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Introduction: Robot-assisted neurorehabilitation is becoming an established method
to complement conventional therapy after stroke and provide intensive therapy
regimes in unsupervised settings (e.g., home rehabilitation). Intensive therapies may
temporarily contribute to increasing muscle tone and spasticity, especially in stroke
patients presenting tone alterations. If sustained without supervision, such an increase
inmuscle tone could have negative effects (e.g., functional disability, pain).Wepropose
an online perturbation-based method that monitors finger muscle tone during
unsupervised robot-assisted hand therapy exercises.

Methods:Weused the ReHandyBot, a novel 2 degrees of freedom (DOF) haptic device
to perform robot-assisted therapy exercises training hand grasping (i.e., flexion-
extension of the fingers) and forearm pronosupination. The tone estimation
method consisted of fast (150ms) and slow (250ms) 20mm ramp-and-hold
perturbations on the grasping DOF, which were applied during the exercises to
stretch the finger flexors. The perturbation-induced peak force at the finger pads
was used to compute tone. In this work, we evaluated the method performance in a
stiffness identification experiment with springs (0.97 and 1.57 N/mm), which simulated
the stiffness of a human hand, and in a pilot study with subjects with increasedmuscle
tone after stroke and unimpaired, which performed one active sensorimotor exercise
embedding the tone monitoring method.

Results: The method accurately estimates forces with root mean square percentage
errors of 3.8% and 11.3% for the soft and stiff spring, respectively. In the pilot study, six
chronic ischemic stroke patients [141.8 (56.7) months after stroke, 64.3 (9.5) years
old, expressed as mean (std)] and ten unimpaired subjects [59.9 (6.1) years old] were
tested without adverse events. The average reaction force at the level of the fingertip
during slow and fast perturbations in the exercise were respectively 10.7 (5.6) N and
13.7 (5.6) N for the patients and 5.8 (4.2) N and 6.8 (5.1) N for the unimpaired subjects.

Discussion: The proposed method estimates reaction forces of physical springs
accurately, and captures online increased reaction forces in persons with stroke
compared to unimpaired subjects within unsupervised human-robot interactions. In
the future, the identified range of muscle tone increase after stroke could be used to
customize therapy for each subject and maintain safety during intensive robot-
assisted rehabilitation.
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1 Introduction

Robot-assisted rehabilitation has become an establishedmethod to
complement conventional upper limb therapy after neurological
injuries, such as stroke (Lambercy et al., 2018; Aggogeri et al.,
2019; Demofonti et al., 2021). Several studies demonstrated the
potential of robotic technologies to offer motivating task-oriented
training with individualized difficulty (Metzger et al., 2014; Giang
et al., 2020) and allow therapy outcomes comparable to conventional
dose-matched therapies (Lo et al., 2010; Burgar et al., 2011; Mehrholz
et al., 2018; Rodgers et al., 2019; Ranzani et al., 2020). One important
potential of rehabilitation robots is the possibility to provide higher
therapy dose, which is expected to generate higher gains (McCabe
et al., 2015; Ward et al., 2019). This could be achieved by letting stroke
patients accessing, in addition to conventional therapies, high-quality
minimally or unsupervised robot-assisted therapy sessions, either in
the clinic or at home after discharge (Sivan et al., 2014; Wolf et al.,
2015; Zhang et al., 2020; Lambercy et al., 2021; Ranzani et al., 2021).
However, the unsupervised use of rehabilitation devices, particularly
by stroke subjects with diverse neurological deficits (e.g., sensory loss,
cognitive issues), bares the risk to increase the occurrence of adverse
events. Thus, a safe and comfortable interaction between the robot and
the patient, and the possibility to monitor potential adverse event, are
crucial to achieve effective, unsupervised robot-assisted therapy.

One of the adverse events that might occur during intensive upper
limb neurorehabilitation is an increase in muscle tone. As a matter of
fact, stroke survivors, particularly in the chronic stage, frequently
suffer from muscle tone alterations and spasticity [i.e., between 30%
and 80% (Kuo and Deshpande, 2012; Pandyan, 2005)] due to injuries
in the descendingmotor pathways and abnormal motor drives. Muscle
tone is commonly defined as the physiological continuous and passive
partial contraction of the muscles, or the passive resistance of the
muscles during resting state (O’Sullivan et al., 2019). Spasticity,
according to the definition of (Lance, 1980), is a motor disorder
that causes a speed-dependent increase in muscle tone, caused by the
increased excitability of muscle spindles, as part of the upper motor
neuron syndrome (Yang et al., 2021). Active motor tasks can
temporarily change muscle tone and, if not properly monitored
and administered, might affect the way patients engage in
rehabilitation exercises and potentially influence long-term
outcomes (Bobath and Bobath, 1950; Perfetti and Grimaldi, 1979;
Veerbeek et al., 2017). Since uncontrolled spasticity can cause pain,
muscle contractures and significantly compromise patients’
independence and quality of life (Formisano et al., 2005; Kong
et al., 2012), observational assessments are typically used in clinical
settings to promptly detect spasticity and monitor it over time. Two of
the most widely used assessments are the Modified Ashworth Scale
[MAS, (Bohannon and Smith, 1987)] and the Tardieu Scale (Tardieu
et al., 1954). Unfortunately, clinical measures, and in particular the
MAS, which is the most frequently used scale, lack validity and
reliability, as they are subjective and rely heavily on the therapist’s
experience (Katz and Rymer, 1989; Cha and Arami, 2020; Germanotta
et al., 2020). Furthermore, they cannot be performed in unsupervised
settings. Therefore, to complement the intrinsic safety characteristics
of a rehabilitation device [e.g., electromechanical properties
(Mehrholz et al., 2018; Bessler et al., 2021)], human-robot
interaction could be exploited to implement monitoring strategies
that study changes in patients’ motor control during rehabilitation.
Robotic devices can be used to accurately estimate changes in muscle

tone (or its manifestation in terms of change in joint stiffness) during
limb mobilization (Artemiadis et al., 2010; Tucker et al., 2013; Dehem
et al., 2017; Ranzani et al., 2019; Zou et al., 2021; van der Velden et al.,
2022). Most frequently, to do this, position- or velocity-controlled
perturbations are applied to the passive limb while force sensors
measure the reaction force/torque of joint and muscles during the
movement, which can be used to quantify muscle tone and limb
biomechanics, as well as spasticity when different perturbation speeds
are considered (De-la-Torre et al., 2020; Guo et al., 2022). However, to
date, no device for robot-assisted therapy allows to autonomously
monitor the changes in patient’s muscle tone directly during
rehabilitation exercises as a way to ensure safe conditions of use
during unsupervised therapy sessions. Moreover, according to a recent
review, only three percent of the studies focusing on technology-
assisted assessment of spasticity focus on the hand (Guo et al., 2022).

In a previous work, we proposed a method to autonomously
monitor hand muscle tone parameters (i.e., end-point stiffness and
forces at the fingertips) online during robot-assisted therapy exercises,
and we preliminarily tested its feasibility with five unimpaired
(i.e., neurologically intact) subjects and five subjects after stroke
not presenting hand spasticity (Ranzani et al., 2019). In this paper,
we extend and complement this work by further validating the
accuracy of the method in a testbench experiment using springs
instead of the human hand (i.e., the method is used to estimate the
stiffness of springs with known stiffness), and by investigating the
range of muscle tone fluctuations, and their dependency on the
perturbation speed, in subjects with hand spasticity after chronic
stroke as well as in an unimpaired age-matched population. All
subjects performed a newly developed therapy exercise embedding
the proposed perturbation-based method during a single therapy
session. Moreover, the muscle tone parameters were compared to
theMAS at the beginning and at the end of the session to evaluate their
correlation. We hypothesize that the proposed method would be able
to accurately estimate muscle tone/stiffness parameters and capture
differences between unimpaired and stroke subjects over exercise time.
In the stroke group, we also expect muscle tone parameters to be
speed-dependent but not significantly correlated with the MAS due to
its limited reliability and resolution (Katz and Rymer, 1989; Melendez-
Calderon et al., 2013). This work could be an important step towards
developing smart algorithms that automatically adapt therapy
parameters to continuously ensure user’s safe use of rehabilitation
robots during unsupervised therapy.

2 Materials and methods

2.1 Robotic device

The proposed study uses the ReHandyBot, a portable haptic device
for hand rehabilitation, as assessment and therapy platform. We
recently developed this robot as a compact and portable redesign
of the ReHapticKnob (Metzger et al., 2011; Ranzani et al., 2021). It has
two active degrees of freedom (DOF) that allow training of grasping
(i.e., flexion-extension of the fingers) and pronosupination of the
forearm during therapy exercises with haptic feedback. A virtual
reality interface displays objects to interact with, in the context of
engaging exercises, while their mechanical properties are rendered
through instrumented finger pads held and manipulated by the users
(Metzger et al., 2014). During therapy exercises, users sit in front of the
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robotic device with the fingers attached to its finger pads with
VELCRO straps, as shown in Figure 1. The VELCRO straps
constrain only the first three fingers since they are highly relevant
for most grasp types used in daily life (Saudabayev et al., 2018) and
their sensorimotor function is interlinked through a common
innervation (of the median nerve). Moreover, this type of fixation
allows to fix the hand easily and stably, independently of the hand
anthropometrics, and leaves the user the freedom to keep the last two
fingers flexed or extended on the finger pad surface. To allow patients
with different finger muscle tone to use the device and guarantee
ergonomics, the finger pads have been designed with an ellipsoidal
shape. This could especially help patients with increased muscle tone
to prevent fingers from sliding out of the finger pads, while allowing a
simple hand placement and a comfortable grip. One-DOF load cells
(Omega LCL-040 Thin Beam) are located under each finger pad and
allow the measurement of the interaction forces (i.e., grasping force
and pronosupination torque) between the user and the robot. The user
can interact with the robot (e.g., login to his/her personalized therapy
plan, select and execute the exercises) through an intuitive colored
pushbutton keyboard suitable for unsupervised therapy. A movable
hand cover allows to fully cover the hand during the execution of
therapy exercises. The robot can easily be adapted for left and for right
hand use since the finger pads are symmetrical, the hand cover can be
flexibly moved and the pushbutton keyboard can be placed on the left
or on the right of the robot. ReHandyBot offers the same assessments
(e.g., active range of motion, aROM) and assessment-driven
rehabilitation exercises previously implemented on ReHapticKnob,
which aim at training grasping and forearm pronosupination

movements, as well as proprioception, haptic perception, sensory-
motor memory and cognitive function. More details on the therapy
platform, assessments and therapy exercises can be found in (Metzger
et al., 2014) and (Ranzani et al., 2021).

2.2 Muscle tone estimation method

Building on our previous proof of concept work (Ranzani et al.,
2019), we developed and refined a muscle tone estimation method that
consists of fast (150 ms) and slow (250 ms) 20 mm ramp-and-hold
perturbations on the grasping DOF (i.e., 10 mm at the fingertip per
finger), which can be applied during the therapy exercises to stretch
the long finger flexor muscles within their range of motion, while the
hand is relaxed (see example in Figure 2). Stretching of the finger
flexors was chosen over stretching of the finger extensors since this is
the direction that predominantly elicits spastic behavior (Katner and
Kasarskis, 2014). The small perturbation amplitude at the given speed
prevent overstretching of the fingers and make perturbations less
perceivable, since changing subject’s awareness and stress can
influence muscle tone (Boman, 1971; Burke et al., 2013; Profeta
and Turvey, 2018). The chosen time windows allow to capture
short (i.e., spinal monosynaptic) and long-loop (i.e., transcortical)
stretch reflex reactions that are relevant for the control of muscle tone
and exclude steady state voluntary reactions, which starts after
approximately 750 ms (Hammond et al., 1956; Davidoff, 1992;
Pruszynski et al., 2009). Two speeds allow to evaluate whether
muscle tone is speed-dependent (i.e., as in the case of spasticity).

FIGURE 1
A subject performing a rehabilitation exercise (sponge exercise) with the ReHandyBot, which includes physical (i.e., instrumented finger pads, colored
pushbutton keyboard) and graphical user interfaces (GUIs) and a set of therapy exercises that can be used without supervision. During the specific sponge
exercise, subjects have to identify virtual sponges with different stiffness rendered by the robot by squeezing them and then press the color corresponding to
the perceived stiffness on the pushbutton keyboard. A movable hand cover allows to cover the hand during the execution of the exercise. Emergency
stop buttons can be pressed at any time.
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2.3 Therapy exercise with online muscle tone
monitoring

We embedded our muscle tone monitoring method into a
therapy exercise inspired by the neurocognitive method proposed
by Perfetti, which consists of an object identification exercise (e.g.,
sponge of different properties) (Perfetti and Grimaldi, 1979). This
exercise was previously tested with subjects after stroke during
supervised therapy (Ranzani et al., 2020). We selected this
sensorimotor exercise since it requires active recruitment of the
long finger flexors and should suit the ability level of subjects with
spasticity (e.g., no complex multi-DOF movements). The exercise is
composed of a series of exercise blocks of different difficulty, as
shown in Figure 3. One exercise block consists in a training phase
and a test phase. In the training phase, three virtual sponges of
different colors, each associated with a different stiffness value, are
displayed to the subject. The user has to squeeze the sponges one by
one by pressing the finger pad of the robot and memorize their
stiffness. In the time interval between the squeezing of two sponges,
while the subject’s hand is relaxed, a position perturbation is applied
at the two finger pads. The training phase is repeated twice (i.e., the
subject explores each sponge two times), which allows to perturb the
patient’s hand six times (three fast and three slow in random order).
To avoid perturbing the hand too often, perturbations are only
applied during the first block and repeated in subsequent blocks only
if these start at least 3 min after the previous block with
perturbations. This accounts for three perturbation blocks over
the total exercise duration (i.e., 12 min, see Figure 3). The blocks
with perturbations are defined as “perturbation blocks.” In the test
phase, one of the sponges is presented to the subject inside a black

box, which does not allow to see the sponge color. The subject has to
squeeze the sponge, perceive its stiffness and identify it with the
corresponding color using the pushbutton keyboard. This
corresponds to one therapy task repetition. The first block of the
exercise has the same difficulty (i.e., relative stiffness difference
between sponges) for all the subjects. The difficulty is
progressively updated using Parameter Estimation by Sequential
Testing (PEST) (Taylor and Creelman, 1967) based on the
subject’s performance within the block. Each difficulty update
requires a new training phase (and block) to allow the training of
a new set of sponges. Thus, the number and duration of the blocks
varies for each subject within the same exercise duration.

2.4 Stiffness identification experiment with
springs

Muscle tone can be mathematically evaluated as the change in
resistance (e.g., force or stiffness) per unit change in length (e.g., Δ
force/Δ displacement of the tissue) (Ganguly et al., 2021). Since the
perturbation-induced force reactions at the finger pads are used to
compute tone with a 20 mm displacement, a first testbench
experiment was carried out to verify the reliability
(i.e., measurement error) of the force (and stiffness) identification.
Ten slow and ten fast perturbations were applied to two different
springs with known stiffness (0.97 and 1.57 N/mm respectively),
which were connected to the inside of the finger pads through two
cylindrical constraints, as shown in Figure 4. These specific springs
were chosen to generate reaction forces that, for a displacement of
20 mm and based on data collected during a previous clinical study

FIGURE 2
Representative fast 20 mm (amplitude a, thumb to index tip distance change) ramp-and-hold perturbation from subject two in the stroke group (red) and
subject five in the unimpaired group (blue). In light grey is the 50 ms window in which the average baseline force (Fpeak) is calculated before the ramp onset. In
grey is the 100 ms window in which the maximum force peak induced by the perturbation (Fbase) is evaluated.
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FIGURE 3
Exercise description and pilot study experimental protocol. Top: detail of the exercise structure. A block i consists of a training phase i and a test phase i. In
the training phase, the subjects have to consecutively squeeze three virtual sponges of different color rendered by the robot and memorize their stiffness. In
the training phase of the blocks where the perturbations were applied, i.e., the perturbation blocks, three fast and three slow perturbations (thunderbolt icon)
are applied when subjects switch form one sponge to the following and their hand is relaxed. In the test phase, a random sponge among the three
previously memorized is proposed. Subjects have to squeeze it and press the color corresponding to the identified stiffness on the pushbutton keyboard. This
corresponds to one therapy task repetition. The difficulty level (i.e., relative stiffness difference between sponges) is progressively adapted based on the
subject performance and, at each difficulty update, a new training phase (and block) is started. Thus, each subject performs a different number of blocks (with
different duration and number of task repetitions) within the same exercise duration (12 min). Bottom: The pilot study includes a supervised (familiarization)
block, followed by unsupervised blocks during which the subject independently performs the exercise, while the experimenter observes the session. At the
beginning of the experiment, all subjects undergo the robotic assessment of the aROM, while only stroke subjects perform the Fugl-Meyer assessment of the
upper extremity (FMA-UE) and the Modified Ashworth Scale (MAS) of long finger flexors, which is repeated at the end of the last block. Perturbation blocks
were designed to be at least 3 min apart, meaning that not all the training phases have perturbations (maximum three over 12 min). * = performed only for
stroke subjects.

FIGURE 4
Setup for the stiffness identification experiment. Linear springs with known stiffness (0.97 or 1.27 N/mm) were applied on the inside of the finger pads
through two cylindrical constraints while applying the position perturbations. This allowed to validate the performance of the perturbation-based stiffness
identification.
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(Ranzani et al., 2020), are within the range of forces typically generated
by stroke patients interacting with the robot during functional therapy
tasks (i.e., around 30 N).

2.5 Pilot study with subjects with and without
spasticity in hand muscles

We conducted a pilot study in which six subjects with spasticity in
the hand muscles after chronic stroke (>6 months) and ten age-
matched neurologically intact subjects (i.e., >50 years old) were
enrolled to participate in a single experimental session. The
participants gave written informed consent, and the study was
approved by the ETH Zurich Ethics Commission, Switzerland (EK
2020-N-84). Subjects with stroke were recruited through the
University Hospital Zurich and included if they had a Modified
Ashworth Scale (MAS) in the long finger flexors greater than or
equal to one, and residual ability to lift the arm against gravity.
Exclusion criteria were clinically significant concomitant diseases
(i.e., severe aphasia, severe cognitive deficits, severe pain),
suspected non-compliance, drug or alcohol abuse, and inability to
give informed consent and understand two stage commands.

The timeline of the study protocol is reported in Figure 3. At the
beginning of the experimental session, the Fugl-Meyer assessment for
the upper extremity [FMA-UE, (Fugl-Meyer et al., 1975), for stroke
subjects only] and the robotic assessment of the active range of motion
[aROM, (Metzger et al., 2014)] of the hand during opening/closing
were performed to define the ability level of the subjects and adjust
exercise parameters. Subsequently, the investigator instructed the
subject on how to interact with the robot (e.g., how to place, adjust
and remove the hand from the finger pads) and its graphical user
interface, and how to perform the exercise during one supervised block
(no perturbation). After a short break, each subject had to
independently perform the sponge exercise (see Section 2.3) for
12 min during simulated unsupervised blocks. During this time, the
investigator sat at the back of the room, silently observed the subject’s
actions and intervened only in case of risk or upon request. The stroke
and unimpaired participants were tested using their impaired or
dominant hand, respectively. For the stroke subjects, the MAS of
the long finger flexor muscles was assessed at the beginning and at the
end of the last unsupervised block, to investigate potential change in
muscle tone. The MAS was chosen since it is the most widely used test
for the measurement of muscle hypertonia and spasticity in research
and clinical practice (Bakheit et al., 2003). An experienced
physiotherapist performed all clinical assessments.

2.6 Outcome measures

For each perturbation p, independently from whether it is applied
to the springs in the stiffness identification experiment or to the
human hand in the pilot experiment, we report the starting position of
the perturbation at the onset of the ramp, the absolute force peak Fpeak
achieved in reaction to the perturbation, and the end-point stiffness k
identified at the finger pads (i.e., the estimated stiffness of the physical
spring in the spring experiment or of the combination of muscle tone
and finger biomechanical properties in the pilot experiment, which is
the grip stiffness). These parameters allow to fully characterize muscle
tone at given perturbation amplitude (i.e., 20 mm) and speed (i.e., slow

and fast, with ramp times of 250 and 150 ms). All the positions and
velocities are calculated with the distance in mm between the fingertip
of the thumb and of the index finger.

The stiffness k is calculated as

kx p( ) � 1
a
(Fpeak p( ) − Fbase p( )) (1)

where p indicates a single perturbation, x is the perturbation speed
(i.e., s = slow, f = fast) and a is the amplitude of the perturbation
(i.e., 20 mm). Fbase is the baseline grasping force before the
perturbation, which is calculated as the average force over the
50 ms before the ramp onset. Fpeak is the absolute force reaction
after the perturbation (i.e., the sum of the perturbation-induced force
reaction and the baseline force), which is calculated as the peak force
reached between 50 ms before and 50 ms after the ramp ends. This
time interval was empirically chosen based on the physiological
duration of reflexes and after visual inspection of pilot data, as it is
long enough to capture force changes induced by the perturbation
without including voluntary reactions. The appropriateness of this
empiric choice is evaluated by reporting the peak time (i.e., delta time
between the perturbation onset and the maximum force peak achieved
during the ramp-and-hold perturbation). kx and Fpeak are also
evaluated as average over one perturbation block (i.e., average of
three measurements for each perturbation block) to study their
evolution over the course of the therapy session. To illustrate the
human-robot interaction happening during one perturbation, Figure 2
shows one representative example of how Fbase, Fpeak and k are
calculated after a fast perturbation in one stroke and one
unimpaired subject (e.g., the force peak and stiffness are higher in
the subject with stroke, the amplitude a of the ramp is constant at
20 mm independently of the exact baseline position, which can slightly
vary among subjects, for instance, due to different hand sizes).

To evaluate the accuracy of the stiffness k identification and peak
force Fpeakmeasurement, in the stiffness identification experiment, the
root mean square percentage error (RMSPE) is calculated between the
known stiffness/force exerted by the springs and the stiffness/force
measured through the robot.

2.7 Data analysis

In the stiffness identification experiment, the Wilcoxon rank sum
test was used to verify homogeneity in stiffness identification accuracy
independently on the perturbation speed.

In the pilot study, homogeneity between groups was assessed with
respect to baseline characteristics and exercise dose (i.e., exercise
duration, number of therapy blocks, task repetitions and therapy
intensity, which is the number of task repetitions performed per
time unit in the test phase), to exclude their possible influence on
muscle tone, and between peak times, to evaluate if the time of
perturbation-induced reflexes changes in spasticity with respect to
an unimpaired population. To compare baseline characteristics, the two-
sample t-test was used for continuous variables (i.e., age, aROM), while
the Fisher’s exact test was used for dichotomous variables (i.e., gender,
hand dominance, impaired hand). To assess the homogeneity between
groups with respect to exercise dose, theWilcoxon rank sum test was used
for exercise duration and number of therapy blocks, while the two sample
t-test was used for number of task repetitions and therapy intensity
(i.e., number of task repetitions performed per minute during the test
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phase). The Wilcoxon rank sum test was used to compare the peak times
between the groups.

To guarantee the assumption that the hand of the subject was at
rest at the beginning of a perturbation, and therefore being able to
compare our results to the MAS, all data containing obvious voluntary
contractions were not included in the data analysis. In both groups, a
voluntary contraction at the perturbation onset was deemed present if
the Fbase was above one standard deviation of all the baseline forces
Fbase of the subject during the exercise or if Fbase was greater than Fpeak.
However, for the scope of this analysis, to account for possible
continuous increases in finger stiffness due to biomechanical
reasons (e.g., due to permanent contractures), which are unrelated
to voluntary muscle contraction, we previously detrended the forces
with a first order fit in the participants with chronic spasticity.

The perturbation-induced peak forces were compared in a 2 ×
3 aligned rank transform for non-parametric analyses of variance
[ART-ANOVA, (Wobbrock et al., 2011)] (i.e., group × perturbation
block, perturbation speed × perturbation block) to analyze between
and within-group differences. Excluding comparisons in baseline and
exercise dose, a Bonferroni correction was applied to the statistical
significance level α = 0.05 in the analyses of the outcome measures,
leading to a p-value for statistical significance of 0.0083.

Missing data points, due to the presence of voluntary contractions
during the perturbations, were inferred by last observation carried
forward or, if no former value was available, by next observation
carried backward. However, if the exercise was prematurely
terminated, only data up to the termination of the exercise were
used, to respect the time alignment with last MAS assessment, which
was performed right after the termination of the exercise.

3 Results

3.1 Stiffness identification experiment with
springs

Through ten fast and ten slow perturbations, the ReHandyBot
identifies spring stiffnesses with a RMSPE of 3.8% (percentage error
between 2.3% and 6.9%) for the soft spring and 11.3% (percentage error
between 9.8% and 12.5%) for the stiff spring. Percentage errors were not
significantly different depending on the perturbation speed (Z = −0.1, p =
0.910). The perturbations were applied from a baseline position of 75.6
(0.6) mm and 80.1 (0.4) mm [expressed as mean (std)], and reached force
peaks of 64.7 (0.4) N and 97.9 (0.3) N, respectively.

3.2 Participants baseline characteristics and
exercise dose

All participants completed the protocol without adverse events
related to the device and only two stroke subjects requested therapist
intervention to reposition the hand in the finger pads during the
exercise. Table 1 reports the baseline clinical and demographic
characteristics. The stroke group consisted of six participants (four
male, two female, age 64.3 (9.5), 141.8 (56.7) months post stroke, all
right-handed), which were severely to moderately impaired (five left-
impaired, one right-impaired) at the level of the upper limb in terms of
FMA-UE [18.7 (9.3) out of 66 points (Woytowicz et al., 2017)] and
MAS [3.5 (1.4) out of 5 points]. In terms of aROM, they were able to

actively open the hand 62.0 (14.6) mm and three of them did not have
any ability to actively extend their fingers above the minimum hand
distance between the robot finger pads (i.e., 51 mm). The unimpaired
group consisted of ten participants [two male, eight female, age 59.9
(6.1), eight right-handed and two left-handed], which were able to
actively open the hand 113.7 (15.8) mm. The two groups were
homogeneous in terms of gender, hand dominance and age, and
were significantly different in terms of hand impaired/tested (two-
tailed Fisher’s exact test, p = 0.035) and aROM [t (14) = 6.522, p <
0.0001].

In the stroke group, subjects three (male, 59 years old, 167 months
post stroke, right-handed and left-impaired, FMA-UE of 15 out of
66 points, MAS 5 out of 5 points, aROM of 52.2 mm) and four (female,
55 years old, 233 months post stroke, right-handed and left-impaired,
FMA-UE of 10 out of 66 points, MAS 3 out of 5 points, aROM of
87.7 mm) terminated the exercise earlier (i.e., after 6 and 7.4 min,
respectively) due to slight pain at the level of the hand, which
disappeared right after. Mild hand pain can be generally perceived
in highly spastic hands during physical activity and quickly
disappeared, and it was therefore not considered an adverse event
related to the device. Due to the premature exercise termination, for
subjects three and four only one and two perturbation blocks were
available, respectively. In the unimpaired group, subject two (female,
62 years old, right-handed, aROM 132.5 mm) terminated the exercise
after 4 min since this subject was feeling unwell on the experiment day
and did not want to continue the test, and therefore had only one
perturbation block.

To evaluate homogeneity in exercise dose considering all subjects,
the stroke and unimpaired group performed, respectively, 10.5 (3.1)
and 12.0 (3.2) min of exercise (U = 95, p = 0.313), 5.2 (1.9) and 6.5 (2.2)
therapy blocks (U = 98, p = 0.161), 24.3 (11.6) and 41.2 (12.9) task
repetitions [t (14) = 2.619, p = 0.020] with an intensity of 4.5 (1.3) and
6.6 (0.9) task repetitions per minute [t (14) = 3.718, p = 0.002]. Only
the therapy intensity between the groups was statistically significantly
different.

3.3 Overall group- and speed-dependency of
peak times and muscle tone

Among all subjects, the perturbations were applied from a baseline
position of 65.5 (5.4) mm. In the stroke group, slow and fast
perturbations induced peak force reactions after 282.6 (28.7) ms
and 167.4 (29.7) ms, respectively. In the unimpaired group, slow
and fast perturbations induced peak force reactions after 249.7 (119.4)
ms and 159.2 (87.9) ms. The difference in peak time between the
stroke and unimpaired group after slow (Z = 2.5, p = 0.013) and fast
perturbations (Z = 1.5, p = 0.128) was not statistically significant after
Bonferroni correction.

Tables 2, 3 report the overall muscle tone estimates
(i.e., considering all blocks) in terms of force peak and stiffness
results after fast and slow perturbations in the stroke and
unimpaired group. The force peaks after perturbation were
statistically significantly different between the groups after both
slow [t (127) = 5.649, p < 0.0001] and fast perturbations [t (127) =
7.101, p < 0.0001]. No statistically significant speed-dependency in the
force peaks was present in both the stroke [t (88) = −2.506, p = 0.014]
and unimpaired group (Z = −1.5, p = 0.122). Similarly, the stiffness
results were statistically significantly different between the groups both
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after slow [t (127) = 3.876, p < 0.001] and after fast perturbations [t
(127) = 4.725, p < 0.0001]. No statistically significant speed-
dependency in the stiffness results was present in both the stroke [t
(88) = −2.510, p = 0.014] and unimpaired group (Z = −1.9, p = 0.056).

3.4 Muscle tone evolution over exercise time

Individual force peak and stiffness results are plotted for all the
perturbations over exercise time in Figure 5. Dashed lines represent
the line fit of single subject’s perturbation results over time. Four
out of six stroke participants and nine out of ten unimpaired
participants showed a decreasing muscle tone trend over time.
The average steepness of the peak force line fit and stiffness line fit
are 0.00 (0.02) N/s and 0.00 (0.00) N/(mm s) in the stroke group,
and −0.01 (0.01) N/s and 0.00 (0.00) N/(mm s) in the unimpaired
group, respectively. Vertical dotted lines represent the division in
three time-clusters matching the three perturbation blocks

(i.e., blocks, divided by at least 3 min, in which the
perturbations were applied).

Peak force and stiffness results averaged per subject and
perturbation block are shown in Figure 6 with 90% confidence
intervals depending on the perturbation speed and group. Light
grey boxplots represent the difference between the results after fast
(gray) and slow (black) perturbations, and allow to see if there is any
speed-dependency in the results (i.e., no speed-dependency would
correspond to zero) and how this varies over the perturbation blocks.
In the stroke group (Figure 6A), the peak forces after slow and fast
perturbations start from a similar range of 11.4 (6.8) N and 14.2 (6.4)
N at the first perturbation block, and remain approximately constant
at 11.6 (3.9) N and 12.4 (3.5) N at the last perturbation block, reaching
a maximum force peak of 21 N. In the unimpaired group (Figure 6B),
peak forces after slow and fast perturbations are lower than the ones of
the stroke group, corresponding to, respectively, 7.0 (4.4) N and 7.8
(5.4) N at the first perturbation block, and at 5.2 (3.9) N and 6.8 (4.5) N
at the third perturbation block.

TABLE 1 Baseline characteristics.

Category Stroke Unimpaired pa

Gender (male, female) 4 M, 2 F 2 M, 8 F 0.118

Hand dominance (left, right) 6 R 8 R, 2 L 0.500

Impaired hand/tested hand (left, right) 1 R, 5 L 8 R, 2 L 0.035*

Age [years] [mean (std)] 64.3 (9.5) 59.9 (6.1) 0.269

aROM [mm] [mean (std)] 62.0 (14.6) 113.7 (15.8) 0.000*

Time post stroke [months] [mean (std)] 141.8 (56.7) — —

FMA-UE [mean (std)] 18.7 (9.3) — —

MAS [mean (std)] 3.5 (1.4) — —

ap-values are associated with the Fisher’s exact test for categorical variables, while the two-sample t-test is used for continuous variables (independent samples). Abbreviations: FMA-UE, Fugl-Meyer

Assessment of the upper extremity (range 0–66); MAS, modified Ashworth scale of long finger flexors (range 0–5); aROM, active range of motion. * = statistically significant result with α = 0.05.

TABLE 2 Force peak (Fpeak) results considering all the fast or slow perturbations throughout the exercise in the stroke and unimpaired groups.

Stroke Unimpaired pa

Fast perturbations [mean(std)] 13.7 (5.6) N 6.8 (5.1) N <0.0001*

Slow perturbations [mean(std)] 10.7 (5.6) N 5.8 (4.2) N <0.0001*

pa 0.014 0.122

ap-values are associated with the two-sample t-test across the row/column. Only the fast-slow comparison in the unimpaired group is performed with the Wilcoxon rank sum test. * = statistically

significant result with α = 0.0083.

TABLE 3 Stiffness (k) results considering all the fast or slow perturbations throughout the exercise in the stroke and unimpaired groups.

Stroke Unimpaired pa

Fast perturbations [mean (std)] 0.49 (0.21) N/mm 0.30 (0.21) N/mm <0.0001*

Slow perturbations [mean (std)] 0.38 (0.19) N/mm 0.25 (0.17) N/mm <0.001*

pa 0.014 0.056

ap-values are associated with the two-sample t-test across the row/column. Only the fast-slow comparison in the unimpaired group is performed with the Wilcoxon rank sum test. * = statistically

significant result with α = 0.0083.
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In both groups, according to ART-ANOVA, force peaks were not
significantly different in terms of speed [stroke: F (1,24) = 2.741, p =
0.1108; unimpaired: F (1,50) = 1.276, p = 0.2640] and time/perturbation
block [stroke: F (2,24) = 0.136, p = 0.8734; unimpaired: F (2,50) = 0.869,
p = 0.4256], without any significant interaction effect between speed and
perturbation block [stroke: F (2,24) = 0.655, p = 0.5285; unimpaired: F
(2,50) = 0.079, p = 0.9246]. Independently on the speed, peak forces were
statistically significantly different with respect to the group allocation
[slow: F (1,37) = 12.841, p = 0.0001; fast: F (1,37) = 19.568, p < 0.00001]
but not significantly different over perturbation blocks [slow: F (2,37) =
0.443, p = 0.6455; fast: F (2,37) = 0.781, p = 0.4652], and there was no
interaction effect between perturbation block and group [slow: F
(2,37) = 0.425, p = 0.6571; fast: F (2,37) = 0.625, p = 0.5410].

Regarding identified end-point stiffnesses, trends similar to the
force peaks results are visible and replicate the same significance
pattern at ART-ANOVA. In the stroke group (Figure 6C), the end-

point stiffness after slow and fast perturbations starts from 0.40 (0.24)
N/mm and 0.48 (0.22) N/mm at the first perturbation block, and
remains at 0.43 (0.12) N/mm and 0.46 (0.14) N/mm. In the
unimpaired group (Figure 6D), the end-point stiffnesses after slow
and fast perturbations are lower at, respectively, 0.30 (0.17) N/mm and
0.34 (0.22) N/mm at the first perturbation block, and at 0.23 (0.17) N/
mm and 0.30 (0.19) N/mm at the third perturbation block.

3.5 Comparison with modified Ashworth
scale

In the stroke group, the averageMAS in long finger flexors (scale 0–5)
both before the beginning of the exercise and at the end of the exercise was
3.50 (1.38). Subjects one to three and five maintained the same MAS
throughout the exercise (MAS = 1, 4, 5, 4, respectively). Subject four

FIGURE 5
Peak force and stiffness results of individual perturbations over time in the stroke [(A,C), respectively] and unimpaired group [(B,D), respectively].
Triangular and squared markers represent slow and fast perturbations, respectively. The markers are empty when the perturbation was applied during a
voluntary contraction and was thus replaced by the previous or next perturbation [8.8 (4.5)% and 17.2 (7.6)% of the perturbations in the stroke and unimpaired
group, respectively]. Vertical dotted lines represent the division between time clusters matching the perturbation blocks. Colored dashed lines represent
the line fit of the perturbation results over time for the individual subjects.
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increased the MAS of one point, from three to four, while subject six
decreased the MAS of one point, from four to three. Comparing MAS
scores before and after the exercise with perturbation results at
corresponding perturbation blocks (i.e., one and three), no correlation
betweenMAS and force peak results after slow (ρ = 0.111, p = 0.7454) and
fast perturbation (ρ = 0.223, p = 0.5092) could be found, nor betweenMAS
and stiffness results after slow (ρ = 0.123, p = 0.7184) and fast perturbation
(ρ = 0.242, p = 0.4732).

4 Discussion

This paper presented the development and validation of a method to
objectively evaluate muscle tone/stiffness in the long finger flexors using a
robotic device. This method is embedded into a meaningful rehabilitation
exercise allowing for the online and unsupervised monitoring and
documenting of muscle tone fluctuations during robot-assisted
therapy. Muscle tone is assessed automatically using a perturbation-

based force estimation method that measures, approximately every
3 min, perturbation-induced force peaks and end-point stiffness at the
level of the fingertips, which can be used as an estimate of hand muscle
tone and spasticity (e.g., in case speed-dependent muscle hypertonia is
detected). A testbench experiment with physical springs first allowed to
quantify the accuracy in stiffness identification of the method (and
device). As a second step, a pilot study was conducted on severely to
moderately impaired chronic stroke patients with spasticity and age-
matched unimpaired subjects to determine the range of force reaction and
corresponding end-point stiffness (as well as their evolution over exercise
time) in patients with spasticity.

4.1 The method can accurately assess end-
point stiffnesses

The stiffness identification experiment showed that proposed
method implemented on the ReHandyBot robot can identify the

FIGURE 6
Average peak force and stiffness results at the three different perturbation blocks in the stroke [(A,C) respectively] and unimpaired group [(B,D),
respectively]. Black and gray lines represent the results after slow and fast ramp-and-hold perturbations (20 mm, 150 and 250 ms). The light gray dotted line is
the difference between fast and slow results, which represents the trend in speed-dependency (i.e., zero corresponds to no speed-dependency) over time.
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end-point stiffness (and forces) of physical springs applied at the finger
pads with errors of 3.8% (maximum < 7%) and 11.3% (maximum <
12.5%) for a soft and a stiff spring, respectively. The identification
accuracy of the spring stiffness does not vary depending on the
perturbation speed, as expected for physical springs. The stiffness
estimation of the stiff spring has a higher error as high end-point
forces tend to bend the metallic support on which the finger pads are
mounted as well as the beam load cells, causing a small offset in the
force measurement. These results are nevertheless satisfactory for two
reasons. First, the reported errors in stiffness identification are lower
than other devices designed for stiffness identification in human joints,
which reported maximum errors between 15% and 25% (Tucker et al.,
2017; Shi et al., 2020). Second, our measurements in the pilot study
demonstrated that the force peaks and corresponding end-point
stiffnesses achieved by unimpaired and spastic participants are
below the values reported from the soft spring. Therefore, we can
assume that our measurements with participants have, on average,
errors below 4% coming from the device. However, other factors that
cannot be captured, such as differences in finger placement on the
finger pads while grasping, are still present and might contribute to
generate more errors than the device itself.

4.2 The method captures between-groups
differences

Our muscle tone estimation method could detect muscle tone
differences between the unimpaired and stroke group, as
demonstrated by the significant changes in overall force peaks and
stiffness between the two groups. The force peaks and stiffness of
approximately 12 N and 0.44 N/mm in the stroke group, and of 6.3 N
and 0.28 N/mm in the unimpaired group match our previous results,
where we showed that unimpaired elderly subjects above 50 years have
force reactions and end-point stiffness up to 7.7 N and 0.39 N/mm
probably due to increased finger stiffness (Ranzani et al., 2019), as well
as other results in literature. According to Shi et al. (2020), the range of
metacarpophalangeal (MCP) joint stiffness among four different
studies with exoskeletal devices and 27 subjects with chronic stroke
and spasticity in long finger flexors (MAS between one and four, out of
five), varies between 0.09 and 1.13 Nm/rad (Kamper and Rymer, 2000;
Towles et al., 2010; Brokaw et al., 2011; Shi et al., 2020). Furthermore,
three studies with 17 unimpaired participants, reported a range of
0.01 to 0.21 Nm/rad (Esteki and Mansour, 1996; Kuo and Deshpande,
2012; Shi et al., 2020). Assuming an average MCP to distal
interphalangeal joint distance of 5 cm (when proximal and distal
interphalangeal angles are 45° and 20°, and a load applied over four
fingers, like in our test scenario with the ReHandyBot) (Prudencio
et al., 2014), these correspond to endpoint stiffnesses of approximately
0.07 to 0.90 N/mm in stroke subjects and 0.01 to 0.17 N/mm in
unimpaired subjects. Van Doren (1998) and Hoppner et al. (2011)
observed similar values for the endpoint stiffness of a 2-finger grasp
(i.e., thumb and index), which range between 0.05 and 0.60 N/mm in
unimpaired participants.

Our method captures speed-dependency in the results in the
stroke group, but this relation was found to be not significant after
Bonferroni correction. This might be due to the small perturbation
amplitude (i.e., 10 mm at the fingertip per finger and, approximately,
0.2 rad at the MCP), which is less than half of what is typically used in
conventional or robot-assisted tone assessments (Bohannon and

Smith, 1987; Kamper and Rymer, 2000; Shi et al., 2020). However,
this amplitude allows to make the perturbations almost non-
noticeable (a necessary feature for embedding this into a
rehabilitation exercise) and reduces the risk of overstretching for
subjects with spasticity and, as in the case of this study, reduced
aROM. Our perturbation speeds (i.e., 40 and 66.7 mm/s,
i.e., approximately 0.8 and 1.33 rad/s at the MCP) could also limit
the ability of the method to capture speed-dependency in the stretch
reflexes, since they are within range of the speeds used in other robotic
assessments [e.g., 0.11–5.2 rad/s (Kamper and Rymer, 2000)] but very
close to each other.

4.3 Muscle tone profile does not significantly
vary during robot-assisted therapy

The exercise could be independently used by all the subjects
without adverse events in simulated unsupervised settings.
Allowing stroke subjects with severe spasticity to independently
perform a robot-assisted sensorimotor therapy exercise is a
significant achievement, as these subjects are usually not included
in the target population that could benefit from active therapy with
rehabilitation devices. Nevertheless, the subjects tested in this study
were then able to perform the exercise autonomously, despite their
severe impairment. Only two of them stopped the exercise in advance
to do mild pain at the level of the fingers, which is frequent and
temporary for subjects with spasticity.

The analysis of force peaks and end-point stiffness over exercise
time/blocks shows that both perturbation speeds allow to capture
group differences, and that the muscle tone level does not vary
significantly over the course of the exercise. There is limited
consensus in literature on the effects of upper limb exercise on
muscle tone. Highly intensive therapy might contribute to
temporarily increase muscle tone, particularly in spastic patients,
due to the increased motor activity (Bobath and Bobath, 1950;
Perfetti and Grimaldi, 1979; Veerbeek et al., 2017) or the mental
stress associated with intensive therapy (Cheung et al., 2015). These
hypotheses led in the past to the exclusion of strengthening or high-
intensity training from neurorehabilitation programs (Pak and Patten,
2008), to reduce the risk of long-term negative consequences of
spasticity (e.g., pain, reduced functional ability and recovery)
(Formisano et al., 2005; Kong et al., 2012). While in our pilot
study we did not reach very high therapy intensity, we could still
underline that an exercise involving repeated active hand movements
is feasible for spastic stroke patients without negative effects on finger
muscle tone. On the contrary, our subjects showed either a mildly
decreasing or a steady muscle tone. This matches other studies and
reviews showing that upper limb training does not have a negative
effect on upper limb spasticity (Ada et al., 2006; Pak and Patten, 2008;
Harris and Eng, 2010; Graef et al., 2016) or mildly reduces muscle tone
and cocontraction (Bütefisch et al., 1995; Miller and Light, 1997; Lee
et al., 2016). In fact, it has been suggested that short-term loosening of
the joints and a muscle tone reduction may happen when the fingers
are stretched more than three times (Charalambous, 2014; Levine,
2018; Shi et al., 2020), and in our exercise, in addition to the six
perturbations in the perturbation blocks, the sponges have a size and a
stiffness that slightly stretch the fingers of the user at each task
repetition. This suggests that more than the intensity, the
appropriate choice of robot-assisted exercise presented to spastic
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patient (i.e., therapy task and adaptation depending on their muscle
tone level) is essential to prevent abnormal muscle tone increase
during therapy. The outcome measures of the proposed method
did not correlate with the MAS, however this is not surprising
given the limited resolution and reliability of the scale, and its
differences in assessment paradigm (e.g., single and lower speed,
different range of motion) (Katz and Rymer, 1989; Melendez-
Calderon et al., 2013).

4.4 Limitations and future work

Our results are limited by the relatively small sample size tested
and the limited number of perturbation blocks performed in this pilot
study. Thus, they should be further investigated in a larger population.
It should also be noted that the proposed method cannot disentangle
the contribution of (passive) biomechanical changes at the level of the
fingers (e.g., muscle contractures, adhesions) and (active) neurological
contributions to muscle tone (Nordin and Frankel, 2001; O’Sullivan
et al., 2019). This could influence the magnitude (and speed-
dependency) of our results. However, hypertonia at the level of the
hand seems to be mostly neurological after stroke (Kamper et al.,
2006). Our measurements could be dependent on the tested hand
(i.e., impaired hand in the stroke group, dominant hand in the
unimpaired group), which was significantly different between the
groups. In fact, the robot we used cannot capture force
asymmetries between fingers and thumb, which might be present
in subjects after stroke (Towles et al., 2010). However, this asymmetry
might be compensated by the symmetric motion coupling between the
two finger pads in the device (Lambercy et al., 2014) and the stretch
reflex coupling between the fingers and the thumb [e.g., a stretch
applied to the fingers trigger a force reaction also in the thumb
(Kamper et al., 2014)]. Future experiments with a larger population
could investigate the effect of higher therapy dose within a single
session, consider higher finger forces in the exercise and include more
than one session, to further investigate the evolution of muscle tone
depending on the exercise intensity over a longer time. Furthermore,
different perturbation speeds (i.e., less close to each other) should be
tested.

5 Implications and conclusion

The proposed method to monitor muscle tone, embedded into
a rehabilitation exercise, opens new avenues for the use of robotic
devices during unsupervised human-robot interactions, also with
severely impaired subjects after stroke. Within a robot-assisted
rehabilitation program, our method will allow for objective and
quantitative (remote) monitoring of muscle tone changes. This
will help better understanding how to optimize therapy settings
[e.g., adaptation of exercises and their difficulty based on
objective measures, such as muscle tone (Devittori et al.,
2022)] for each patient in order to prevent pathological
increases in muscle tone and maintain the safety of robot-
assisted rehabilitation at high therapy doses, even in an
unsupervised setting.
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