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In this paper, the problem of attitude estimation of a quad-copter system
equipped with a multi-rate camera and gyroscope sensors is addressed through
extension of a sampling importance re-sampling (SIR) particle filter (PF). Attitude
measurement sensors, such as cameras, usually suffer from a slow sampling rate
and processing time delay compared to inertial sensors, such as gyroscopes. A
discretized attitude kinematics in Euler angles is employed where the gyroscope
noisy measurements are considered the model input, leading to a stochastic
uncertain systemmodel. Then, a multi-rate delayed PF is proposed so that when
no camera measurement is available, the sampling part is performed only. In
this case, the delayed camera measurements are used for weight computation
and re-sampling. Finally, the efficiency of the proposed method is demonstrated
through both numerical simulation and experimental work on theDJI Tello quad-
copter system. The images captured by the camera are processed using the ORB
feature extraction method and the homography method in Python-OpenCV,
which is used to calculate the rotation matrix from the Tello’s image frames.
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UAV, quad-copter, particle filtering, multi-rate sensor fusion, attitude estimation,
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1 Introduction

Autonomous quad-copter UAVs are increasingly employed in various industries,
especially in applications with extreme environments where humans cannot access narrow,
high altitude, far reaching, and confined spaces for further operation and inspection
(Montazeri et al., 2021). Of particular importance is the ability of quad-copters to accurately
maneuver in hazardous and unstructured environments such as those existing in the nuclear
decommissioning applications. One of the challenging tasks for navigation of drones in
such GPS-denied environments is finding the exact position and orientation of the quad-
copters for feedback control and characterization of the environment (Burrell et al., 2018).
Nowadays, the inertial navigation system (INS) including inertial measurement units (IMU)
is widely used for navigation of UAVs. Toward this, first of all, a robust and reliable attitude
estimator is required which should be able to execute on low-cost computational hardware
and using measurements from light-weight sensors (Bassolillo et al., 2022).

Attitude estimation is the procedure of estimating orientation of the vehicle with
respect to a reference frame using sensory measurements such as inertial and attitude
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sensors. Although least square error (LSE) andmaximum likelihood
(ML) approaches can be classified as early attitude estimation
methods, model-based Bayesian approaches are most common and
precise approaches can be found in Dhahbane et al. (2021). Model-
based approaches normally employ vehicle kinematics and/or
dynamics to provide a prediction from the orientation, and the
predicted attitude is updated through the sensory measurements
(Sadeghzadeh-Nokhodberiz and Poshtan, 2016; Ozaki and Kuroda,
2021).There are an increasing number of research studies devoted to
attitude estimation (Moutinho et al., 2015; Nokhodberiz et al., 2019;
Liang, 2017). The commonly used stochastic approaches are the
Kalman filter (KF) and extended Kalman filter (EKF) (Nemati and
Montazeri, 2019). However, in KF-based methods (KF, EKF, and
UKF), only Gaussian noise processes are considered and EKF suffers
from the linearization issue. Therefore, in some research studies,
particle filters (PF) are used to overcome the problem in attitude
estimation of UAVs (Cheng and Crassidis, 2004; Sadeghzadeh-
Nokhodberiz et al., 2014b). The gyroscope measurements in the
body frame are normally incorporated in the attitude kinematics to
obtain the orientation in the inertial frame.Thegyroscope noises can
be modeled through a probability distribution function, making the
kinematics a stochastic model as it is employed as an input vector
in it. Therefore, it is necessary to employ a stochastic approach such
as PF that works directly with the non-linear dynamic model of the
system. PFs are appropriate for attitude estimation of quad-copters
due to non-linear and non-stochastic nature of the system model.
PF is an optimal non-linear filtering method in which the posterior
probability density function (pdf) is approximated through sample
point (particles) generation as it is not possible to be computed
analytically for non-Gaussian systems.This posterior pdf is required
for Bayesian minimummean square error (MMSE) estimation, and
it is themain advantage of PF over other non-linear BayesianMMSE
estimators such as EKF (Sadeghzadeh-Nokhodberiz and Meskin,
2020).

Additional sensors such as cameras are commonly employed
together with the low-cost inertial sensors. This greatly helps
mitigate the effect of errors and noises in the gyroscope
measurement and facilitates designing a vision-based navigation
technique (Sadeghzadeh-Nokhodberiz et al., 2014a; Sadeghzadeh-
Nokhodberiz et al., 2014c). Although cameras can provide highly
accurate measurements from the quad-copter orientation compared
to low-cost gyroscopes, they suffer from a slow sampling rate and
delay problems with respect to the gyroscope measurements due to
heavy computation load required. In the vision-based navigation,
feature points extracted from the camera images are tracked and the
camera motion, mounted on the UAV, is related to the locations
of tracked planar feature points in the image plane using the
homography relationship (Wang et al., 2013; White and Beard,
2019). Homography-based state estimation of a quad-copter system
using EKF is presented in Chavez et al. (2017). The images captured
by cameras should be highly processed for feature extraction
including detection, description, and matching (Csurka et al.,
2018). Although a recently developed ORB (Rublee et al., 2011)
method can significantly reduce the processing time compared
to the popular SIFT (Lowe, 2004) and SURF (Bay et al., 2006)
approaches, it still needs almost 33 m for feature extraction per
image (Mur-Artal et al., 2015). This processing time not only leads

to a much slower sampling rate but also the measured values
are received with a significant delay for the attitude estimation
procedure.

The problem of multi-rate delayed state estimation has been
studied in Lin and Sun (2021), Comellini et al. (2020), Fatehi and
Huang (2017), and Khosravian et al. (2015). Lin and Sun (2021)
and Khosravian et al. (2015) proposed a cascaded output predictor
and an attitude observer where the effect of sampling and delays
are compensated in the predictor. The delayed measurements are
extrapolated to present time using past and present estimates of
the KF in Larsen et al. (1998), where an optimal gain is derived for
this extrapolated measurement. In Lin and Sun (2021), the system
with delayed and multi-rate measurements is transformed into a
delay-free and single-rate system using a state iterating method, and
a non-augmented recursive optimal linear state filter is presented
for the system by utilizing projection theory. In Fatehi and Huang
(2017), different KFs are employed for each type of measurement
and the estimates are fused considering the correlation between
them in the next step. The cross-covariance matrix between the
estimation errors of KFs is obtained iteratively to be employed
in the fusion process. Due to the non-linear attitude kinematics
with respect to the Euler angles and its stochastic nature due to
the incorporation of the gyroscope noise in the model, the PF
is an appropriate choice for the attitude estimation. It is worth
mentioning that as long as staying away from singularity points
(±90 deg rotations of pitch angle), the Euler angle representation
of the attitude is preferred to the quaternion representation as
the quaternion must obey its normalization constraint, which can
cause issues in the filtering (Markley and Crassidis, 2014). In
Bassolillo et al. (2022), a KF-based sensor fusion algorithm, using a
low-cost navigation platform that contains an inertial measurement
unit (IMU), five ultrasonic ranging sensors, and an optical flow
camera is proposed to improve navigation of a UAV system in
indoor GPS-denied environments. A multi-rate version of the EKF
is employed to deal with the use of heterogeneous sensors with
different sampling rates and the presence of non-linearity in the
model.

To the best of the authors’ knowledge, the problem of PF-based
attitude estimation using PF with multi-rate delayed sensors has
not yet been studied in the literature. Accordingly, in this paper, a
multi-rate delayed PF is proposed to estimate the orientation with a
discretized attitude kinematics in Euler angles. It is shown that the
corresponding weights of the generated particles are the likelihood
of generally non-Gaussian delayed camerameasurements.The result
is then validated through simulation and experiments on a UAV
quad-copter system. For the experimental work, a DJI Tello quad-
copter system is employed where the images are processes using the
ORB feature extraction method and Python-OpenCV is employed
to calculate the rotation matrix using the homography approach.

The organization of the paper proceeds as follows. The system
and measurement models including the attitude kinematic model,
and gyroscope and camera measurement models are presented in
Section 2. Section 3 provides with the PF with multi-rate delayed
measurements. Simulation results are presented in Section 4 to
demonstrate the accuracy of the presented PF. The experimental
data gathered from DJI Tello quad-copter systems are analyzed in
Section 5. Finally, conclusion is provided in Section 6.
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2 System and measurement models

2.1 System model

The quad-copter attitude kinematics which represents the
relationship between angular velocities in the body and inertial
frames are described as follows Sadeghzadeh-Nokhodberiz et al.
(2021):

ϕ̇ (t) = p (t) + sin (ϕ (t)) tan (θ (t))q (t) + cos (ϕ (t)) tan (θ (t)) r (t) ,

θ̇ (t) = cos (θ (t))q (t) − sin (ϕ (t)) r (t) ,

ψ̇ (t) =
sin (ϕ (t))
cos (θ (t))

q (t) +
cos (ϕ (t))
cos (θ (t))

r (t) ,

(1)

where x(t) = [ϕ(t)θ(t)ψ(t)]T is the attitude vector of quad-copter
which is defined in the inertial frame where roll angle ϕ(t), pitch
angle θ(t), and yaw angle ψ(t) determine rotations around x-axis,
y-axis, and z-axis, respectively. In addition, p(t), q(t), and r(t) are
angular velocities rotating around x-axis, y-axis, and z-axis in the
body frame, respectively, and t refers to time.

2.2 Measurement models

2.2.1 The gyroscope measurement model
The gyroscope measurement model can be written as follows:

ωm (k) = ωb (k) + νω (k) , (2)

where ωm(k) ∈ ℝ3 and ωb(k) ∈ ℝ3 are the vectors of measured and
true angular velocities in the body frame at sample time k and
ωb = [p q r]T (see Eq. 1).Moreover, νω ∈ ℝ3 is a zero-mean generally

non-Gaussian measurement noise with a known probability density
function (pdf) with the covariance matrix of Rω.

2.2.2 The camera measurement model
Homography is used to obtain the measurement model

of camera by providing the transformation (including scale,
rotation, and translation) between two images. Toward this,
two consecutive frames from a camera mounted on a moving
body viewing a fixed point P are considered. The fixed point
is considered a feature extracted from the images using some
feature extraction approaches such as ORB (Rublee et al.,
2011).

singular value decomposition (SVD) is then performed with the
feature pairs that pass the RANSAC test to calculate the homography
matrix H. Let m1 and m2 be the two projections of point P in the
camera coordinates with R12 and t12 as the corresponding rotation
matrix and translation vector, respectively, in the camera frame
transformingm1 tom2 (see Figure 1). In Figure 1, d is the Euclidean
distance between the plane π, with the unit normal vector n, and
position 1. The relationships between the homography matrix and
the transformation between two images can be found in Wang et al.
(2013). Finally, through the SVD of the homographymatrix,R12 and
t12 can be obtained which can be transformed to the direction cosine
matrix (DCM),R, iteratively.The Euler angles can be then computed
using the DCM.

Therefore, the camera measurement model without delay
consideration can be represented as

ye (k) = x (k) + νe (k) , (3)

where νe is a zero-mean generally non-Gaussianmeasurement noise
with the covariance matrix of Re. It is worth mentioning that the
index e refers to the Euler angles.

FIGURE 1
Same fixed point, P, viewed from two different positions of a moving quad-copter for the homography purpose Wang et al. (2013).
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3 The proposed multirate particle filter

In this section, a PF for the system and measurement models
introduced in the previous section is presented when the sensors
collect data using a multi-rate sampling frequency procedure.

3.1 The general model

Toward this, let the gyroscope and camera sampling times in
seconds be represented with T and sT, respectively, with s ∈ ℕ.
Moreover, we consider the camera processing delay time as dT with
d ∈ ℕ and d < s, as depicted in Figure 2.

Moreover, a discretized form of the kinematic model presented
in Eq. 1 is also considered with the general non-linear discrete state
space model as follows:

xk = f (xk−1,uk) +ϖk−1, (4)

where uk = [p(k)q(k)r(k)]T and xk is defined in Equation 1 and
ϖk−1 is the additive process noise resulting from the gyroscope
measurement noise νω(k) with the same distribution but a scaled
covariance matrix Qx. The index k refers to the sampling instant.

In other words, the components of the discretized model of (4)
are as follows:

f (xk−1,uk) = xk−1 +TAk−1uk,

ϖk−1 = TAk−1νω (k) ,
(5)

where Ak−1 =
[[[[

[

1 sin(ϕk−1)tan(θk−1) sin(ϕk−1)tan(θk−1)

0 cos(θk−1) cos(θk−1)

0 sin(ϕk−1)
cos(θk−1)

cos(ϕk−1)
cos(θk−1).

]]]]

]

.

3.2 The modified particle filter

The general approach in the PF is to compute the posterior
pdf using the Monte Carlo (MC) method used in the Bayesian
estimation of the stochastic process xk by having the measurement
history y1:k = {y1,… ,yk} and the current sample of input at time
k. The goal in standard PF is to approximate the posterior pdf
p (xk|y1:k) by generating particles from a known distribution and
estimating the target pdf through attribution of the normalized
weights for each particle.

However, in case of this study as explained earlier, the
measurements are delayed and a slower sampling rate is considered

FIGURE 2
Camera sampling and delay scenario.

TABLE 1 Pseudo code corresponding to the proposed PF for attitude estimation.

Step 0: Initialization: Sample initial particles, that is, {xi0}
N
i=1, using a known initial distributions of states (p (x0)), where x0 ∼ p (x0)

At the time instant k

Step 1: Prior estimate: Generate the prior state particles {xi−k }
N
i=1 using the system model, that is, xi−k ∼ p(xk|x

i+
k−1), for i = 1:N

In other words for the attitude system of (4) and 5: xi−k = x
i+
k−1 +TA

i+
k−1ωm (k) −ϖ

i
k−1, where x

i−
k is the prior estimate at the time sample k and xi+k−1 is the re-sampled posterior

estimate at the time sample k− 1 and Ai+
k−1 = Ak−1|xi+k−1 and ϖ

i
k−1 is the particle generated using a known pdf of ϖk−1 which is zero mean generally non-Gaussian noise with the

covariance of Qx = T
2Ai+

k−1Rω(A
i+
k−1)

T

Step 2: Posterior estimate: Compute {xi+k }
N
i=1 as follows.

IF the camera measurement, ye,k−d, is available, the weights are computed using (10) and the particles are re-sampled to generate posterior estimates with equal weights of 1
N
,

that is, {xi+k ,
1
N
}N
i=1

ELSE let xi+k = x
i−
k , i = 1, .,N with the corresponding weights of 1

N
for each sample

END

Step 3: State estimation: Estimate the system states as x̂k = ∑
N
i=1

1
N
xi+k
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FIGURE 3
(Conitnued).
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FIGURE 3
(Conitnued). Comparing attitude estimation of a drone for a different delay d and sampling time s, using measurement by a camera (dots), estimation
by the proposed particle filter (blue dot-line), and the kinematic model (red dot-line). (A) No delay and sampling rate for both gyro and camera (B)
Sampling rate of the camera is 10 times slower than the gyro and the delay in the camera measurements is 5 samples (C) Sampling rate of the camera
is 100 times slower than the gyro and the delay in the camera measurements is 50 samples.

for the camera compared with the data measured from the
gyroscope. Therefore, two different cases may happen at each
sampling step. The delayed camera measurements are arrived or
there are no camera measurements. In this section, the PF for these
two cases are derived.

3.2.1 Case I: camera measurement available
In this case, as depicted in Figure 2, the delayed camera

measurement is available at sample time k. Therefore, the posterior
distribution p (x1:k|ye,1:s:k−d) should be approximated using the MC
method such that ye,1:s:k−d refers to the historical data collected by
camera every s sampling instant and with the initial time delay of
d. Here, the proposal distribution p (xk|xk−1) is employed for the
particle generation. By applying the Bayes’ rule and the Markov
property, it can be concluded that

p(x1:k|ye,1:s:k−d) = p(xk|xk−1) ×…× p(xk−d+1|xk−d)

× p(x1:k−d|ye,1:s:k−d) .
(6)

Here, p (x1:k−d|ye,1:s:k−d) using the Bayes’ rule and statistical
independencies can be rewritten as follows:

p(x1:k−d|ye,1:s:k−d) ∝ p(ye,k−d|xk−d) × p(x1:k−d|ye,1:s:k−d−s) . (7)

The term p (x1:k−d|ye,1:s:k−d−s) is also extended as follows:

p(x1:k−d|ye,1:s:k−d−s) = p(xk−d|xk−d−1) ×…× p(xk−s+1|xk−s)

× p(x1:k−s|ye,1:s:k−d−s) .
(8)

Using Eqs 6–8, the weight function is computed as follows:

w(xk) = p(ye,k−d|xk−d)w(xk−s) . (9)

The weight functions are evaluated for the particles generated
using the proposal distribution p (xk|xk−1) and using the system
probabilistic model represented by the kinematics model in Eq. 1.
So the particles xi−k |

N
i=1 are generated where N refers to the

number of particles. Since re-sampling should be carried out as
the next step, the weights of the particles at sample time k− s are
transformed to 1

N
after re-sampling with re-sampled particles of

xi+k−s|
N
i=1.
Therefore, the normalized weights for re-sampling for each

particle are computed as follows:

wi*
k =

p(ye,k−d|x
i+
k−d)

N

∑
j=1

p(ye,k−d|x
j+
k−d)

. (10)

3.2.2 No camera measurement available
In this case, no camera data are available at sample time k.

Therefore, p (x1:k|ye,1:s:k−d−s) should be approximated.Therefore, the
weight function is w (xk) = w (xk−s) as it is proved in the following.
Since the last receivedmeasurement from the camera at the sampling
instant k is yk−d−s and received at k− s sampling instant, therefore

p(x1:k|ye,1:s:k−d−s) = p(xk|xk−1) ×…× p(xk−d+1|xk−d)

× p(x1:k−d|ye,1:s:k−d−s) ,
(11)
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TABLE 2 RMSE for different scenarios.

Scenario s = 1,d = 0 s = 10,d = 5 s = 100,d = 50

RMSE 9.7001× 10−6 3.2284× 10−5 8.2284× 10−5

where the term p (x1:k−d|ye,1:s:k−d−s) is computed in Eq. 8which states
that the corresponding weight of the ith particle xi−k−1 is w(x

i+
k−s) and

after normalization and re-sampling the corresponding weight of
each particle would become 1

N
.

In order to clarify the proposedmethod, it is presented in Pseudo
code in Table 1.

4 Simulation results

In this section, simulation results are provided in the
MATLAB/SIMULINK environment to show the efficiency of the
proposed method. The simulated AR Drone Parrot 2.0 quad-
copter is stabilized using a non-linear robust sliding mode control
technique presented in Nemati and Montazeri (2018a) and Nemati
and Montazeri (2018b).The physical parameters of the quad-copter
are listed as follows:

Ixx = 7.72× 10−2kg m2, Iyy = 7.64× 10−2kg m2,

Izz = 0.1031kg m2, Ir = 1.8× 10−5kg m2, m = 2.5kg.

In order to evaluate the performance of the proposed PF,
different scenarios for delay and sampling rate values are considered.
Figure 3A depicts the attitude estimation result using the gyro and
camera measurements, and the results are compared with those
obtained from the kinematics model when camera has no delay and
the sampling rates are equal, that is, s = 1 and d = 1.Figures 3B,C are
related to the cases with s = 10,d = 5 and s = 100,d = 50, respectively.
It is obvious from the figures that although the camera slows the
sampling rate and processing delay, and deteriorates the estimation
accuracy, the proposed method is still successful to provide an
accurate estimation.The root mean square error (RMSE) criterion
is also employed to provide a numerical measure for a comparative
study of the results. The results are summarized in Table 2, which
also confirms the aforementioned discussion.

5 Experimental results

The experimental results are provided using the DJI Tello drone
illustrated in Figure 4. It is a small (99mm× 92.5mm× 41 mm) and
lightweight (80g) drone with a maximum speed of 8 m/s which uses
the 2.4 GHzWi-Fi communication channel to be connected to a PC
or laptop for sending and receiving telemetry data and commands,
respectively.The drone is equipped with an IMU and a 720p camera
and an SDK is provided to help developers for implementation of
their algorithms. Although the camera information is available, the
SDK cannot read the IMU data and instead the results of internal
positioning data can be read Steenbeek (2020).

To perform the homography, first, the ORB feature matching
method is applied on the frames captured by the DJI Tello
camera. Toward this, the ORB algorithm uses the improved FAST

FIGURE 4
Image of the DJI Tello mini-drone.

algorithm, used in image feature point detection, the feature point
screening, image pyramid building, and the feature point direction
determination. After that, the ORB algorithm uses the improved
BRIEF algorithm to generate binary feature point descriptors, and
then, the descriptors are corrected using the steer BRIEF method to
include the direction information. Finally, in the process of feature
point matching, the points are matched based on their descriptor
similarities. Toward this, the Brute-Force matcher method applied
in Hamming distance is used to measure the distance between the
binary descriptors and to choose the nearest ones as the matched
points. Finally, by employing the PROSAC algorithm, the matched
points with larger matching errors are rejected, which significantly
improves the accuracy of matching Luo et al. (2019).

For this purpose, in Python-OpenCV, we have employed the
following command for the feature point detection and generation
of descriptors:

[keypoints,descriptors] = orb.detectAndCompute (img)

The result of this command for a sample frame is depicted
in Figure 5A. In addition, for feature matching, the following
command is employed:

matches = b f.match (des1,des2)

where des1 and des2 are descriptor vectors of two successive frames.
Finally, the matched points are sorted to find the best matches. The
result of feature matching is depicted in Figure 5B for the same
sample frames.

To compute the homography matrix, the following command is
employed:

H = cv. findHomography (srcPoints,dstPoints) ,

where srcPoints are coordinates of the points in the original plane,
which is a cell array of 2-element vectors {[x,y],…} with single
floating-point precision and dstPoints are coordinates of the points
in the target plane, of the same size and type as srcPoints. Now, in
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FIGURE 5
ORB feature extraction results achieved by the drone camera in a hover position. (A) Feature extraction (B) Feature matching.

order to compute theDCM from the computed homographymatrix,
the following command is employed:

[n,Rs,Ts,Ns] = cv2.decomposeHomographyMat (H,K) .

Here,H is the input homography matrix between two images, K
is the input camera intrinsicmatrix,Rs are array of rotationmatrices,
Ts are array of translationmatrices, andNs are array of plane normal
matrices. In addition, n is the number of possible solutions and
returned as the function output.The set of four solutions is returned
using this command which can be reduced to two or one using the
method explained inMalis andVargas (2007). Reducing the number
of solutions to two can be achieved by using additional constraints.
For this purpose, a set of reference image points p* is selected and by

using the camera intrinsic matrix K, the points are projected using
the relation as follows:

m* = K−1p*.

In this case, the valid solutions are those satisfying the projection
inequality as follows for all points in the plane determined by the
normal vectorm* and n* is the normal vector of the corresponding
plane

m*Tn* > 0.

The frame rate of the camera is 30 frames per sec, and we
have processed the frames on an 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.8 GHz processor. The results of the attitude estimation
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FIGURE 6
Attitude estimation versus the experimental data from the DJI Tello with varying d and s.

using the proposed PF compared to the camera homography
(measurement results) and the positioning results, recorded by DJI
Tello, are depicted in Figure 6. It is worth mentioning that due
to experimental limitations the sampling time and delay in the
recorded experimental data have not been constant, but they are
known. However, the delay caused by the camera processing time
has always been less than these varying sampling periods.Therefore,
the proposed approach is applicable to the problem at hand. In
other words, the camera frames are sampled after the results of the
ORB and homography procedures of the last sampled frames are
available. It took on average 0.03 s for processing of each frame
for our processor and 0.02 s for the ORB feature extraction and
matching, and the homography procedure only needs 4× 10−4 s.The
sampling rate of the positioning procedure on average is 17× 10−4 s.
Therefore, on average d = 30 and s = 40. In otherwords, the sampling
rate of the camera is 0.068 s, and thus, only one frame is missed due
to the frame rate of 30 frames per sec. Accordingly, the processing
delay of the camera information is less than the sampling time
of the camera. Although we have processed the gathered data
from the camera offline, it is also possible to be processed online.
In other words, sampling two successive frames is fast enough
such that still there exists features to be matched between two
sample frames (only one frame is missed). Moreover, in practical
implementation of the particle filter estimation algorithm, since the
IMU data are not directly available for measurement, the gathered
positioning data by camera are used for the particle generation.

This is replaced by the kinematic model used in the simulation
results.

6 Conclusion

An extension of the sampling importance re-sampling (SIR)
particle filter (PF) was proposed in this paper to solve the problem
of attitude estimation of a quad-copter system equipped with a
multi-rate camera and gyroscope sensors. In the proposed PF, the
delayed camera measurements are used for weight computation
and re-sampling and when no camera measurement is available,
only the sampling is performed. It was shown through simulation
and experimental data that the method is successful to estimate
the attitude truly in the presence of delayed multi-rate camera
measurements. In the experimental part, the ORB feature matching
methodwas employed for image processing in Python-OpenCv, and
after that, the DCMwas computed using homography.As our future
research topic, we intend to solve the problem of attitude estimation
using particle filtering, in the presence of gyroscope faults and errors
such as sensory biases anddrifts, aswell as delayedmulti-rate camera
measurements.
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