
TYPE Original Research
PUBLISHED 03 March 2023
DOI 10.3389/frobt.2023.1065394

OPEN ACCESS

EDITED BY

Yong Ma,
Wuhan University of Technology, China

REVIEWED BY

Jinling Wang,
University of New South Wales, Australia
Hasan Serhan Yavuz,
Eskişehir Osmangazi University, Türkiye

*CORRESPONDENCE

Simone Mentasti,
simone.mentasti@polimi.it

SPECIALTY SECTION

This article was submitted to Field
Robotics, a section of the journal
Frontiers in Robotics and AI

RECEIVED 09 October 2022
ACCEPTED 20 February 2023
PUBLISHED 03 March 2023

CITATION

Mentasti S, Simsek YC and Matteucci M

(2023), Traffic lights detection and

tracking for HD map creation.

Front. Robot. AI 10:1065394.

doi: 10.3389/frobt.2023.1065394

COPYRIGHT

© 2023 Mentasti, Simsek and Matteucci.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Traffic lights detection and
tracking for HD map creation

Simone Mentasti*, Yusuf Can Simsek and Matteo Matteucci

Politecnico di Milano, DEIB, Milan, Italy

HD-maps are one of the core components of the self-driving pipeline. Despite
the effort of many companies to develop a completely independent vehicle,
many state-of-the-art solutions rely on high-definitionmaps of the environment
for localization and navigation. Nevertheless, the creation process of such maps
can be complex and error-prone or expensive if performed via ad-hoc surveys.
For this reason, robust automated solutions are required. One fundamental
component of an high-definition map is traffic lights. In particular, traffic light
detection has been a well-known problem in the autonomous driving field.
Still, the focus has always been on the light state, not the features (i.e., shape,
orientation, pictogram). This work presents a pipeline for lights HD-map creation
designed to provide accurate georeferenced position and description of all traffic
lights seen by a cameramounted on a surveying vehicle. Our algorithm considers
consecutive detection of the same light and uses Kalman filtering techniques to
provide each target’s smoother andmore precise position. Our pipeline has been
validated for the detection and mapping task using the state-of-the-art dataset
DriveU Traffic Light Dataset. The results show that our model is robust even with
noisy GPS data. Moreover, for the detection task, we highlight how our model
can correctly identify even far-away targets which are not labeled in the original
dataset.

KEYWORDS

HD-map, traffic-lights, detection, mapping, tracking

1 Introduction

In the last decade, interest in autonomous driving has rapidly grown inside research
institutes and industries. As a result, the desire to build autonomous vehicles without an
actual driver is getting real. Many notable attempts have been made to fulfill this goal, and
several significant milestones have been reached. In addition, there have been attempts to
operate autonomous vehicles on public streets. However, these efforts have been restricted
to a subset of the full driving task, e.g., highway-only, parking-only, or throttle/brake only, as
reported in Levinson et al. (2011), Yurtsever et al. (2020) and Cho et al. (2021).

To accomplish all autonomous driving tasks, computer systems should carefully
reproduce the human ability to perceive the environment and behave accordingly.
In particular, autonomous terrestrial vehicles used in urban areas must perceive the
environment as precisely as possible.Therefore,many of themost advanced driver-assistance
systems (ADAS) and automated driving systems (ADS) rely on some form of high-definition
(HD) maps. Indeed, while many manufacturers are working on a fully autonomous vehicle
system, able to navigate the environment without using pre-built knowledge of the driving
scenario, many of the advanced solutions running in urban environments relay some HD
Map, as shown in Bock (2021).This happensmostly because, as shown by Liu et al. (2020) the
usage ofHDMap is highly beneficial for the navigation process and can significantly increase

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1065394
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1065394&domain=pdf&date_stamp=2023-03-01
mailto:simone.mentasti@polimi.it
https://doi.org/10.3389/frobt.2023.1065394
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1065394/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1065394/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

the localization accuracy of the vehicle. These maps impact the
overall system confidence, reduce system computational resource
needs, help to improve comfort and convenience, and ultimately
contribute to system safety thanks to their centimeter-level accuracy.
HD maps are often captured using an array of sensors, such as
LiDARs, radars, digital cameras, and GPS, as depicted in Karls and
Mueck (2018); alternatively, they can also be constructed using aerial
imagery, as proposed by Javanmardi et al. (2017).

HD-maps usually include elements such as buildings, barriers,
road shapes, road markings, curbs, traffic signs, and traffic lights,
as described by Zang et al. (2018). Moreover, they are helpful for
3D object detectors since they provide strong priors that can boost
performance and robustness. For instance, HDNET by Yang et al.
(2018) takes advantage of these priors to extract geometric and
semantic features from the HD maps to be used in 3D object
detection. Indeed, thanks to HD maps, unlabeled driving logs can
be self-annotated. Furthermore, in Wilson et al. (2020), authors
backproject the 2D instance segmentation on the image plane into
3D cuboids in LiDAR space using the lane geometry present in
Argoverse’s HD maps by Chang et al. (2019) to constrain otherwise
ambiguous orientations. Other use cases for the HD maps are in
sensor validation and in the testing of ADS functions in simulation
as they provide accurate information, which can be considered as a
ground-truth, as done by Altec (2022).

However, creating HD maps requires a lot of human effort,
which is error-prone and inefficient. Maps are built using 3D
point clouds and relevant semantic information; therefore, human
resources are required to label the latter, such as the position of the
lanes, roads, traffic signs, and traffic lights. An obvious shortcoming
of this method is the lack of accuracy; also, labeling point clouds
is known to be very tedious and can significantly slow down the
HD maps building process, as highlighted in Elhousni et al. (2020).
Automating suchmanual work is critical to improve the efficiency of
the process and the quality of HDMaps. To achieve this automation,
different approaches have been employed. Heuristics based, like
(Yang et al., 2013; Ordóñez et al., 2017; Yan et al., 2017). Recently,
also deep learning approaches on 3D point clouds have been used
for such automation, as shown in Jiao (2018). In this case, the most
common solutions are based on Pointnet by Qi et al. (2017a), and
its variants, like (Qi et al., 2017b) and (Zhou and Tuzel, 2018). In
Elhousni et al. (2020), authors propose a novel method capable of
generating labeledHDmaps from raw sensor data, which uses a deep
learning approach. In the paper, they present roadmapping and lane
mapping modules and combine them to have driveable areas and
lanes for HDmap creation. However, there is no contribution for the
stationary map layer, consisting of traffic lights, road/traffic signs, or
building labels.

Although in literature there are studies on the detection of light
poles and pole-like objects, like (Yu et al., 2014), and (Yan et al.,
2017), only a few studies exist on traffic light detection for map
creation; a good example is the one presented in Fairfield and
Urmson (2011). Indeed, traffic light detection is widely addressed
in the literature, but there are still some challenges to be faced.
In particular, recognition in adverse conditions like rain or snow,
early recognition (detecting traffic lights at greater distances), and
recognition under different illumination settings, as illustrated by
Possatti et al. (2019). Traffic light detection also shares the issues
of small object detection, especially when early recognition is

considered. For instance, in Bosch Small Traffic Lights Dataset by
Behrendt andNovak (2017) the different traffic light sizes within the
training set vary between approximately 1 and 85 pixels in width,
with the mean of 11.3 pixels. Similarly, the DriveU Traffic Light
Dataset (DTLD) by Fregin et al. (2018a) contains traffic lights with
a width of 1–88 pixels and a mean of 14.67 pixels. Many studies
have focused on traffic light detection, and state recognition, like
(Behrendt et al., 2017), and (Possatti et al., 2019), or (de Mello et al.,
2021).These studies performwell and detect tiny traffic light objects
in the input images. However, for HD map creation, the physical
information of the traffic lights, such as bulb numbers, directions,
and pictograms, is also relevant. At the same time, the state is not so
important since it is variable. Therefore, detecting these attributes
requires a multi-label single-class approach that separates traffic
light detection for HD map creation from the well-known traffic
light detection and recognition task.

This work focuses on traffic light detection and tracking using
deep learning methods for HD map creation. The core components
of the system, the light detector, and the resulting traffic lights map
are depicted in Figure 1. Our pipeline, shown in Figure 2 takes
as input an image and a disparity map computed via stereovision,
plus the vehicle position acquired using a simple GPS sensor with
2m CEP (Circular error probable) error. The final output is a
georeferenced map of fully described lights, with shape, orientation,
and type information. The core contributions of this work can be
summarized as:

• development of a single-label object detector for traffic light
state detection.
• development of a multi-label object detector for traffic light
features detection.
• development of a mapping pipeline that, using data from a
stereo camera and GPS, can compute an accurate map of fully
characterized traffic lights.

The paper is structured as follows; in Section 2 we present a state-
of-the-art overview of traffic light detection, focusing on available
datasets and deep learning models employed for this task. Then,
in Section 3.1 we present the different models developed for the
light detection task, first using single-label detectors and thenmulti-
label ones. Next, in Section 3.2 we present the pipeline designed to
convert the detection on the image plane to a 2D georeferencedmap
of the lights. Finally, in Section 4 we compare the performance of
the different trained models, and we display the results of the map
creation algorithm.

2 Related works

Thanks to the growing interest in autonomous driving in the
last 10 years, various traffic light datasets have been released to train
deep learning models. Nevertheless, as previously stated, the focus
is, in most cases, only on the state of the light and not the shape and
features. Nowadays, it is possible to find five large datasets for this
task. One of the first datasets for traffic light detection is the LaRA
Traffic Lights Recognition Dataset (De Charette and Nashashibi,
2009a). It contains 11,179 frames recorded in 8 min 49 s at 25 FPS
in Paris. Frames are in 8bit RGB format with 640× 480 resolution.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

FIGURE 1
Core components of the traffic lights-HD map creation pipeline. The output of the network with lights positioned on the image plane (A).
Georeferenced position of the lights (B). And the tracked position of the lights (C).

The camera is mounted behind the interior rear-view mirror, and
the vehicle speed is lower than 50 km/h during recording. There
are 9,168 instances of unique traffic lights which are hand-labeled.
The labels are only green, orange, red, and ambiguous. The Bosch
Small Traffic Lights Dataset (BSTLD) (Behrendt and Novak, 2017)
is an accurate vision-based traffic light detection dataset. The scenes
from the dataset cover a decent variety of road scenes and typical
difficulties such as busy street scenes, suburban multilane roads
with varying traffic density, dense stop-and-go traffic, and many
others. The dataset contains 13,427 camera images at 1280× 720
pixels and has about 24,000 annotated traffic lights.The annotations
include bounding boxes of traffic lights and each traffic light’s current
state (active light). The LISA Traffic Light Dataset (Philipsen et al.,

2015) is collected based on footage from San Diego, California, USA
roads to provide a common basis for comparison of traffic light
recognition research. The dataset consists of continuous test and
training video sequences that last 23 min and 25 s, 43,007 frames,
and 113,888 annotated traffic lights. The serieses are captured by
a stereo camera mounted on the roof of a vehicle driving during
both night and daytime with varying light and weather conditions.
The resolution of the images is 1280 × 960, and the field of view
(FoV) is 66°. BDD100K (Yu et al., 2020) is constructed as a driving
dataset for heterogeneous multitask learning but includes traffic
light labels. It is a diverse and large-scale dataset of visual driving
scenes developed for multiple tasks (e.g., lane detection, drivable
area segmentation, road object detection, etc.). The dataset consists

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

FIGURE 2
Schema of our pipeline for traffic lights map creation. The input of the system are RGB images, disparity maps and GPS positions of the vehicle. The
output is a map with the GPS position of all detected lights.

of over 100K diverse video clips, which are 40 s long and collected
from more than 50K rides covering New York, San Francisco Bay
Area, and other regions in different weather conditions. One of
the latest and most extensive datasets for traffic light detections,
and the one employed in this work, is the DriveU Traffic Light
Dataset (DTLD) (Fregin et al., 2018b), which contains 292,245
annotations from 2048× 1024 images. It has the highest number of
annotations and the highest resolution compared to other datasets.
The images are captured in 10 cities in Germany at a frame rate of
15 Hz. Differently from the other datasets, the labels have detailed
descriptions such as direction, aspects, orientation, state, pictogram,
occlusion, relevancy, and reflection. For this reason, we decided to
use this specific dataset since it was the only one that provided all the
required information for preciselymapping the lights. A comparison
of the presented traffic light detection datasets is given in Table 1.

An extensive overview of approaches to traffic light detection
(TLD) and classification up to 2016 is given in Jensen et al. (2016).
In literature, the TLD problem can be categorized into model-based
methods and learning-based methods. The firsts are currently the
most widely used. They rely on heuristically determined models
using shape, color, and intensity and make strong assumptions
about the location and size of traffic lights. Many previous works
in this category have used the color thresholding method for
hypotheses generation, like in Omachi and Omachi (2009). Others
use the circular shape of traffic lights as a feature for detection
through the Hough transform (Omachi and Omachi, 2009) or
bulb detection (De Charette and Nashashibi, 2009b). Further, prior
map information is utilized to create detection hypotheses and
increase the detection rate (Possatti et al., 2019). On the other
hand, the learning-based model has escalated in the last years and

performs better day by day with the development of the deep
learning algorithms and the improvement of the dataset quality
(Fernández et al., 2018).

For example, in Bach et al. (2018), DTLD is used for training a
Faster R-CNN model (Ren et al., 2015), with ResNet50 backbone,
leveraging on pretrained weights on ImageNet (Deng et al., 2009).
The authors also implement a YOLOv3 anchor generation approach
(Redmon and Farhadi, 2018) for their model. In Possatti et al.
(2019), YOLOv3 is trained from scratch on DTLD, and the detector
is combined with prior maps to recognize relevant traffic lights.
Similarly, authors of (Müller and Dietmayer, 2018) adapt a single
shot detection (SSD) approach by having structural changes on
the default SSD (Liu et al., 2016) to detect objects smaller than ten
pixels without increasing the image size. In the work, the authors
have trained a model with Inception backbone (Szegedy et al., 2015)
and present an extensive evaluation on DTLD. In de Mello et al.
(2021), the images are replicated to cope with the class imbalance in
DTLD, and a total of 70k images are obtained for training the Faster
RCNN with ResNet101 backbone. They also provide an evaluation
on many other datasets, including Udacity, LISA and LaRA. A
different approach is to model the temporal context for TLD using
RNNs as shown in Björnsson and Westerberg (2021). As a detector,
YOLOv4 (Bochkovskiy et al., 2020) is also trained on DTLD, and its
augmentation techniques are implemented to further increase the
variance of the data.

In order to fill in occasional gaps from the detector, researchers
employ trackers in many different field. Visual object trackers use a
similarity measurement metric on the image to determine the target
position in a neighborhood around the position in the previous
image frame. Multiple metrics exists based on pixel-wise similarity,

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

TABLE 1 Comparison of the statistics of the TLD datasets.

LARA LISA BSTLD BDD100K DriveU (v2.0)

Resolution [WxH] 640× 480 1280× 960 1280× 720 1280× 720 2048× 1024

Depth [bit] 8 8 8, 12 8, 16 8, 16

Frame Rate [Hz] 25 16 − 30 15

Annotations 9,168 113,888 24,242 265,906 292,245

Cities 1 1 1 4+ 10

Disparity data − − − − +

Classes S S S, P S, O S, P, D, A, O, R, RF, OR

Night Images − + − − −

Classes: S, States available; P, pictogram available; O, Occlusion available; A, aspects available; R, Relevancy available; D, direction with respect to vehicle available; RF, Reflection available;
OR, installation orientation available.

histogram similarity (Comaniciu et al., 2003), HoGs, feature points,
lines, and neural network encoders (Hong et al., 2015). For the
specific TLD task, it is also possible to implement a fictitious motion
model to estimate the relative movement of the traffic lights to
the moving vehicle in the image frames to track the positions.
In Behrendt et al. (2017), authors use an odometry-based motion
model of the ego-vehicle to predict the movement and a neural
network to improve the tracked positions. The neural network
receives an image and a crop froma candidate position, then predicts
the candidate’s offset (u, v) from the tracked object and an error
estimate that represents the uncertainty of the position estimate,
which is used to trigger the update of the prototype image. The use
of Hidden Markov Models is proposed in Gomez et al. (2014) to
filter errors in state estimation, which increases the detection rate.
In Trehard et al. (2014), the authors propose an InteractingMultiple
Model filter to track the position and the status of traffic lights.

Compared to the presented state of the art, in this work, we
extend the most recent object detection models adapting them
to work on DTLD in a multi-label manner. We then perform a
comparative analysis of thesemodels to identify the best-performing
one, in terms of accuracy and computational requirements. Finally,
using detections, GPS measurements, and disparity images, the 3D
positions of each traffic light are estimated, and a Kalman Filter is
implemented to smoothen the vehicle data and perform tracking.
With this information, we build a map of fully characterized traffic
lights in the surveying area.

3 Methods

In this section, we present our pipeline for traffic light detection
and mapping. We first analyze the problem of light detection for
single andmulti-label tasks.Then, using the output of this first stage,
we illustrate the pipeline of map creation.

3.1 Traffic light detection

In this section, we propose methods for unified traffic light
detection and classification using different deep learning detection
models. At first, we present the single label multi-class problem,

which is the common task for TLD with state recognition.
Afterward, we extend the results of the single label problem and
focus on multi-label single class which is more relevant to HD map
creation. Indeed, beside the traffic light state, physical information
such as direction, bulb numbers, and the pictogram of the traffic
lights are essential for HDmaps.We discuss these two different tasks
in Section 3.1.1 and Section 3.1.2 respectively.

3.1.1 Single-label detector
In the DTLD dataset, we have five states for traffic lights:

off, red, yellow, red-yellow, and green, which are the classes to
recognize in a single label task. There are also many traffic lights
with unknown states: these could be occluded, directed such that
the bulbs are not observable, reflected, and far away to label the
state correctly. Therefore, in this task we have filtered out unknown
state labels. In this work, we have trained and compared the
models from Scaled-YOLOv4 (Wang et al., 2021a) and YOLOR
(Wang et al., 2021b). Previously, the authors have shown that
YOLOv4 (Bochkovskiy et al., 2020), based on the CSP (Wang et al.,
2020) approach, scales both up and down andmodifies the networks’
depth, width, and resolution while maintaining optimal speed and
accuracy. For Scaled-YOLOv4, they also have scaled the network
structure, which results in state-of-the-art results for the MS COCO
dataset (Lin et al., 2014). These two network families have been
chosen mainly due to inference/training time while considering the
best accuracy according to the literature.

YOLOv4-p7 is the largest and best-performingmodel in the first
family (Wang et al., 2021a); however, training on DTLD takes quite
a long time and computational effort. Its default input size is 1536
× 1536, which requires at least two GTX 1080 Ti GPUs to train
with a batch size of 1. On the other hand, the smallest model is
YOLOv4-tiny, which is developed for low-end devices, and therefore
scarifies too much in terms of accuracy to run on limited resources.
YOLOv4-CSP provides a good trade-off between the performance
and the computational effort. From the second family, YOLOR-d6
has the best results on COCO, which is comparable to YOLOv4-
p7. In addition, it is much faster during inference, as stated in by
Wang et al. (2021b).

Wehave trainedYOLOv4-CSPwith different configurations. For
the first setup, we filtered out all labels smaller than 10 pixels to
check the model’s performance on a setting that does not include

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

TABLE 2 Class-based comparison of themodels for the singe-label task.

Models (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Classes All (72137) Off (18696) Red (20790)

mAP@0.5 0.655 0.641 0.717 0.714 0.26 0.246 0.363 0.381 0.783 0.754 0.833 0.812

mAP@0.5:0.95 0.369 0.347 0.487 0.488 0.112 0.089 0.247 0.200 0.436 0.397 0.546 0.563

Precision 0.72 0.704 0.809 0.799 0.469 0.426 0.717 0.656 0.859 0.772 0.820 0.895

Recall 0.551 0.545 0.572 0.585 0.0826 0.116 0.009 0.139 0.649 0.682 0.761 0.684

Classes Yellow (3033) Red-yellow (950) Green (29618)

mAP@0.5 0.726 0.723 0.765 0.779 0.654 0.631 0.731 0.731 0.851 0.852 0.893 0.868

mAP@0.5:0.95 0.424 0.408 0.532 0.545 0.389 0.377 0.514 0.522 0.485 0.463 0.597 0.610

Precision 0.714 0.778 0.793 0.765 0.692 0.714 0.822 0.760 0.868 0.832 0.895 0.917

Recall 0.619 0.588 0.648 0.699 0.623 0.531 0.592 0.614 0.779 0.811 0.851 0.790

Bold values indicate the best results in each row and column.

TABLE 3 Class-based comparison of themodels for themulti-label task.

Models 1* 2* 3* 1* 2* 3* 1* 2* 3* 1* 2* 3*

Classes One Bulb Two Bulbs Front Directed Front Directed

mAP@0.5 0.397 0.452 0.409 0.465 0.550 0.540 0.610 0.779 0.785 0.581 0.815 0.818

mAP@0.5:0.95 0.196 0.263 0.229 0.233 0.321 0.281 0.362 0.543 0.500 0.333 0.557 0.374

Precision 0.752 0.734 0.703 0.837 0.796 0.680 0.954 0.939 0.850 0.940 0.923 0.854

Recall 0.046 0.175 0.127 0.102 0.319 0.399 0.269 0.609 0.665 0.224 0.694 0.740

Classes Back Directed Right Directed Left Directed Weighted All

mAP@0.5 0.000 0.269 0.105 0.500 0.320 0.203 0.500 0.304 0.365 0.559 0.701 0.686

mAP@0.5:0.95 0.000 0.187 0.045 0.150 0.168 0.078 0.100 0.165 0.016 0.302 0.471 0.370

Precision 0.000 0.494 0.179 1.000 0.615 0.376 1.000 0.572 0.189 0.925 0.868 0.766

Recall 0.000 0.061 0.107 0.000 0.032 0.049 0.000 0.055 0.096 0.195 0.528 0.574

Models: 1*: YOLOv4-CSP 640 × 640 tested with 0.5 NMS and 0.4 confidence threshold. 2*: YOLOR-D6 1280 × 1280 tested with 0.5 NMS and 0.4 confidence threshold. 3*: Faster
R-CNN-R50-FPN 2048 × 1024 tested with 0.0 NMS and 0.8 confidence threshold.

tiny objects. This makes it possible to evaluate the fitness of the
MS COCO pre-trained weights to DTLD and to determine if these
weights are feasible to use or if training from scratch is better. Before
training, the model analyzes the labels to evolve the default anchors
with a genetic algorithm by using k-means for the nine best anchors,
and these are used during training. Indeed, generated anchors have
a better match with ground-truths. For this configuration, the batch
size is 14. The input resolution is 640× 640, the default size of
the model trained on MS COCO. Stochastic Gradient Descent
(SGD) optimizer is used with an initial learning rate of 0.01, a
momentum of 0.937, and a weight decay rate of 0.0005. Training
IoU threshold is set to 0.2, which decides the objectness. We did
not add specific augmentation techniques, leaving it to the default
ones; also, theMosaic technique is used. For this problemwedecided
not to use Multi-scale, rectangular training and synchronized batch
normalization.

In the second setup, the model has been trained using all the
labels, with the same input size and augmentations as the first setup.
Finally, as the last configuration for this model, we have changed the

input size to the original size of the images in DTLD, 2048× 1024,
and trained the model with newly generated anchors. The goal is to
enlarge the small labels in the other two setups and let the model see
more labels to train, which is effective on the detection performance.

Moreover, YOLOR-d6 has been trained with all labels and
1280× 1280 input size, which is the default setting for this model.
For this model, we employed the same augmentation techniques
and custom anchor generator as the first one. Multi-scale training
and synchronized batch normalization (sync-bn) are not used, but
rectangular training is active.The network uses SGDoptimizer since
it has the same settings as the first model.

3.1.2 Multi-label detector
For themulti-label training, the classes we have used refer to two

subcategories of the labels, bulb number, and traffic light direction.
For the first one, the dataset considers one aspect, two aspects,
and three aspects of lights, which are the classes available for bulb
number. For the direction, we have all four possible orientations of
the traffic light. Thus, there are seven classes in the class list, and

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

FIGURE 3
Sample image from the test set of DTLD. In white the detection of Faster R-CNN-R50-FPN, and red the labels annotated in the DTLD. It is possible to
notice how the model can detect lights which are correct, but not annotated in the dataset’s ground truth.

each traffic light has two labels from this list. Considering the label
distribution in the dataset, we have filtered out all elements which
do not present these features; lights that are horizontal, occluded,
reflected, and four aspects of traffic lights are removed from training
and validation sets.

At first, the models have been trained on 10% of the train-
set and validated with the same portion, keeping label distribution
the same as the entire dataset. According to the precision, recall,
mAP results, and training time of the models with different settings
such as resolution and augmentation techniques, we have decided to
refine the training of YOLOv4-CSP and YOLOR-d6 models on the
full dataset. The two models trained are one-stage detectors, and we
have decided to compare their performances to a two-stage detector
since the detection task here includes very small objects.

Thefirstmodel, YOLOv4-CSP-multi, has the same configuration
as CSP640. Mosaic data augmentation, color space augmentation,
random flip, and class label smoothing are the augmentations used.
The model is trained for 100 epochs, with a total batch size of 24.

The second model, YOLOR-D6-multi, has the same settings
as YOLOR-D6. Additionally, the input size is 1024 × 1024
because the results are similar to the 1280× 1280 resolution,
but the time difference is substantial for the 10% dataset. The
augmentations are the same with YOLOv4-CSP-multi. The total
batch size is 4, and the model is trained for 50 epochs. The
difference between the epochs of YOLOv4-CSP-multi and YOLOR-
D6multi is due to the results on the 10% dataset. The results
show that the latter achieves a similar performance to the first
one in around half of the epochs. On the other hand, it lasts
longer to train YOLOR-D6multi due to model size and bigger input
resolution. Thus, it is interesting to compare the results of the two
models.

The well-known Detectron2 (Wu et al., 2019) framework by
Facebook AI Research contains several two-stage detectors with
different backbones evaluated on the COCO Object Detection,
Instance Segmentation, Person Keypoint Detection, and also
other datasets such as LVIS (Gupta et al., 2019), Cityscapes

(Cordts et al., 2016) and Pascal VOC (Everingham et al., 2010).
Moreover, ablations for deformable convolution (Dai et al., 2017),
Cascade R-CNN (Cai and Vasconcelos, 2018), and different
normalization methods are available too. We have chosen Faster R-
CNN object detection network with ResNet50 and Feature Pyramid
Network (Lin et al., 2017) as the backbone (Faster R-CNN-R50-
FPN). In addition, we have also trained Faster R-CNN with
ResNeXt-101-32 × 8d (Faster R-CNNX-101) backbone, which is the
best performing model on COCOObject Detection, to compare the
performance on DTLD.

The Detectron2 framework does not support multi-label
detection, and the whole pipeline is constructed according to
single label (and single/multi-class) detection. Therefore, we have
extended the original architecture to the multi-label classification
problem and made the model learn multi-label detections. We
have created a new dataset mapper by inheriting the default one
to keep the annotations in the validation process and control the
augmentations for training and testing directly from the mapper.
We have changed the function that reads the images as we have
done for other models. In addition, a function that creates a dataset
dictionary required by the pipeline has been made. To evaluate
the model and compare its performance to other models, the
same evaluation procedure has been adapted to Detectron2, which
cannot evaluate multi-label tasks by default. Moreover, we have
added a checkpoint class to save the best-performing model in
the AP50 metric during training instead of just saving the last
model.

In addition to the changesmentioned, we have alsomodified the
models for our task. Box regression loss calculation has been altered
to havemulti-label ground truths as input and determine foreground
indices by using them. Instead of cross-entropy losswith softmax, we
have used binary cross-entropy with logits, one per class. One-hot
encoded ground truths have been replaced with multi-hot vectors.
Since the model outputs logits, the prediction probabilities have
been calculated by sigmoid. Lastly, we have adopted a custom anchor
generator that uses k-means (Hamerly and Elkan, 2003) and IoU

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

FIGURE 4
Distance (A) and Covariance (B) of two detected traffic lights in a
sequence of 18 frames from the DTLD. It is interesting to notice how
the covariance rapidly decrease when a new detection is performed.
In particular the red light is detected many times and the covariance
always maintain low values. Differently, the blue one is detected only
at frame 9 and 15, therefore the covariance has only one drop when
the new detection is performed.

metrics (Rezatofighi et al., 2019) to calculate the best fitting anchors
for labels in DTLD, to replace the default anchors designed for the
COCO dataset. For inference, the function that returns a list of
tensors of predicted class probabilities for each image calculates the
probabilities with softmax, which is not appropriate for multi-label
tasks. The changed version uses instead a sigmoid.

3.2 Map creation

The output of the detectors is a list of 2D bounding boxes with
features on the image plane. To construct amap of the lights’ position
further processing is required. The first additional information
required is the vehicle position when the image is acquired. This
is retrieved using a commercial GPS sensor, with CEP of 2m.

This means that these measurements are not accurate enough to
be directly used as a single localization source. In addition, many
of them do not correspond to a point in any road segment due
to multipath and GPS error. To cope with this, we have filtered
the erroneous measurements outside of the local area coordinates,
measurements with errors in position greater than 20m. Then,
since we can assume the vehicle is driving on a road we employed
a matching service to snap the measures to the road segments
by utilizing OSRM nearest service (Luxen and Vetter, 2011). To
further improve the accuracy of the GPS data and track the vehicle
position, we have also implementedKalman Filters with Expectation
Maximization algorithm (Moon, 1996).The GPS data are converted
from latitude and longitude to local ENU coordinates, then the
filter is fed with the vehicle position and the speed data. The state
Equation 1 and measurement Equation 2 for each sequence are:

x̃t = Fx̃t−1 +Gut +wt (1)

yt =Hx̃t + vt (2)

where F is the state transitionmatrix,G is the controlmatrix,H is the
observation matrix, ut is the control input, wt ∼ N(0,Qn) is process
noise, and vt ∼ N(0,Rn) is measurement noise. The system state is
defined as:

x̃ = [x, ẋ,y, ẏ,θ, θ̇]
T

(3)

While the two matrices F and H are:

F =

[[[[[[[[[[[[[[[[[

[

1 Δt 0 0 0 0

0 1 0 0 0 0

0 0 1 Δt 0 0

0 0 0 1 0 0

0 0 0 0 1 Δt

0 0 0 0 0 1

]]]]]]]]]]]]]]]]]

]

(4)

H =

[[[[[[[[[[[[[[[[[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]]]]]]]]]]]]]]]]]

]

We defined our state vector as x̃t, where x and y are the Easting
and Northing values obtained from the latitude and longitude GPS
measurements respectively, and θ is the heading angle of the car. ẋ
and ẏ are the velocities projected in the East and North directions
from the velocity measurement of the car, and θ̇n is the yaw rate
measurement. F and H matrices are constructed according to the
states and measurements (4). The state prediction (5) and state
update (6) equations are as follows:

x̂t+1|t = Fx̂t|t (5)

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

FIGURE 5
Map obtained from the pipeline on a sequence in the DTLD test set acquired on a complex junction in Berlin center (the green arrows represent the car
trajectory). Close markers represent multiple lights mounted on the same pole, such as pedestrians, cyclists, buses, or tram lights. A slight offset has
been applied to excessive close light for visualization purposes. The represented area is a small section of the whole 4 lanes crossroad.

x̂t+1|t+1 = x̂t+1|t +Kt+1 (yt+1 −Hx̂t+1|t) (6)

The output of the filter is a more accurate localization of the car.
To reconstruct a map, the last required information is the relative
position of each light to the vehicle. This can be computed by
fusing the detection on the image plane with the depth calculated
from stereovision provided by the dataset. By calculating the mean
distance of all the points in a detected bounding box, it is possible to
get an estimate of the light’s relative distance to the camera. Since the
disparity images are still subject to noise, some outliers are present
in the projections.Therefore, each traffic light with a distance greater
than 150m is removed from the detections. Exploiting the extrinsic
camera calibration parameters and the vehicle’s state information
from the Kalman Filter, combined with the depth, it is possible to
compute the absolute position of each detection.

Lastly, we have implemented a multi-object tracking algorithm
consisting ofKalmanFilters andHungarianAlgorithm (Kuhn, 1955)
to refine the light’s position with consecutive detections. We have
applied filters to each traffic light and made the assignments using
the Hungarian Algorithm. Since the objects we are tracking are all
static, the Kalman Filters do not perform prediction but only update
the states and covariances. As a cost for the assignment process, to
perform intra-frame association, we have used Euclidean distance
if the detected class information of the traffic light corresponds to
any of the tracks; otherwise, we set a high cost to eliminate class
mismatches. Furthermore, we delete the tracks which have a higher

number of skipped frames than a fixed threshold, or are outside the
camera field of view.

4 Experimental results

We have evaluated the detectors presented in Section 3.1 on
the DTLD test set that contains 12.453 images with 72.137 traffic
light annotations with a very similar distribution to the train set.
We have included all the labels in the test set. In Table 2, class-
based evaluation results of the single-labelmodels with anNMS IOU
threshold of 0.5 and a confidence score threshold of 0.4 are given.
In addition, the number of annotations for the classes and training
resolutions of the models are available. We tested the models with a
resolution of 2048 × 1024, i.e., the original size.

YOLOv4-CSP trained with 2048× 1024 resolution and YOLOR-
D6 trained with 1280× 1280 performs quite close to each other and
outperforms the other models, but the margin is not very large.
All the models have acceptable results, especially for the traffic
lights annotated as red and green which are more than half of the
annotations. Surprisingly, YOLOv4-CSP trained with labels bigger
than 10 pixels in width shows satisfactory performance, particularly
when the smaller number of training labels and the input resolution
is considered. Although there are plenty of labels smaller than 5
pixels in the original size images, the models cannot learn fine

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

FIGURE 6
Second map with a lower resolution, obtained from a sequence of the DTLD test set.

semantic information since the spatial information is coarse when
the input resolution is reduced to the one required by the network,
i.e., 640× 640.

For the multi-label task, we have evaluated three models
using the updated labels of the DTLD, which contains more
than 70.000 annotations even after the filtering process discussed
in Section 3.1.2. We have tested the models with a resolution
of 2048× 1024. According to the metrics, the largest model,
YOLOR-D6, performs best, and Faster R-CNN-R50-FPN shows
similar performance. YOLOv4-CSP cannot reach the same level of
performance. Although we have trained it for 2x epochs, the input
resolution worsens the predictions. Table 3 provides a quantitative
analysis of the results and inference details. The model were
evaluated with the best performing setup. In particular, the two
Yolo version have the same NMS and confidence threshold value,
while Faster R-CNN have different values due to the structure of the
network, which performed best with 0.8 confidence threshold.

After checking predictions on the sample images, we have
noticed that Faster R-CNN-R50-FPN detects many traffic lights
correctly that are not annotated or labeled as occluded in the DTLD,
as can be seen in Figure 3. Especially for the same confidence
threshold with other models, the false positives increase and disrupt

the model’s results. However, for the HD map creation, as many
traffic lights as possible should be mapped accurately. Thus, we have
used the predictions of this model to track andmap the traffic lights.
Still, it is important to consider this when the results of Table 3
are considered. Indeed the real accuracy of this model should be
higher than the one presented. For some classes, e.g., left and right
directed, the Recall values of Table 3 are considerably low for some
model. This is mostly due to the heavy unbalancing of the dataset.
This issue cloud be solved with data augmentation techniques and
proper tuning and balancing of the dataset. From our test this would
slightly effect the other classes, which might be less accurate. Since
the overall task is lights mapping we preferred an accurate model in
the front direction because the survey vehicle is expected to navigate
the area frommultiple points of view, and it will always acquire lights
images from the best position.The limited number of detection from
other points of view are still useful to gather information and better
define the lights position in the map.

Finally, to evaluate the results of the complete map creation
process, in literature, there are metrics for multi-object tracking
performance evaluation. However, the dataset does not provide a
‘real’ ground-truth for the traffic lights, but only the 2D bounding
box on the image plane. This does not allow us to use these

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

metrics, which would require the accurate GPS position of the
lights. To qualitatively evaluate the performance of the tracking
process, we have then plotted the position covariances of two sample
traffic lights detected and tracked. The results of this process are
shown in Figure 4. It is possible to appreciate how consecutive
detections improve tracking accuracy in the plot. At the same
time, position covariance gets larger with the skipped frames. In
particular, Figure 4A shows the distance between two traffic lights
from the vehicle. From the graph, it is possible to notice how the
distance is always around the initial value, but get always adjusted at
each frame using newdetections. InFigure 4B the covariances of the
position along the two axes for the lights are shown. For light one,
it is possible to appreciate how the covariance of the position drops
after the firsts detections. Then, the light is not detected from frame
five to eight (circle points), and the covariance grows up, while when
a new detection arrives (triangle points), the covariance drops again.
This shows that the filter is working properly and integrates the new
measures to refine the predicted light’s position. The final output
of the system is then shown in Figure 5; Figure 6 where the whole
traffic lights map is reconstructed on a test sequence of the DTLD
dataset. It is possible to notice how the lights are correctly orientated,
in a coherent way to the vehicle moving direction (green and blue
arrows). The scenario represent a multi lines crossroads, therefore
traffic lights are at different position on the y axis. Moreover,
superimposed pictograms are due to detection of multiple lights
mounted on the same pale with different orientation.

5 Conclusion

Thiswork presents a complete pipeline for traffic lights detection
and mapping for HD-map creation. To this end, we compared
multiple deep-learningmodels, both for single-label andmulti-label
tasks. Unlike many traffic lights detectors in this work, we did not
focus on state detection but all the other light features required by
the HD-map creation process (i.e., shape, orientation, pictogram).
Of particular interest is the ability of some models (i.e., Faster R-
CNN-R50-FPN) to correctly detect lights at a distance, which are not
present in the original dataset ground-truth. This makes it difficult
to evaluate the network performance with standard metrics but
simplifies the map creation process.

The light detector has been then integrated into a pipeline for
map creation which combines the depth information computed
from stereovision and the GPS position of the vehicle to create an
accurate map of the lights. Next, all lights and vehicle positions
are filtered using Kalman filtering to smooth the detected position,
which is affected by GPS and stereomatching noise.The output is an
accurate map with the position and features of all traffic lights seen
by the vehicle, as shown in Figure 5 and Figure 6.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.uni-ulm.de/in/iui-drive-u/projekte/
driveu-traffic-light-dataset/.

Author contributions

Thepresented work has been developed by YS and SMunder the
supervision ofMM. SM and YSworked on developing deep learning
models and the pipeline formap creation.MM supervised the whole
project, providing guidance through the development and testing
steps.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Altec (2022). Altec gps. Available at: https://atlatec.de (Accessed 02 10, 2022).

Bach, M., Stumper, D., and Dietmayer, K. (2018). “Deep convolutional traffic light
recognition for automated driving,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC) (IEEE), 851–858.

Behrendt, K., and Novak, L. (2017). “A deep learning approach to traffic lights:
Detection, tracking, and classification,” in Robotics andAutomation (ICRA), 2017 IEEE
International Conference on (IEEE) (IEEE).

Behrendt, K., Novak, L., and Botros, R. (2017). “A deep learning approach to traffic
lights: Detection, tracking, and classification,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA) (IEEE), 1370–1377.

Björnsson, D. F., and Westerberg, M. (2021). Modelling temporal context for traffic
light recognition using rnns

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934

Bock, T. (2021). Unsettled issues on HD mapping technology for autonomous
driving and ADAS. Tech. Rep. doi:10.4271/epr2021013

Cai, Z., and Vasconcelos, N. (2018). “Cascade r-cnn: Delving into high quality object
detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition (IEEE), 6154–6162.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., et al.
(2019). “Argoverse: 3d tracking and forecasting with rich maps,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (IEEE),
8748–8757.

Cho, R. L.-T., Liu, J. S., and Ho, M. H.-C. (2021). The development of autonomous
driving technology: Perspectives frompatent citation analysis.Transp. Rev. 41, 685–711.
doi:10.1080/01441647.2021.1879310

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://www.uni-ulm.de/in/iui-drive-u/projekte/driveu-traffic-light-dataset/
https://www.uni-ulm.de/in/iui-drive-u/projekte/driveu-traffic-light-dataset/
https://atlatec.de
https://doi.org/10.4271/epr2021013
https://doi.org/10.1080/01441647.2021.1879310
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

Comaniciu, D., Ramesh, V., andMeer, P. (2003). Kernel-based object tracking. IEEE
Trans. pattern analysis Mach. Intell. 25, 564–577. doi:10.1109/tpami.2003.1195991

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al.
(2016). “The cityscapes dataset for semantic urban scene understanding,” in Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE).

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., et al. (2017). “Deformable
convolutional networks,” in Proceedings of the IEEE international conference on
computer vision (IEEE), 764–773.

De Charette, R., and Nashashibi, F. (2009a). “Real time visual traffic lights
recognition based on spot light detection and adaptive traffic lights templates,” in 2009
IEEE Intelligent Vehicles Symposium (IEEE), 358–363.

De Charette, R., and Nashashibi, F. (2009b). “Real time visual traffic lights
recognition based on spot light detection and adaptive traffic lights templates,” in 2009
IEEE Intelligent Vehicles Symposium (IEEE), 358–363.

de Mello, J. P. V., Tabelini, L., Berriel, R. F., Paixão, T. M., De Souza, A. F., Badue,
C., et al. (2021). Deep traffic light detection by overlaying synthetic context on arbitrary
natural images. Comput. Graph. 94, 76–86. doi:10.1016/j.cag.2020.09.012

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition (IEEE), 248–255.

Elhousni, M., Lyu, Y., Zhang, Z., and Huang, X. (2020). Automatic building and
labeling of hdmaps with deep learning. Proc. AAAI Conf. Artif. Intell. 34, 13255–13260.
doi:10.1609/aaai.v34i08.7033

Everingham, M., Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010).
The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303–338.
doi:10.1007/s11263-009-0275-4

Fairfield, N., and Urmson, C. (2011). Traffic light mapping and detection. In
2011 IEEE International Conference on Robotics and Automation (IEEE) (IEEE),
5421–5426.

Fernández, C., Guindel, C., Salscheider, N.-O., and Stiller, C. (2018). “A deep analysis
of the existing datasets for traffic light state recognition,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC) (IEEE), 248–254.

Fregin, A., Muller, J., Krebel, U., and Dietmayer, K. (2018a). The driveu traffic light
dataset: Introduction and comparisonwith existing datasets. In 2018 IEEE International
Conference on Robotics and Automation (ICRA) (IEEE), 3376–3383.

Fregin, A., Muller, J., Krebel, U., and Dietmayer, K. (2018b). The driveu traffic light
dataset: Introduction and comparisonwith existing datasets. In 2018 IEEE International
Conference on Robotics and Automation (ICRA) (IEEE), 3376–3383.

Gomez, A. E., Alencar, F. A., Prado, P. V., Osorio, F. S., and Wolf, D. F. (2014).
“Traffic lights detection and state estimation using hidden markov models,” in 2014
IEEE intelligent vehicles symposium proceedings (IEEE), 750–755.

Gupta, A., Dollar, P., and Girshick, R. (2019). “Lvis: A dataset for large vocabulary
instance segmentation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (IEEE), 5356–5364.

Hamerly, G., and Elkan, C. (2003). Learning the k in k-means. Adv. neural Inf.
Process. Syst. 16.

Hong, S., You, T., Kwak, S., and Han, B. (2015). “Online tracking by learning
discriminative saliency map with convolutional neural network,” in International
conference on machine learning (PMLR) (IEEE), 597–606.

Javanmardi, M., Javanmardi, E., Gu, Y., and Kamijo, S. (2017). Towards high-
definition 3d urban mapping: Road feature-based registration of mobile mapping
systems and aerial imagery. Remote Sens. 9, 975. doi:10.3390/rs9100975

Jensen, M. B., Philipsen, M. P., Møgelmose, A., Moeslund, T. B., and Trivedi, M. M.
(2016). Vision for looking at traffic lights: Issues, survey, and perspectives. IEEE Trans.
Intelligent Transp. Syst. 17, 1800–1815. doi:10.1109/tits.2015.2509509

Jiao, J. (2018).Machine learning assisted high-definitionmap creation. In 2018 IEEE
42nd Annual Computer Software and Applications Conference (COMPSAC) (IEEE),
vol. 1, 367–373.

Karls, I., and Mueck, M. (2018). Networking vehicles to everything. evolving
automotive solutions. De Gruyter, Incorporated.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Nav. Res.
Logist. Q. 2, 83–97. doi:10.1002/nav.3800020109

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., et al. (2011).
“Towards fully autonomous driving: Systems and algorithms,” in 2011 IEEE intelligent
vehicles symposium (IV) (IEEE), 163–168.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).
“Feature pyramid networks for object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2117–2125.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., et al. (2014).
Microsoft coco: Common objects in context, Comput. Vis. – ECCV 2014, Lect. Notes
Comput. Sci. 740–755. doi:10.1007/978-3-319-10602-1_48

Liu, R., Wang, J., and Zhang, B. (2020). High definition map for automated driving:
Overview and analysis. J. Navigation 73, 324–341. doi:10.1017/s0373463319000638

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). “Ssd:
Single shot multibox detector,” in European conference on computer vision (Springer),
21–37.

Luxen, D., and Vetter, C. (2011). “Real-time routing with openstreetmap data,” in
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, New York, NY, USA (ACM), 513–516. GIS ’11.
doi:10.1145/2093973.2094062

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Process.
Mag. 13, 47–60. doi:10.1109/79.543975

Müller, J., andDietmayer, K. (2018). “Detecting traffic lights by single shot detection,”
in 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
(IEEE), 266–273.

Omachi, M., and Omachi, S. (2009). “Traffic light detection with color and edge
information,” in 2009 2nd IEEE International Conference on Computer Science and
Information Technology (IEEE), 284–287.

Ordóñez, C., Cabo, C., and Sanz-Ablanedo, E. (2017). Automatic detection and
classification of pole-like objects for urban cartography using mobile laser scanning
data. Sensors 17, 1465. doi:10.3390/s17071465

Philipsen, M. P., Jensen, M. B., Møgelmose, A., Moeslund, T. B., and Trivedi, M. M.
(2015). “Traffic light detection: A learning algorithm and evaluations on challenging
dataset,” in 2015 IEEE 18th International Conference on Intelligent Transportation
Systems (IEEE), 2341–2345.

Possatti, L. C., Guidolini, R., Cardoso, V. B., Berriel, R. F., Paixão, T. M., Badue,
C., et al. (2019). “Traffic light recognition using deep learning and prior maps for
autonomous cars,” in 2019 international joint conference on neural networks (IJCNN)
(IEEE), 1–8.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 652–660.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Adv. neural Inf. Process. Syst. 30.

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767

Ren, S.,He,K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Adv. neural Inf. Process. Syst. 28.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S.
(2019). “Generalized intersection over union: A metric and a loss for bounding box
regression,” in Proceedings of the IEEE/CVF conference on computer vision andpattern
recognition (IEEE), 658–666.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition (IEEE), 1–9.

Trehard, G., Pollard, E., Bradai, B., and Nashashibi, F. (2014). “Tracking both pose
and status of a traffic light via an interacting multiple model filter,” in 17th international
conference on information fusion (FUSION) (IEEE), 1–7.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2021a). “Scaled-
YOLOv4: Scaling cross stage partial network,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE),
13029–13038.

Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., and Yeh, I.-H.
(2020). “Cspnet: A new backbone that can enhance learning capability of cnn,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops (IEEE), 390–391.

Wang, C.-Y., Yeh, I.-H., and Liao, H.-Y. M. (2021b). You only learn one
representation: Unified network for multiple tasks. arXiv preprint arXiv:2105.04206

Wilson, B., Kira, Z., and Hays, J. (2020). 3d for free: Crossmodal transfer learning
using hd maps. arXiv preprint arXiv:2008.10592

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2.
Available at: https://github.com/facebookresearch/detectron2.

Yan, L., Li, Z., Liu, H., Tan, J., Zhao, S., and Chen, C. (2017). Detection
and classification of pole-like road objects from mobile lidar data in motorway
environment. Opt. Laser Technol. 97, 272–283. doi:10.1016/j.optlastec.2017.
06.015

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://doi.org/10.1109/tpami.2003.1195991
https://doi.org/10.1016/j.cag.2020.09.012
https://doi.org/10.1609/aaai.v34i08.7033
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.3390/rs9100975
https://doi.org/10.1109/tits.2015.2509509
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1017/s0373463319000638
https://doi.org/10.1145/2093973.2094062
https://doi.org/10.1109/79.543975
https://doi.org/10.3390/s17071465
https://github.com/facebookresearch/detectron2
https://doi.org/10.1016/j.optlastec.2017.06.015
https://doi.org/10.1016/j.optlastec.2017.06.015
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mentasti et al. 10.3389/frobt.2023.1065394

Yang, B., Fang, L., and Li, J. (2013). Semi-automated extraction and delineation of 3d
roads of street scene frommobile laser scanning point clouds. ISPRS J. Photogrammetry
Remote Sens. 79, 80–93. doi:10.1016/j.isprsjprs.2013.01.016

Yang, B., Liang,M., andUrtasun, R. (2018). “Hdnet: Exploiting hdmaps for 3d object
detection,” in Conference on Robot Learning (PMLR), 146–155.

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., et al. (2020).
“Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE).
doi:10.1109/cvpr42600.2020.00271

Yu, Y., Li, J., Guan, H., Wang, C., and Yu, J. (2014). Semiautomated
extraction of street light poles from mobile lidar point-clouds. IEEE

Trans. Geoscience Remote Sens. 53, 1374–1386. doi:10.1109/tgrs.2014.
2338915

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. (2020).
A survey of autonomous driving: Common practices and emerging
technologies. IEEE access 8, 58443–58469. doi:10.1109/access.2020.
2983149

Zang, A., Chen, X., andTrajcevski, G. (2018). High definitionmaps in urban context.
Sigspatial Spec. 10, 15–20. doi:10.1145/3231541.3231546

Zhou, Y., and Tuzel, O. (2018). “Voxelnet: End-to-end learning for point cloud based
3d object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition (IEEE), 4490–4499.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1065394
https://doi.org/10.1016/j.isprsjprs.2013.01.016
https://doi.org/10.1109/cvpr42600.2020.00271
https://doi.org/10.1109/tgrs.2014.2338915
https://doi.org/10.1109/tgrs.2014.2338915
https://doi.org/10.1109/access.2020.2983149
https://doi.org/10.1109/access.2020.2983149
https://doi.org/10.1145/3231541.3231546
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

