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Recently, soft robotics has gained considerable attention as it promises numerous
applications thanks to unique features originating from the physical compliance
of the robots. Biomimetic underwater robots are a promising application in soft
robotics and are expected to achieve efficient swimming comparable to the real
aquatic life in nature. However, the energy efficiency of soft robots of this type
has not gained much attention and has been fully investigated previously. This
paper presents a comparative study to verify the effect of soft-body dynamics
on energy efficiency in underwater locomotion by comparing the swimming of
soft and rigid snake robots. These robots have the same motor capacity, mass,
and body dimensions while maintaining the same actuation degrees of freedom.
Different gait patterns are explored using a controller based on grid search and
the deep reinforcement learning controller to cover the large solution space for
the actuation space. The quantitative analysis of the energy consumption of these
gaits indicates that the soft snake robot consumed less energy to reach the same
velocity as the rigid snake robot.When the robots swim at the same average velocity
of 0.024 m/s, the required power for the soft-body robot is reduced by 80.4%
compared to the rigid counterpart. The present study is expected to contribute to
promoting a new research direction to emphasize the energy efficiency advantage
of soft-body dynamics in robot design.
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1 Introduction

Soft robotics, which is an emerging scientific field creating robots based on compliant
materials, promises numerous applications such as object manipulation and human-robot
interaction in industry, search and rescue activities in the natural environment, and
rehabilitation in the medical Rus and Tolley, 2015; Rich et al., 2018; Shintake et al., 2018;
Cianchetti et al., 2018; Jumet et al., 2022. Compared to traditional “rigid” robots, the compliant
body of the soft robots is said to have better adaptability to the surrounding environment
Rich et al., 2018; Aracri et al., 2021.

In this context, underwater soft robots, especially those based on biomimetics, are one of
the promising applications in soft robotics Aracri et al., 2021. These biomimetic underwater
robots exploit active deformations of their continuum body made of soft actuators. They
have morphologies similar to those of their natural counterparts, such as fish Hubbard et al.,
2013; Katzschmann et al., 2018; Shintake et al., 2018, snake Christianson et al., 2018; Nguyen
and Ho, 2022, jellyfish Villanueva et al., 2011; Frame et al., 2018; Cheng et al., 2018; Ren et al.,
2019, ray Park et al., 2016; Li et al., 2017, Li et al., 2021a, and flagellate Armanini et al., 2021.
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FIGURE 1
Morphological structures of a soft snake robot (left) and a rigid snake
robot (right) in the simulation environment.

Biomimetic soft underwater robots mimic the motion of aquatic
animals with the expectation to achieve efficient swimming observed
in nature. In this sense, compared to rigid underwater robots, the
continuous deformation of the soft robots is expected to significantly
improve the energy efficiency of swimming locomotion. Evidence
suggests that the energy efficiency of soft-bodied robots improves
with an augmented propulsive force due to fluid-inertial effects, as
demonstrated in Giorgio-Serchi and Weymouth (2017). However,
there has been no quantitative comparative study on the energy
efficiency between soft and rigid robots under the constraints of having
the same mass, size, shape, and input.

In order to shed light on the problem, in this study we
investigate the effect of compliance on the energy efficiency in a
specific swimming mode through a control experiment performed
in a simulation environment. Different aspects can be considered
for the simulation. These include, for instance, size, shape, weight,
type of actuator, and material and mechanical properties. As the
first comparative study, we focus on the dynamics of underwater
locomotion as the main aspect. For the swimming mode, we employ
anguilliform, a swimming mode enabled by the undulation of the
snake-like slender body Sfakiotakis et al., 1999. The thin structure of
the slender body is expected to simplify the simulation model and
subsequent analysis. We compare the energy efficiency between soft-
body and rigid-body snake robots with the samemass, size, shape, and
motor capacity.

To precisely model the actuation and subsequent deformation
of the body, we employ dielectric elastomer actuators (DEAs),
due to their thin feature applicable to anguilliform swimming
Christianson et al., 2018; Li et al., 2021b. Accordingly, we designed
a soft snake robot and a rigid snake robot in a physical simulation
environment, as shown in Figure 1.

The frequency at which the elasticity of the actuator oscillates
plays a significant role in determining its overall efficiency. There is

a significant body of evidence that suggests that the maximum level
of efficiency is achieved when the actuator is operating at its natural
resonant frequency Bujard et al., 2021; Zhong et al., 2021; Zheng et al.,
2022.This highlights the importance of the elasticity of the actuator in
terms of energy efficiency. However, one of the challenges in utilizing
this principle is the difficulty in accurately determining the natural
frequency of soft actuators. To address this issue, our work employs a
combination of deep reinforcement learning and grid search methods
to identify the most energy-efficient gait for snake robots. Through
the use of these advanced techniques, we are able to overcome the
limitations of traditional methods and make sure we can find the
optimized solution for both the soft and rigid snake robots.

2 Simulation method

Current simulation methods for soft robots are limited,
particularly for soft snake underwater robots composed of multiple
soft actuators. The coupling effect between actuators, segments, and
the surrounding water makes it more difficult to simulate underwater
snake robots. Researchers have provided a method for underwater
soft-robot simulation in the Du et al., 2021. However, the proposed
method has only been validated on one degree of freedom (DoF)
robot and requires the use of a real robot to collect data, which does
not match the requirements of our experiments.

In our previous study Li et al., 2021b, we proposed an approximate
simulation method for soft robot underwater locomotion in MuJoCo.
MuJoCo is a physics engine that simulates multi-joint dynamics
with contact and is widely used in robotics and biomechanics
Todorov et al., 2012. In the previous study, we confirmed the accuracy
of this simulation method by comparing a simulated robot with a real
DEA fish robot. The result showed that the simulated soft robot had
almost the same dynamics as a real soft robot.

As such, in this study, we use MuJoCo to design the soft and
rigid snake robots with the same size (length 27.0 cm, width 1.5 cm,
and thickness 0.5 cm), mass (7.93 g), and output torque of actuators
(12 Nm). The models of these robots are shown in Figure 2. The
soft snake robot has five segments, every of which actively deforms
independently with the simulated actuation behavior of a DEA. Each
segment is split into a connected series of thin-sliced elements to
realize the deformable attribution of the DEA, which are alternately
connected by active joints and passive joints in the rotation.The active
joints were controlled by the output torque of the simulated motor set
on it, whichwas used to simulate the output characteristics of theDEA.
All active joints in one segment are simultaneously controlled by the
same input signal. The characteristics of the DEAs can be adjusted by
tuning the attributes of passive joints.

There are 12 active and 11 passive joints per segment for the soft-
body case. However, the actuation is still one DoF per segment as the
shared same control input is applied to the active joints. One segment
has only one DoF, resulting in curved body deformation. Since the
soft snake robot has five segments, there are five DoFs in total for the
actuation space.The range of rotation of the active joints is set to [−3°,
3°]. The output torque range of the active joint is set to [−1, 1] Nm.

The rigid snake robot has six segments with five joints, as shown
in Figure 2. A simulated motor is placed on each of the five joints.
Each segment has one DoF by bending at the joint. In total, there are
five DoFs for the actuation space, identical to the soft snake robot.The
robot is controlled by changing the output torque of the motors. To
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FIGURE 2
The simulation model of snake robots in MuJoCo. (A) The rigid snake robot. (B) The soft snake robot. One DoF per segment for both models.

ensure a fair comparison, the actuation range of the rigid snake robot’s
joints was set to [−36°, 36°] to match the total actuation range of the
soft snake robot, which has 12 active joints per segment, each with
an actuation range of [−3°, 3°] (−36°, 36° in total). The range of the
output torque of the active joint is set to [−12, 12] Nm. Twelve times
more torque capacity is set for the joint torque for the rigid robot to
obtain the equivalent torque capacity of the soft robot, which has 12
distributed actuators with a 1 Nm torque range.

The density and viscosity of the liquid in the simulation
environment are set to 1,000 kg/m3 and 0.0009 Pa⋅ s, respectively. The
simulated frequency is 100 Hz, and the control frequency is 50 Hz.

3 Controller design

We present two methods for controlling the underwater
locomotion of snake robots. The methods are used to find the gaits
of snake robots in water; then, the average velocity and the required
average power are verified to evaluate the energy efficiency of the snake
robot. The gait equation controller is model-based. It continuously
generates joint torques for the snake robot according to a pre-defined
equation. The DRL controller is data-based. During the training
process of the DRL controller, the snake robot could explore different
gaits beyond the limitations of the gait equation controller.

3.1 Gait equation controller

The gait equation controller we used to drive the snake robots is
modelled as

τ (n, t) = A× sin(ωt+ nφ) , (1)

where τ(n, t) represents the output torque of themotor on the nth joint
of the snake robots at moment t. A denotes torque amplitude. ω and ϕ
denote spatial and temporal frequencies, respectively.

We can make the snake robot swim in different gaits by changing
the values of A, ω and ϕ. Therefore, we used the grid search method
to determine the optimal parameters of the gait equation controller.

TABLE 1 The parameters for the grid search.

Paramaters Values Descriptions

ω 0.1, 0.6, 1.1, 1.6, 2.1, 2.6 Temporal frequency

3.1, 3.6, 4.1, 4.6, 5.1, 5.6

6.1, 6.6, 7.1, 7.6, 8.1, 8.6

A 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 Amplitude

0.7, 0.8, 0.9, 1.0, 1.1, 1.2

1.3, 1.4, 1.5, 1.6, 1.7, 1.8

1.9, 2.0

ϕ 18, 36, 54, 72, 90, 108 Spatial frequency (in degrees)

126, 144, 162, 180

The parameters and interval ranges of the grid search are listed in
Table 1. The selection of the parameters and interval ranges was done
through a process of trial and error. The setting the amplitude or
temporal frequency too high resulted in unstable simulations and too
low interval range would increase the simulation time. We aimed
to find the best balance between including a wide range of motion
patterns and maintaining stability and efficiency in the simulation.

3.2 DRL controller

The DRL controller is a neural network controller trained by the
deep reinforcement learning algorithm. When using this method,
robots learn the target skill through interaction with the environment
Mnih et al., 2013; Arulkumaran et al., 2017 In this process, the robot
collects a large number of state-action pairs to evaluate the data
according to the reward function. Through continuous iterative
training, the robot can discover better state-action pairs until training
converges.

The state is represented in the data collected by the robot from the
environment, such as the robot’s joint position and angular velocity,
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which correspond to the input layer of the neural network. Action is
the command used to drive the robot actuators and corresponds to the
output layer of the neural network.

Deep reinforcement learning is primarily used in robotics for
locomotion control Jangir et al., 2020; Lee et al., 2020 and navigation
Fan et al., 2020; Zeng et al., 2021. When a robot is trained for
locomotion, it can steadily find synergetic motor action patterns
similar to those of animals Chai and Hayashibe, 2020. Deep
reinforcement learning algorithms have successfully found better gaits
for a rigid snake robot on land Bing et al., 2020.

Snake robots can explore more gaits that cannot be found by grid
search. It is achieved by using the DRL controller as a model-free
method to overcome the limitations of the established equations.

3.2.1 Algorithm
The deep reinforcement learning algorithm we used to train the

snake robots is proximal policy optimization (PPO) Schulman et al.,
2017, which is an on-policy algorithm and is widely used to handle
continuous action space tasks Mahmood et al., 2018.

3.2.2 Reward function
In our experiments, we designed two different reward functions
ℝ1 and ℝ2, for the robot to learn as many different gaits as possible.

In the

ℝ1 = αVelx − β∑
J
|τjωj|Δt, (2)

whereVelx denotes the velocity of the center ofmass of the snake robot
along x-axis.The faster the snake robotmoved in the positive direction
of the x-axis, the larger the rewards the robot could receive.

The second term ∑J |τjωj|Δt is the energy consumed by the robot
in one timestep Δt. In our experiments, Δt was 0.02 s. The energy
consumed reduced the reward received by the robot. α and β are
scaling factors used to adjust the magnitude of the rewards.

In the

ℝ2 = α f (Velx;μ,σ) − β∑
J
|τjωj|Δt

f (Velx;μ,σ) =
1

σ√2π
exp(−
(Velx − μ)

2

2σ2
),

(3)

we set the target velocity of the snake robots using a Gaussian
distribution f (Velx; μ,σ), whereVelx denotes the current velocity of the
robot. μ denotes the target velocity of the robot, as shown in Figure 3.
The other terms are the same as those in ℝ1.

3.2.3 Observation space
The observation space contains the information that the robot

obtains from the environment to perform feedback control.
The observation space𝕆 used to train the snake robots is

𝕆 = [Velx1,Velx2,Velx3,Velx4,Velx5,

Vely1,Vely2,Vely3,Vely4,Vely5,

Posx1,Posx2,Posx3,Posx4,Posx5] . (4)

It contains the displacements of the five segments on the y-axis,
and the velocities on the x- and y-axis.

3.2.4 Action space
Action space 𝔸 has the dimensions of the number of actuators of

the snake robot. Each element in the action space corresponds to an

FIGURE 3
The relationship between velocity and reward. μ is the target velocity of
snake robots. The position of the margin point is (0.003, 0.1).

FIGURE 4
The grid search results of the gait equation controller for the soft and
rigid snake robot. Each point in the scatter plot corresponds to a set of
parameters in the grid equation controller. The fold line is the lower
contour line of the same color scatter plot.

actuator in the robot. For both the soft and rigid snake robots, the size
of the action space was five.

3.2.5 Training configuration
We deployed our training in RLlib Liang et al., 2018, which is

a distributed reinforcement learning framework that could allocate
computing resources conveniently.

Furthermore, we used a two-layer fully connected network with
256 units per layer as the hidden layer of the policy network.The input
layer of the policy network had the same dimension as the observation
space 𝕆 and the output layer had the same dimensions as the action
space𝔸.
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FIGURE 5
(A) Deep reinforcement learning training progress by two different reward functions for soft snake robot underwater locomotion. (B) Deep reinforcement
learning training progress by two different reward functions for rigid snake robot underwater locomotion.

FIGURE 6
(A) Comparision of the testing result of deep reinforcement learning controllers and gait equation controllers for rigid snake robot. (B) Comparision of the
testing result of deep reinforcement learning controllers and gait equation controllers for soft snake robot. The plots with reward functions are
corresponding to the deep learning solutions.

FIGURE 7
(A) Comparision of different rotation ranges of rigid snake robot’s motor. (B) Comparision of different output torque ranges of rigid snake robot’s motor.
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FIGURE 8
The test results for the four selected gaits, in order from left to right, are
soft snake robot with gait equation controller, soft snake robot with DRL
controller, rigid snake robot with gait equation controller and rigid snake
robot with DRL controller.

FIGURE 9
Comparison of the center-of-mass velocities of the four gaits.

We obtained two groups of training results by adjusting the values
of α and β in the reward functionsℝ1 andℝ2. Three random seeds are
used for each training to reduce the uncertainty of the results.

4 Results and analysis

We compare and analyze the differences in energy consumption
between the gait equation controllers and the deep reinforcement
learning controllers. We determined the energy efficiency of the snake
robots by comparing the relationship between the average velocity of
the CoM and the average output power required to drive the system. A
gait with a higher average velocity at the same output power has better
energy efficiency. In other words, the gait could be managed with less

output power at the same motion velocity, it also demonstrated better
energy efficiency.

We calculated the average velocityV and average output powerP of
all the actuators on the snake robots using the following two equations:

V = 1
T

T

∑
t=0
√Velx (t)2 +Vely (t)2, (5)

P = 1
T

T

∑
t=0
∑
J
|τj (t)ωj (t)|Δt, (6)

where T denotes the number of time steps in the simulation. The
experiments described in this section had 1,000 timesteps (20 s) for
each round of testing.

4.1 Results of gait equation controller

Utilizing the grid search, the gait equation controller generated
3,600 different gaits for the soft snake robot and rigid snake robot.
In Figure 4, we present the results of the average velocity of the CoM
and the average power of the two snake robots using scatter plots for
a maximum speed of less than 0.03 m/s. The comparison of the lower
contour lines of the two results shows that the soft snake robot requires
significantly less energy than the rigid snake robot to reach the same
velocity, and the gap in energy consumption is further magnified as
the velocity increases.

4.2 Results of deep reinforcement learning

In Figure 5, we illustrate the process of training DRL controllers
for the rigid snake robot and soft snake robot using the two different
reward functions ℝ1 and ℝ2 mentioned in the previous section.
The figures present the training results of the two reward functions
with the seven groups of parameters. The solid line and shaded part
represent the mean and variance of the training results with different
random seeds. As the number of training iterations increases, the
policy network can obtain higher rewards in each round of testing,
indicating that the snake robot can accomplish the tasks expected
from the reward functions. The training results converged after 500
iterations. We used the neural network at the endpoint as the DRL
controller to evaluate the energy efficiency of the soft and rigid snake
robots.

4.3 Comparison

In Figure 6, we compare the test results of the gait equation
controller and DRL controller of the snake robots using scatter plots.
The test results demonstrate that almost all of the gaits generated by the
DRL controller are within the range of the gait equation controller’s
results indicating that the gait equation controller using grid search
with very narrow intervals can provide a sufficient exploration of
potential action patterns. Moreover, the results also demonstrate that
the deep learning solutions are well distributed around the lower
bottom side of the average power for Figure 6. It is interesting to
confirm that deep learning works well for exploring the swimming
solution space. Noticeably, Reward Functionℝ2 is suitable for finding
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FIGURE 10
Test results for the four selected gaits. (A) The rigid snake robot is controlled by the gait equation controller. (B) The rigid snake robot is controlled by the
DRL controller. (C) The soft snake robot is controlled by the gait equation controller. (D) The soft snake robot is controlled by the DRL controller.

faster swimming patterns, and Reward Functionℝ1 is suited for lower
energy consumption with slower swimming patterns.

Special attention should be given to the DRL controllers of the
soft snake robot. The results were much closer to the boundary of
the gait equation test results than in the rigid snake robot case. In
other words, in the same training situation, it is more challenging for
rigid snake robot to learn energy-efficient gaits using DRL. This is a
further evidence suggests that the soft snake robot’s physical attributes
make it more energy-efficient than the rigid robot when moving
underwater.

In Section II, we introduced the range of the joint rotation and
output torque of the rigid snake robot which is calculated based on the
joint rotation range, output torque, and the number of active joints of
the soft snake robot. We changed the joint rotation range and output
range of the rigid snake robot to exclude the potential effects of the
joint range and output torque range on the experimental results and
performed additional comparative experiments.

First, we change the joint rotation range of the rigid snake
robot. The original joint angle rotation range was [−36°, 36°].
Here we changed it to [−12°, 12°], [−24°, 24°], and [−48°, 48°]
and performed the same test separately. The experimental results
in Figure 7A indicate that the original range of rotation exhibits
the best performance among the four sets of values. Generally, an
excessively large or small rotation angle range will cause more energy
consumption. Then we changed the output torque range of the rigid
snake robot’s actuators from [−12, 12] Nm to [−1, 1] Nm, [−3, 3]
Nm, [−6, 6] Nm, and [−9, 9] Nm. In the results shown in Figure 7B,
the lower contour lines of the scatter plots for different torque ranges
exhibit a very similar growing trend.

The results of the smaller torque range are overlaid by those of the
larger torque range. It is primarily because when we perform the grid

search for the gait equation controller, the search range of the torque
amplitude A is [0.1, 2] Nm with a 0.1 search interval, and the original
search result already contains part of the result of a smaller torque
range.

Since the other parameters of the grid search were unchanged
when we performed these experiments, the fact that no better gaits
were found implies we have already fully explored all the gaits that can
be generated by the gait equation.

4.4 Analysis

Based on the above experimental results, the soft robot can use
the advantages of its distinct deformed body to achieve better energy
efficiency when moving underwater.

To analyze the reasons for this difference, four test results with
similar average velocity and lowest output power were selected for
the soft and rigid snake robots, respectively, for comparison. These
results were individually generated using the DRL and gait equation
controller, as shown in Figure 8. We calculated the results of the gait
equation controller and found that when the snake robot had the same
average velocity of 0.024 m/s, the output power of the soft-body snake
robot was only 19.60% of that of the rigid-body snake robot.

In Figure 9, we plot the variation in the CoM velocity of the snake
robot in these four gaits. The results indicate that the rigid snake
robot has greater variations in CoM velocity as it swims, which is an
underlying reason behind its low energy efficiency.The larger velocity
variations imply the situation where the robot body has the larger drag
force against the water flow.

The reason for having different drag forces is the continuous shape
of the soft body robot can provide a smoother gradient of the body
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shape, which can significantly reduce the drag from the water. As the
soft robot swimming, it can efficiently transport the surroundingwater
backwards while minimizing the drag, as shown in Figure 10.

5 Conclusion

We demonstrated that soft-body induces swimming motions to
have better energy efficiency when moving underwater by comparing
the different gaits of soft and rigid snake robots. First, we designed
a soft snake robot and a rigid snake robot with the same dimensions,
mass, and actuation power in a simulation environment while keeping
the same degrees of freedom for the actuation space. Subsequently,
we determined the optimal energy utilization gaits of the two robots
explored by grid search and deep reinforcement learning methods for
covering the large solution space for the control inputs. By comparing
these gaits, we discovered that the average output power required by
the soft-body robot is much smaller than that required by the rigid-
body robot when it reached the same speed. The main reason for
this is that the soft robot has less velocity variation of the body when
moving underwater and the continuous body shape of the soft robot
reduces the drag from the water. Then the soft robot can effectively
transport the surrounding water backwards while minimizing the
drag.Ourwork confirms the advantages of soft-body dynamics against
rigid-body dynamics in snake-like underwater robots. We believe that
this study can contribute to promoting a new direction to emphasize
the energy efficiency advantage of soft-body dynamics for robot
design. In the future, we will further analyze the advantages of soft-
body dynamics for energy-efficient motion generation by comparing
different motor tasks, both underwater and on the ground.
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