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Our understanding of the complex mechanisms that power biological
intelligence has been greatly enhanced through the explosive growth of large-
scale neuroscience and robotics simulation tools that are used by the research
community to perform previously infeasible experiments, such as the simulation
of the neocortex’s circuitry. Nevertheless, simulation falls far from being directly
applicable to biorobots due to the large discrepancy between the simulated and
the real world. A possible solution for this problem is the further enhancement
of existing simulation tools for robotics, AI and neuroscience with multi-physics
capabilities. Previously infeasible or difficult to simulate scenarios, such as
robots swimming on the water surface, interacting with soft materials, walking
on granular materials etc., would be rendered possible within a multi-physics
simulation environment designed for robotics. In combination with multi-
physics simulation, large-scale simulation tools that integratemultiple simulation
modules in a closed-loop manner help address fundamental questions around
the organization of neural circuits and the interplay between the brain, body and
environment. We analyze existing designs for large-scale simulation running on
cloud andHPC infrastructure aswell as their shortcomings. Based on this analysis
we propose a next-gen modular architecture design based on multi-physics
engines, that we believe would greatly benefit biorobotics and AI.
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1 Introduction

Examining the complex interplay between an environment, a body and the brain,
requires the use of multiple simulation tools, originating in neuroscience, AI and robotics.
Closing the loop between such simulation tools has been a long-standing goal of the
biorobotics community, with the target of being able to test hypotheses around the function
of brain structures, sensorimotor loops, examine cognitive and behavioral hypotheses, but
also to simply improve existing biorobots designs. Many of these simulation tools have been
developed within the context of ambitious research projects such as the European Union’s
the Human Brain Project (Markram et al., 2011), the Allen Human Brain Atlas developed by
the Allen Institute for Brain Science, and the Japanese Brain/MINDS project (Okano et al.,
2015). In order to develop such tools, a shift of perspective is necessary, from doing research
in a specific field to instead an approach where the development of the tools themselves is
the object of the research effort. These tools subsequently facilitate the researchers’ work
by avoiding the need to do duplicate work, centralizing the output of multiple teams into
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shared knowledge repositories and by advancing fields which might
not be strictly related to the tools’ target community, with the
overall impact of accelerated research output. An example of impact
outside the target community’s goals, is the managing of big data
related to neuroscience. Brain atlases might not be strictly related
to neuroscience itself, but the knowledge acquired while building
them indirectly contributes to other fields such as data science. By
examining the most successful open-source projects in Machine
Learning (ML) such as PyTorch (Paszke et al., 2019) andTensorFlow
(Abadi et al., 2015) one can see that even though they are themselves
are tools for other scientists to use, their influence has significantly
advanced progress in ML.

The current state of simulation tools for neuroscience focuses
on the solution of biophysical problems with various degrees
of biological detail. The widely adopted NEST (Gewaltig and
Diesmann, 2007), Brian (Stimberg et al., 2019), Neuron (Carnevale,
2007) and Nengo (Bekolay et al., 2014) simulators model the
nervous system in low or high-level abstractions. In terms of
the physical phenomena that are simulated, low-level models
incorporate information from biophysical models and to the level of
ion pumps and ion channels that regulate themembrane potential of
neural cells. Point neuron models used in Spiking Neural Networks
(SNN) employ integrate-and-fire (IF) types of neurons and are
deprived of low-level biological information. Finally, other types of
abstract models of cognition e.g., the Virtual Brain (Schirner et al.,
2022) avoid the low-level complexity and instead focus on large-
scale brain network activity, but can also be coupled with SNN
models, enabling multi-scale simulation.

Robotics simulation is governed by open-source simulation
tools such as Gazebo (Koenig and Howard, 2004), MuJoCo
(Todorov et al., 2012), Webots (Michel, 2004), pybullet (Coumans
and Bai, 2016). More recently multi-physics simulation tools such
as Nvidia’s PhysX and Project Chrono (Tasora et al., 2016) have
started gaining traction, adding robotics simulation features in their
frameworks, but are still quite far from being widely adopted by
the robotics research community, as analyzed in the report of usage
of robotics simulators by (Collins et al., 2021). One limitation of
existing robotics simulators is that they lack or minimally support
features such as soft body simulation, fluid dynamics, plasticity
etc., as analyzed in (Choi et al., 2021). This significantly reduces the
range of biorobotics applications that can be simulated with current
approaches, as many of the biorobots that have been developed
implement concepts such as soft grasping, flexible mechanisms,
interactions with fluids etc.

The neuroscience and robotics communities are often separated
from each other, thus limiting the researchers’ ability to model
complex phenomena in a more holistic approach that would model
and most importantly couple multiple systems simultaneously.
Large-scale simulation forces us to rethink the principles behind
not only what physical phenomena to simulate, but also at what
granularity and most importantly how different simulation tools
can communicate with each other. This is particularly true for
biorobotics, especially since biology, neuroscience and robotics
each follow their own simulation paradigms and rarely interact
in a systematic way. However, there is a trend of combining
simulation tools accelerated by the progress in deep learning,
giving us fine examples of how simulation tools for robotics
can be integrated with other systems. A notable example is the

integration of virtual simulation environments into deep learning
frameworks such as OpenAI gym (Brockman et al., 2016). Such
simulation environments that seamlessly integrate neural networks
into robotics have been extremely successful in training robotic
agents to perform various tasks, such as picking objects or
locomotion tasks among others.

A core component of these simulation tools is that they
are extremely modular, facilitating the integration of different
frameworks into their core. This means that depending on the
use case a different physics engine might be used, different 3D
models format, as well as various DL frameworkse.g., PyTorch
or TensorFlow. Such modular architectures enable the design of
generic simulation tools around principles that are agnostic to the
simulation engines that are chosen for a specific application. This
approach is particularly suitable for biorobotics as the range of
simulation tools varies significantly between different applications.
As such, modular large-scale simulation designs that are agnostic to
the specific simulation engines becomes a necessity for biorobotics
research. We detail existing designs suitable for biorobotics, analyze
their limitations and suggest a new paradigmbased onmulti-physics
and simulation agnostic engine design.

2 The Neurorobotics Platform

The Neurorobotics Platform (NRP) (Falotico et al., 2017),
developed within the context of the Human Brain Project, has
formed as the basis of many fruitful experiments in neuroscience
of rehabilitation (Allegra Mascaro et al., 2020), biologically-inspired
robot control (Capolei et al., 2019; Angelidis et al., 2021), dynamic
vision systems based on event-based cameras (Bornet et al., 2019;
Kaiser et al., 2020), robot manipulation (Bing et al., 2021), pattern
recognition (Galindo et al., 2020) among others. It is one of the
few simulation engines that enable the interaction of SNNs with
virtual robots, closing the loop between neuroscience and robotics
simulation. It has a web-based user interface and python-based
editors that enable the user to write minimal code that dictates the
information exchange between virtual biorobots and the SNNs they
are coupled with.

At the core of the NRP lies the Closed-Loop Engine (CLE),
which from a simplified point of view is a python module
that allows the exchange of data, synchronization and execution
between the Gazebo robotics simulator and various neural backends
(NEST, Nengo) and neuromorphic hardware such as SpiNNaker
(Furber et al., 2014) and Loihi (Davies et al., 2018). At the same
time it is running on High Performance Computing (HPC)
infrastructure inside docker containers that facilitate deployment.
ROS 1 (Quigley et al., 2009) is used as themiddleware that packs and
publishes the data that needs to be exchanged between the different
simulation engines.

Even though the design of the NRP and its CLE are in principle
quite generic, in practice its implementation is tied down to the
specifics of the engines that it supports, making it cumbersome
to add new simulation engines e.g., for robotics simulation, such
as MuJoCo, PhysX, Webots etc. As there is no “one-engine-that-
fits-all” in robotics, as different applications and communities
use different tools, the NRP ‘s support for only a subset of the
available simulators has limited its wide adoption by the biorobotics
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community. Furthermore, the use of ROS 1 as middleware leads
to non-deterministic simulations that are difficult to reproduce.
Tied to some of the limitations of Gazebo, it does not provide
photorealistic rendering, easy to use 3D modelling tools, or support
for large-scale environments. It should be noted that the newest
versions of Gazebo, termed Gazebo Ignition have been designed
around an architecture that enables the distribution of the physics
simulation into different computational nodes, facilitating large-
scale environment simulation. Another difficulty is the simulation
of multiple robots in parallel, especially ones that havemany degrees
of freedom, such as humanoid robots. The design limitations of
the first version of the NRP led to the redesign of its architecture
around a more modular design, but at the time of the writing of this
publication, the new architecture has not been released. We discuss
a potential design for biorobotics applications that overcomes some
of the aforementioned limitations.

3 A paradigm for large-scale
simulation design

Simulation is in some cases, such as training locomotion
controllers based on Reinforcement Learning (RL) methods, the
only viable approach as the generation of large amounts of training
data is not possible on the real robots. Furthermore, novel robot
designs have to be tested in simulation before a physical counterpart
is created, and safety considerations prevent certain algorithms from
being deployed directly on the hardware. In RL scenarios virtual
robots interacting with virtual environments generate vast amounts
of data that comes from the simulation, and which are in turn fed
into an AI-based model. These simulations run in parallel, often
in thousands of instances that share data between them. After an
algorithm has been developed in simulation it often tried on the real
robot, albeit in most cases with limited success, at least during the
initial phases of the transferred policies.

Several factors contribute to the simulation-to-real (sim2real)
gap (Salvato et al., 2021). Imperfect simulated sensors and
controllers, uncertainty in the parametrization of dynamics
data, simplified physics models, difficulty to estimate physical
parameters such as viscosity, friction etc., are some of the sources of
discrepancy between simulation and reality. Strategies which have
been employed to close the sim2real gap, include the development
of more realistic simulations, accurate sensor models, domain
randomization, addition of photorealism in simulations, especially
in workflows that employ simulated visual data. It should be noted
that each of these strategies come with its own cost in terms of
computational load and difficulty of integration into a fully-fledged
system that encompasses all of them.

We can identify improvements in four distinct fronts can be
identified, which would help close the sim2real gap, leading to the
development of a next-generation of intelligent biorobots.

1. Coupling between different components and engines.
2. Scalability around cloud infrastructure.
3. Support for new types of hardware.
4. Photorealistic rendering.

In more detail, a systems design approach where coupling
between components of a simulation engine agnostic to the specifics

of the components is necessary (Figure 1). Such a design is based
on clear interfaces and abstractions that facilitate the exchange
of data. This is achievable e.g., through the use of middleware
and serialization software such as the Robot Operating System
(ROS1/ROS2), google-protobuffs etc. Through such mechanisms
a user can define abstractions at the right level that enable the
exchange of aminimal set of data between the different components.
As an example, exchanging data from SNNs would need a minimal
set of arrays of spike-times along with neuron IDs. For robotics, the
robots’ joints, links poses, and sensory data might suffice. Coupling
is then reduced to asynchronization and data exchange step where
through interfaces, data is being streamed from one component to
the other that requests it. It is implied that there is an initial setup step
necessary where each component must declare its own interface of
data that it consumes as well as data that it produces.

The second point of scalability is where cloud computing
and HPC infrastructure come to play. Considerations of software
deployment, workload balancing, parallelization, launching of
multiple simulation instances in parallel, synchronization and
exchange of data are a natural application scenario for HPC
and cloud computing. In a cloud-based architecture (Figure 2)
where a system as the one that we described in the previous
paragraph has been deployed, a user can programmatically register
new containerized easy-to-deploy components that adhere to
well-defined data exchange interfaces. These components could
be anything from simulation engines to complex databases and
knowledge graphs, ideally letting the user interact through a browser
windowwithout the need to develop on their own servers. Dedicated
services facilitate the sharing and storage of large amounts of data,
such as simulation states, episodic returns, brain connectivity atlases
etc. Parallelization and distribution of simulations, even though it is
not easily achievable in a simulator agnostic way, would be one of
the main benefits. On-demand scalable computational power is one
of the features of cloud-based architectures, which can be combined
with access to specialized hardware such as Tensor Processing Units
(TPUs), neuromorphic backends, and multi-GPUs. Given all these
building blocks, the user would need to specify the simulation
models that they would like to simulate, giving them a large-scale
simulation engine, leaving only the testing of scientific hypotheses
to the user.

The third component of large-scale simulation is the support
for new types of hardware, especially neuromorphic ones that help
close the loop between neuroscience and robotics. BrainScales,
SpiNNaker, Loihi are all deployed on the cloud and access is given
to users that can run their own experiments. However, integrating
these novel types of hardware into engines that provide physical
simulation poses a challenge. Getting them to run in a closed
loop manner that would exchange data between them, and physical
simulators used in robotics is no easy feat. The weight falls on
the device and hardware manufacturers to enhance them with
the ability to step them explicitly and performing I/O operations
without harming their real-time or even faster than real-time
performance capabilities. This, accompanied with features such as
energy benchmarking on the chip can significantly reduce the access
to novel types of hardware.

Finally, as the generation of training data in simulation is a
necessity for intelligent biorobots, the enhancement of existing
simulators with photorealistic capabilities becomes essential. The
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FIGURE 1
A large-scale simulation design for the closing of the loop between AI and robotics. In this design the core of a simulation framework provides
interfaces that allow for the easy registration of external modules that provide simulation services. The core manages data exchange, synchronization
and execution of the different simulation components. Cloud services provide facilities like data storage and resource scaling. As examples existing
robotics simulators like Gazebo, Webots, MuJoCo, AirSim, bullet, CoppeliaSim can be easily coupled with AI frameworks such as TensorFlow, PyTorch
and Caffe as well as neuroscience-based simulators like Nest, Nengo and neuromorphic backends such as BrainScaleS, SpiNNaker, Loihi. This design
goes beyond the purpose of connecting AI based models with robotics simulation and can be generalized to other components that provide more
specialized forms of simulation. The core advantage is that the integration of new components into this design is as simple as providing data interfaces
that generate and consume data, keeping data exchange between simulators to a minimum.

current generation of robotics simulators (Gazebo, MuJoCo,
Webots, pybullet, CopelliaSim etc.) focus on getting the physics
right, and have limited photorealistic rendering capabilities. This
means that data generation for visual perception tasks in simulation
are not realistic enough, and is thus an important contributor
to the sim2real gap. On the other hand, the latest generation
of game engines such as the Unreal Engine 5, Unity and O3DE
have excellent photorealistic rendering capabilities and can be used
as the visualization part of large-scale simulation. Furthermore,
they have a rich ecosystem of 3D modelling pipelines. There is
a limitation though, that games do not need the same degree of
physical realism as robotics applications, hence the physics engines
that power them are not accurate enough. Hence, the combination
of games engines that offer photorealistic rendering with high-
accuracy physics engines becomes a necessity for intelligent robotics
simulation. Next, we discuss how multi-physics and unified physics
engines can open new paths in biorobotics simulation.

4 Multi-physis as the enabler of novel
applications

Quoting Auke Ijspeert from 2014 (Ijspeert, 2014):

“Robots are better than numerical simulations when real (as
opposed to simulated) physics is important. This is often
the case with locomotion that involves complex physical
interactions with the environment: swimming in water,
crawling on sand, and walking on mud or gravel. Mechanical
simulations are now very good at computing the dynamics
of articulated rigid bodies but are less good at correctly
simulating compliant structures and interaction forces with
a complex environment.”

This assessment is a good explanation of the sim2real gap, and
most importantly it highlights the limitations of physical simulation
for robotics. Especially complex real-world scenarios where a robot
has to interact with previously unseen environments, such as
climbing stairs, environments with changing friction, interactions
with fluids, cloths and soft bodies among others are notoriously
difficult to simulate. Historically physics engines for robotics
have focused on the solution of articulated rigid body dynamics
problems, leaving fluids, soft bodies, muscle, cloth simulation out
of their features list (Angelidis et al., 2022). This holds true for
most of the widely used simulators in the robotics and biorobotics
community as assessed by Collins (Collins et al., 2021). For those
engines that do provide some form of coupling of their rigid
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FIGURE 2
Building blocks of a cloud-based large-scale simulator. The advantages of the cloud-based architecture revolve around the automatic deployment of
simulators, parallelization of simulations into multi-CPU and multi-GPU servers, and distribution into multiple computational nodes via automated
resource scaling services. Data sharing and storage, a necessity for the exchange of information between different instances of a simulation is a native
scenario for cloud architectures. Registering components of a simulation service can be done easily with minimum code provided through
web-interfaces. Finally, access to more exotic types of hardware that are difficult to acquire, such as TPUs, neuromorphic hardware can be provided
through the cloud infrastructure.

body dynamics solver with some other form of physical simulation
e.g., finite elements for soft body dynamics, the coupling is done
externally via exchange of forces/torques, positions.

Even though external (also termed loosely) coupling has proven
sufficient for a wide category of applications it faces certain
challenges. Firstly, there is no guarantee that different solvers will
run on the same hardware, it is common for fluid dynamics solvers
to run on the GPU but a basic CPU implementation of rigid
body dynamics is enough for many robotics applications. Running
solvers on different hardware raises concerns over the need to
constantly perform costly Input/Output (I/O) operations that are
detrimental for real time performance. Secondly, external coupling
raises concerns over the stability of the simulation. There is no
mathematical guarantee that running two solvers separately and
coupling them means that the common solution has converged
numerically.

Recently, an approach of so-called unified physics solvers has
emerged which revolves around the idea of simulating the dynamics
of bodies via constraints that are resolved on the position level
(Bender et al., 2014), as opposed to the computation of forces or
impulses. The common ground of these approaches is to represent
deformable objects as a set of interconnected nodes or particles
that are connected with constraints e.g., spring, friction, collision
constraints. Each particle has a set of attributes such as position,
velocity and mass. The aforementioned constraints can correspond
to geometrical, dynamical i.e., velocity constraints or even represent
constitutive material laws e.g., the stress-strain relationship in soft
body simulations with finite elements. The advantage of simulating
all bodies as constraints is that the coupling between different

phenomena is implicit in the mathematical formulation, delegating
the dynamics computations to a constraint solver plus a time-
integration scheme. In more detail, during the constraint resolution
step, the position of the particles is updated in amanner that satisfies
one or multiple constraints. Typically, the constraints at the position
level are provided by a constraint function that estimates whether
the constraint is satisfied e.g., the distance between particles is at
a desired value. When the constraint is not satisfied, the gradient
of the constraint function with respect to the positions of the
particles is computed and subsequently the particles’ position is
corrected towards the gradient. This process is repeated up to a
desired convergence. By defining appropriate constraints one can
simulate fluids, cloths, rigid/soft bodies, muscles, contact problems,
ropes, 1-D rods etc. The most popular of these methods is Extended
Position Based Dynamics (XPBD) (Müller et al., 2020), developed
by the Nvidia Physics team and incorporated into the Nvidia PhysX
and FleX (Macklin et al., 2014) solvers. Another approach is termed
Projective Dynamics (Bouaziz et al., 2014) and its main idea is to
combine the XPBD approach with ideas from nodal finite elements
into a unified solver. All these approaches have the potential to serve
as the unifying framework for realistic simulations of biorobots and
their complex interactions with their environment.

Thus, in combination with large-scale modular closed-loop
simulations for biorobotics, unified physics open a new wide range
of research directions and an excellent opportunity to close the
sim2real gap. More precisely we can envision and suggest research
directions in locomotion on complex terrains e.g., sand, gravel,
fluids, highly-viscous and elastic surfaces that would greatly improve
the mobility of biorobots and their adaptivity in previously unseen
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environments. Locomotionmodes which are notoriously difficult to
simulate e.g., climbing on walls or trees, swimming on free surfaces
can become feasible simulation scenarios. However, it should be
noted that the accuracy of physics simulation based on constrained
based solvers is computationally intensive when accuracy is a
requirement and for real-time applications might not be close
enough to reality. As such, integrating them intoML-basedmethods
and enhancing themwith techniques such as domain randomization
is a viable approach that would help further minimize the sim2real
gap.

Lastly, combining all the building blocks that we discussed
above, photorealistic rendering, integration into AI-based
frameworks, unified physics in combination with cloud-based
infrastructure would enable novel directions in neuroscience,
robotics and AI simulation.

5 Conclusion

We discussed two key enablers of a new generation of
simulations, large-scale modular cloud-native simulation design,
and multi-physics capabilities for increased realism. As the trend of
designing, evaluating and testing algorithms and control methods
before deploying them on the physical hardware seems to be
inevitable, simulation tools that adhere to the aforementioned
principles are becoming a necessity. Closing the sim2real gap via
improved simulation methods on top of existing techniques is
becoming a key enabler of intelligent robots towards the goal of
reaching human or superhuman performance.
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