englot (2018), HDLKoide et al.
(2019) and ART-SLAM Frosi and Matteucci (2022)] can be found
in Frosi and Matteucci (2022), in which it is shown that both HDL
and ART-SLAM prove to be accurate in determining the trajectory
of a robot, and consequently, in building a high-fidelity map of the
environment, to be used later, for localization. When considering
datasets collected at higher frequency, i.e., the ones used in this paper,
the accuracy and precision of the systems further increase, hence
making them suitable methods for benchmarking.

Lastly, the localization algorithm is implemented as an Unscented
Kalman Filter Wan and Van Der Merwe (2000), in both methods.
While IMU data is used in the prediction step, the correction phase
is performed by aligning a LiDAR scan with a global map, performing
scan-to-map registration. This way, errors in the correction step are
independent of each other and not related temporally: each scan-to-
map alignment is affected by its own error. The overall error thus
depends on the distribution of the error in the scan matching between
the current scan and the map, meaning on the global accuracy of
the map itself. Both the current scan and the map do not depend on
the length of the trajectory. To be more precise, the prediction step
could vary with the length of the trajectory, based on the distance of
the initial guess for the minimization of the scan-to-map alignment;
nevertheless, the correction phase is bounded by the residual error of
the previous scan and the error in one step prediction of the IMU. Both
errors are one-step errors, and they get reset at each alignment,making
both HDL and ART-SLAM LOC viable solutions (also in terms of
memory usage) when performing localization on trajectories of any
length and duration.

To evaluate the selected algorithms, we estimated the localization
accuracy on specific poses by manually re-positioning the system in
the same spots, w.r.t., a previous trajectory (usually the first, for each
experimental campaign). Thus, we named this error “re-localization”
error. In our indoor experiments, we recorded a first trajectory by
stopping the system in specific marked poses. Then, we recorded a
second trajectory, reasonably close to the first one, stopping more or
less at the same specific positions. A ground truth acquisition system,
i.e., an OptiTrack3 motion capture system, was used in the indoor
experiments to compensate for the difficulty of manually placing the
sensor exactly in the same positions. The system exploits custom
infrared cameras to localize special reflective markers attached to the
robot being tracked, which must be in the field of view of at least three
cameras of the OptiTrack system. For this reason, the OptiTrack is not
easily deployable in large areas, and it can be used only in restricted
locations (in our case, a very limited part of the indoor environment
available to us).When the reflectivemarkers on the robot are correctly
detected, the system retrieves the 6 DoF position of the rigid body
formed by the markers.

In the indoor case, the re-localization error of the systems was
measured on a set of poses by removing any bias due to incorrect
re-positioning, using the OptiTrack. In the outdoor scenario, i.e., an
O&G refinery, the ground truth was not available, making it difficult
to collect the positioning ground truths, due to the presence of many
physical obstacles (e.g., pipes and trusses), which, due to their density
and placement, do not allow the usage of GNSS signals (typical of
similar environments). Thus, in the outdoor case, we expect the re-
localization error to include the error of manually re-positioning the
sensor in the same poses.

As mentioned above, we tried to re-position the robot in the
same spots, trying to record trajectories as similar as possible one
to the other. In particular, we selected ten locations for the indoor
scenario and eleven locations for the outdoor experiment. The spots
were selected such that the distance traveled between two of them is
more or less always the same. Moreover, the locations were placed in
particular areas of interest in both scenarios (e.g., beginning and end
of the trajectory or before and after a curve). Figure 1 represents the
positions of the eleven locations in the outdoor experiment, used for
re-localization. It is important to notice that different areas overlap.
Differently from the majority of works, we selected the re-localization

3 https://optitrack.com/motion-capture-robotics/
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FIGURE 1
Position, in meters, of the selected eleven locations in the outdoor
experiments, used for re-localization. The underlying blue line
represents the first estimated trajectory with one of the systems.

positions not just in terms of spatial configuration (equally distant, and
nearby zones of interest, such as curves), but also temporal, as each
location is uniquely determined in all trajectories. To better explain
this, for each trajectory recorded we stopped the cart in proximity
of the testing locations, and checked the associated timestamps. All
trajectories have then been matched using these timestamps, in order
(e.g., first timestamps of all trajectories correspond to testing area A1).
This approach allows us to decouple the physical locations from the
order of visiting, resulting in a more coherent benchmarking.

To measure the re-localization error, we adopted the metrics used
in the most popular benchmarking works like Kümmerle et al. (2009);
Geiger et al. (2012); Sturm et al. (2012); Fontana et al. (2014). In the
following, we provide the mathematical formulation of the problem.
Figure 2 shows the plots of two indoor example trajectories from
our indoor experiment, with the following conventions. In creating
both trajectories, we recorded the estimated poses given by HDL and
ART-SLAM, and the ground truth poses from the OptiTrack. The
experiments were carried out manually pulling the cart throughout
a laboratory, starting from the OptiTrack area, going outside that
tracked area, then coming back to conclude the path (seeFigure 2).We
decided to go beyond the tracked area to make a longer trajectory, and
further stress the SLAM algorithms, while trying to make the paths
as similar as possible. The idea was to estimate the accuracy of the
localization algorithmswhen the system is placed in the same location,
between different runs of the algorithm.Thus, the re-localization error
tells us how the system is consistent in giving the same pose over time,
i.e., how the SLAM components of the evaluated systems are coherent
over multiple runs.

For each area Ai, and for each couple of trajectories, we have
manually picked a pose Pest,ij estimated by the localization algorithm;
where i ∈ {1…nposes} is the area index, and j ∈ {1,2} is the trajectory
index. A pose P is a vector that contains position information along
the three directions x,y,z, and orientation as Euler angles, composed

of the three elements roll,pitch,yaw. For each area, we associate the
corresponding ground truth pose Pref,ij, if it exists, as the one closer
in time according to the timestamps of the messages. Given that
the OptiTrack produces data from 50 to 100 times faster than the
odometry algorithm, we are sure to find very close correspondences
in time. We tried to manually park the system in the same areas
in both trajectories; nevertheless, it is nearly impossible to manually
re-position a cart in the same place. We estimate this difference in
re-positioning using the OptiTrack poses, when available.

Mathematically speaking, we computed the transformationmatrix
Tref,i between ground truth poses for each area Ai as

Tref,i = transm(Pref,i1,Pref,i2)

and the transformation matrix Test,i between estimated poses for each
area Ai as

Test,i = transm(Pest,i1,Pest,i2)

where transm() is a function that gives as output the transformation
matrix necessary to express the second argument of the function in
the reference system of the first argument (as both are 3D poses).

Then, we calculated the error matrix Ei as the inverse composition
between the two transformations Test,i and Tref,i

Ei = inv(Tref,i) ∗Test,i

where inv() is the usual inversion matrix operator. Intuitively, the
matrix Ei tells us the difference in translation and rotation between
the two transformations Test,i and Tref,i. Finally, we estimated the
translation and rotation errors, trans_ei and rot_ei, respectively, with
the following metrics:

trans_ei = ‖trans(Ei)‖

where the function trans() extracts the translation part of a given
transformation matrix,

rot_ei = |angle(rotm2axang(Ei)) |

and the function rotm2axang() converts the rotation matrix
extracted from a given transformation matrix, to the corresponding
representation of the axis angle, and the function angle() extracts the
angle from an axis-angle representation.The axis-angle representation
is just one of many ways to represent rotations together with
quaternions, Euler angles, rotation matrices, and many others. The
advantage of the axis-angle representation consists in condensing the
rotation in one single number instead of having three components,
namely roll,pitch,yaw, as with Euler angles. A much more detailed
explanation of 3D rotation error metrics can be found in Huynh
(2009), including also the various representations.

In the outdoor scenario, since there was no ground truth, we
only calculated the transformation matrix Test,i between the estimated
poses Pest,i1 and Pest,i2, for each area Ai, considering it as error matrix.
Obviously, this interpretation does not take into account for possible
re-positioning mistakes, which are then included in the whole re-
localization error estimation procedure.
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FIGURE 2
Two indoor trajectories associated to the indoor re-localization error experiments; the OptiTrack area is black-dashed contoured. On the left the first path,
while on the right the second trajectory.

FIGURE 3
Indoor area of the experimental campaigns. It consists of a long laboratory (left panel) with many obstacles, visible in the map, as a point cloud (right panel),
obtained with HDL Koide et al. (2019).

4 Results

4.1 Indoor experiment

In this section we report the information relative to the first,
indoor, experiment, corresponding to a large lab room. First, we
give some generalities about the setup, data collection and registered
trajectories. Then, we show the comparison between the localization
obtained through HDL and ART-SLAM, discussing both translation
and rotation errors of the second trajectory w.r.t., the map obtained
from the first one.

4.1.1 Setup and data collection
As indoor scenario, we used the main large room of our

laboratory (AIRLab, Politecnico di Milano, Italy), represented in
Figure 3. The cart, described in Section 3.1 and visible in the
left panel, was pulled along two trajectories, which characteristics
are listed in Table 2. Overall, ten areas Ai, i ∈ {1…10} have
been selected in the room, to be used in the evaluation of the
algorithms.

TABLE 2 Information about the two trajectories of the indoor experiment.
The first one is used to build a 3Dmap of the environment using SLAM, while
the other allows to evaluate the localization algorithms.

Feature Trajectory 1 Trajectory 2

Duration 308 (s) 306 (s)

Estimated length 49.71 (m) 48.31 (m)

Estimated mean speed 0.28 (m/s) 0.24 (m/s)

Estimated max speed 0.52 (m/s) 0.50 (m/s)

# Laser scans 6167 6121

# IMU samples 30832 30606

4.1.2 Indoor localization
Using the first trajectory traj1 with both SLAM methods, ART-

SLAM and HDL, we reconstruct an accurate representation of the
room, in the form of a dense cloud. As example, the right panel of
Figure 3 shows the map obtained with HDL, which contains about
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FIGURE 4
Re-localization error of the indoor experiment, consisting of both translational and rotational components, using HDL Koide et al. (2019) and ART-SLAM
Frosi and Matteucci (2022).

FIGURE 5
CDF of the re-localization errors of the indoor experiment, consisting of both translational and rotational components, using HDL Koide et al. (2019) and
ART-SLAM Frosi and Matteucci (2022).

1 M points, while the number of acquired points sums up to 404 M
elements. The dimension and accuracy of the obtained map (and
the same can be said for ART-SLAM) is, along with the explanation
done in Section 3.2, due to the algorithm being graph-based. For this
reason, not all the laser scans are saved and used to build the map, but
just the most relevant (e.g., after a certain distance has been traveled).
This allows to run even long trajectories, while maintaining high
accuracy and being memory friendly, features that other algorithms
in literature do not have.

As stated in Section 3.2, we use the first trajectory to build the
3D map. Then, both the first and the second trajectories are used for
re-localization, obtaining multiple estimates of the robot pose (one
for each laser scan). The translation re-localization errors for all the

testing areas are represented in the left image of Figure 4, while the
rotation re-localization errors can be seen in the right panel. BothHDL
and ART-SLAM LOC achieve superior accuracy, resulting in errors in
the magnitude of centimeters for the translation and 10th of degree
angle for the rotation. While the accuracy is similar, ART-SLAM
(with its localization module) has the advantage of being real-time
[or even faster, see Frosi and Matteucci (2022)], modular, and a zero-
copy software. Moreover, Figure 5 shows the cumulative distribution
function (CDF) over both translation and rotation re-localization
errors. We set the reachable values to 6 cm and 6 degrees, as these
correspond to the maximum errors that were seen in both indoor and
outdoor experimental campaigns, to allow a fair comparison between
all CDFs and without loss of generality.
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FIGURE 6
Outdoor area of the experimental campaigns. It is the Eni Centro Olio area at Trecate (NO), Italy. This refinery was traversed to record five trajectories. The
left panel shows the environment, while the right image represents the 3D map, obtained with ART-SLAM Frosi and Matteucci (2022).

TABLE 3 Information about the five trajectories of the outdoor experiment. The first one is used to build a 3Dmap of the environment using SLAM, while the other
allows to evaluate the localization algorithms.

Feature Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Trajectory 5

Duration 489 (s) 454 (s) 403 (s) 552 (s) 519 (s)

Estimated length 127.79 (m) 122.58 (m) 123.73 (m) 208.58 (m) 126.69 (m)

Estimated mean speed 0.26 (m/s) 0.27 (m/s) 0.31 (m/s) 0.38 (m/s) 0.24 (m/s)]

# Laser scans 9779 9084 8051 11043 10387

# IMU data samples 48888 45416 40251 55208 51930

FIGURE 7
Difference between the first and fourth trajectories of the outdoor experimental campaign.

Despite the low number of samples (the ten areas considered
for re-localization), both Figures 4, 5 confirm that the length of a
trajectory, or the acquisition time, are not correlated to the attained
precision. Both tested systems rely on UKF localization, with a
correction step performed via scan-to-map point cloud alignment;
this way, possible localization errors are bounded by the residual
error of the previous scan and the error in one step prediction
of the IMU. This was expected, as both errors correspond to
one single step in the UKF algorithm and they get reset at each
alignment, making both systems scalable, but also independent from

time (errors depend only on the characteristics of the considered
locations).

Lastly, we give a brief comparison about the processing time of
both algorithms when performing localization [as the comparison for
the SLAM parts is already done in Frosi and Matteucci (2022)]. ART-
SLAM LOC processes inputs as fast as the data acquisition rate of the
LiDAR (as the correction step is the bottleneck of the system, being
dependent on scan matching between a point cloud and a whole 3D
map), making it able to run real-time. HDL, on the other hand, is
slower, working at a lower processing rate.
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FIGURE 8
Translation re-localization errors of the outdoor experiment, using HDL Koide et al. (2019) and ART-SLAM Frosi and Matteucci (2022). The accuracy of both
systems is noticeable.

4.2 Outdoor experiment

In this section we describe the second experiment, which is
outdoor, in an oil refinery. As before, first we give some generalities
about the setup, data collection and registered trajectories. After that,
we show the comparison between the localization obtained through
HDL and ART-SLAM, on all the five trajectories, discussing, once
again, both translation and rotation errors w.r.t., the map obtained
with the first trajectory.

4.2.1 Setup and data collection
The chosen outdoor space for testing the mapping and re-

localization algorithms is the Eni Centro Olio area at Trecate (NO),
in Italy, visible in the left panel of Figure 6. In this experiment,
which represents a typical GNSS-denied scenario, we pulled the cart
along five trajectories, which characteristics are listed in Table 3.
Differently from the indoor scenario, where the two trajectories where
almost identical, in the outdoor experiment, the fourth trajectory is
much longer than the one used to create the map, as it extends far
from the designated area. Figure 7 left and right panels correspond,
respectively, to trajectories 1 and 4, making visible the difference
between the two paths. Overall, eleven areas Ai, i ∈ {1…11} have been
selected in the outdoor area, to be used in the evaluation of the
algorithms.

4.2.2 Outdoor localization
Using again the first of the five trajectories, traj1, we are able

to achieve a full representation of the environment, as a dense 3D
map. Figure 6 shows the map obtained through ART-SLAM, which
contains about 1 M points, the same as the one obtained during

the indoor experiment. Stressing again the importance of using
graph-based algorithms for SLAM, it is remarkable how, comparing it
with the indoor scenario, the outdoor experiment maintains the same
degree of accuracy, even if the trajectory is much longer and the area
containing it is larger. This is also a confirmation that the selected
systems are scalable and efficient.

Once again, as stated in Section 3.2, we use the first trajectory
to build the 3D map. Then, the five trajectories are used for re-
localization, obtaining multiple estimates of the robot pose (one for
each laser scan). Figures 8, 9 show, respectively, the translation and
rotation re-localization errors for all the four pairs of trajectories (1-2,
1-3, 1-4, and 1-5), for all the testing areas (Figure 6). As for the indoor
experiment, bothHDL andART-SLAM, with the localizationmodule,
are proven to be accurate.

As it was done for the indoor experimental campaign, Figure 10
shows the cumulative distribution function (CDF) over both
translation and rotation re-localization errors. Stressing what stated
before, to allow a fair comparison of CDFs for both indoor and
outdoor scenarios, we set a maximum value of 6 cm for the translation
component, and 6 degrees for the rotation part. Even in this case, it
can be noticed that the values distribute in a uniform-like way over
a possible range of errors, also confirming that errors are not time-
correlated, but depend only on the physical characteristics of the
environment.

Differently from the indoor scenario, errors are slightly larger,
probably due to the noisy measurements, typical of outdoor
environments and for the unavailability of ground truth compensating
re-positioning errors (differently from the indoor experiment, where
these errors were corrected using the OptiTrack). Moreover, here the
path traversed is longer than the one used in the previous scenario,
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FIGURE 9
Rotation re-localization errors of the outdoor experiment, using HDL Koide et al. (2019) and ART-SLAM Frosi and Matteucci (2022). Again, both methods
prove to achieve superior precision.

FIGURE 10
CDF of the re-localization errors of the outdoor experiment, consisting of both translational and rotational components, using HDL Koide et al. (2019) and
ART-SLAM Frosi and Matteucci (2022).
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showing how 3D laser-based positioning is reliable even in larger
areas. Lastly, the error distribution confirms that the precision of the
systems does not depend on the size or duration of the trajectories,
as stated before, and the processing time comparison results in the
same considerations done for the indoor experiment (ART-SLAM
working in real-time, differently from HDL, which has slightly worse
performance).

5 Conclusion

In this paper we presented a review of 3D LiDAR systems used
for robot positioning, highlighting the methods most suitable for
SLAM and localization in GNSS-denied real-world scenarios. Based
upon code availability, performance, and purpose, we then selected
two systems to benchmark, HDL and ART-SLAM (including the
localization module implemented by us), using datasets that we
collected thanks to a custom sensor suite (Ouster OS-1 for both
IMU and laser scans). The benchmarking was done on two real-
world scenarios, both located in Italy: a long room of a laboratory, as
indoor case, and an area corresponding to a part of an oil refinery,
as GNSS-denied outdoor environment (due to metal pipes and
trusses).

We evaluated the algorithms comparing the estimated re-
localization positions w.r.t., previously computed maps using the
translation and rotation errors as metrics for comparison. We showed
that both tested methods achieve high precision, with ART-SLAM
being faster both for mapping and localization. These results make
them suitable for real-world applications, such as autonomous driving.
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