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Multi-dimensional task
recognition for human-robot
teaming: literature review

Prakash Baskaran* and Julie A. Adams

Collaborative Robotics and Intelligent Systems Institute, Oregon State University, Corvallis, OR, United
States

Human-robot teams collaborating to achieve tasks under various conditions,
especially in unstructured, dynamic environments will require robots to
adapt autonomously to a human teammate’s state. An important element of
such adaptation is the robot’s ability to infer the human teammate’s tasks.
Environmentally embedded sensors (e.g., motion capture and cameras) are
infeasible in such environments for task recognition, but wearable sensors
are a viable task recognition alternative. Human-robot teams will perform
a wide variety of composite and atomic tasks, involving multiple activity
components (i.e., gross motor, fine-grained motor, tactile, visual, cognitive,
speech and auditory) that may occur concurrently. A robot’s ability to recognize
the human’s composite, concurrent tasks is a key requirement for realizing
successful teaming. Over a hundred task recognition algorithms across multiple
activity components are evaluated based on six criteria: sensitivity, suitability,
generalizability, composite factor, concurrency and anomaly awareness. The
majority of the reviewed task recognition algorithms are not viable for human-
robot teams in unstructured, dynamic environments, as they only detect tasks
from a subset of activity components, incorporate non-wearable sensors, and
rarely detect composite, concurrent tasks across multiple activity components.

KEYWORDS

human-robot teaming, task recognition, activity recognition,wearable sensors,machine
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1 Introduction

Human-robot teams (HRTs) are often required to operate in dynamic, unstructured
environments, which poses a unique set of task recognition challenges thatmust be overcome
to enable a successful collaboration. Consider a post-tornado disaster response that requires
locating, triaging and transporting victims, securing infrastructure, clearing debris, and
locating and securing potentially dangerous goods from looting (e.g., weapons at a firearms
shop, drugs at a pharmacy). Achieving effective human-robot collaboration in such scenarios
requires natural teaming between the human first responders and their robot teammates
(e.g., quadrotors or ground vehicles). An important element of such teaming is the robot
teammates’ ability to infer the tasks performed by the human teammates in order to adapt
their interactions autonomously based on their human teammates’ state.

Tasks performed by human teammates can be classified into two categories: 1)
Atomic, and 2) Composite. Atomic tasks are simple activities that are either short in
duration, or involve repetitive actions that cannot be decomposed further. A Composite task
aggregates multiple atomic actions or activities into a more complex task (Chen K. et al.,
2021). For example, Clearing a dangerous item is a composite task comprised of several
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FIGURE 1
An example of a multi-dimensional task recognition framework enabling a robot to detect a human teammate’s tasks across all activity components
when the HRT is clearing a dangerous item.

atomic tasks: a) Scanning the environment for suspicious items, b)
Evaluating the threat level, c) Taking a picture, d) Discussing with
the incident commander via walkie-talkie, and e) moving on to the
next area.

Humans conduct tasks using a breadth of their capabilities,
as depicted in Figure 1. Depending on the complexity, the tasks
can involve multiple activity components: gross motor, fine-
grained motor, tactile, cognitive, visual, speech, and auditory
(Heard et al., 2018a). For example, the Clearing a dangerous item
task aggregates a visual component of scanning the environment
to locate the item, a cognitive component of evaluating the item’s
threat level, taking a picture task involves gross motor, fine-grained
motor and tactile components, while discussing the next steps
with the incident commander via walkie-talkie involves auditory
and speech components for listening to queries and providing
information.

HRTs often perform a wide variety of tasks, such that the set
of tasks performed by human teammates may involve differing
combinations of multi-dimensional activity components. The focus
on disaster response environments, which are dynamic, uncertain,
and unstructured, does not permit the use of environmentally
embedded sensors (e.g., motion capture systems and cameras).
Wearable sensors are a viable alternative that facilitate gathering
the objective data necessary to identify a human’s task. Robots will
require a multi-dimensional task recognition algorithm capable of
detecting composite tasks composed of differing combinations of the
activity components. Current state-of-the-art HRT task recognition
using wearable sensors generally focuses on gross motor and some
fine-grained atomic tasks. Prior research identified visual, cognitive,
and some auditory tasks using wearable sensors; however, none
of those methods recognize composite tasks across all activity
components.

Humans often complete multiple tasks concurrently
(Chen K. et al., 2021). For example, while clearing dangerous items,
a human teammate may receive a communication request from
the incident command center seeking important information and
the teammate will be required to do both tasks simultaneously.
Detecting this task concurrency will allow robots to better adapt to
their teammate’s interactions, priorities or appropriations, which

will improve the team’s overall collaboration and performance.
A limitation of most existing algorithms assume that the human
performs a single composite task at a time.

Individual differences are expected, even if the humans receive
identical training, resulting in differing task completion steps, such
as different atomic tasks being completed in different orders or
with differing completion times. These differences can result in
one task being mapped to multiple different sensor readings. For
example, while applying tourniquet, a first responder may skip
securing the excess band, as it is not a necessary step to stop the
bleeding, while another responder may pack the wound with gauze,
an additional step. Algorithmically identifying such individual
differences is challenging. The existing approaches to addressing
individual differences only considered trivial gross-motor and fine-
grained motor atomic tasks (Mannini and Intille, 2018; Akbari
and Jafari, 2020; Ferrari et al., 2020), not composite tasks involving
multiple activity components.

Human responders train to respond to disasters, but each
disaster differs and often requires the completion of unique tasks or
tasks in a differentmanner. Performing tasks for which the robot has
not been previously trained are called out-of-class tasks (Laput and
Harrison, 2019). Misclassification of an out-of-class task can result
in a robot adapting its behavior incorrectly, causingmore harm than
good.

This literature review evaluates task recognition algorithms
within the context of HRTs, operating in uncertain, dynamic
environments, by developing a set of relevant criteria. Sections 2,
3 provide the necessary background on task recognition and
discuss prior literature reviews, respectively. Section 4 provides an
overview of the relevant task recognition metrics, while Section 5
reviews relevant algorithms. Section 6 discusses the limitations of
the current approaches, while Sections 7, 8 provide insights for
future directions and concluding remarks, respectively.

2 Background

Task recognition involves classifying a human’s task action based
on a set of domain relevant activities, or tasks (Wang et al., 2019).
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A task, tk, belongs to a task set T, for which a sequence of sensor
readings Sk corresponds to the task. Task recognition is intended
to identify a function f that predicts the task performed based
on the sensor readings Sk, such that the discrepancy between the
predicted task t̂k and the ground truth tk is minimized. f does not
usually take Sk as direct input, as the sensor readings often require a
processing function Φ that converts the sensor readings Sk into a d-
dimensional feature vector Φ(s) ≐ x ∈ ℝd by extracting meaningful
features (Wang et al., 2019).The function f inputs the feature vector x
to predict the task t̂k. Due to human’s individual differences multiple
different feature vectors can be mapped to a single task. Therefore,
machine learning algorithms are adopted for learning the function f
(Lara and Labrador, 2013).

Generally, human’s tasks encompass multiple activity
components: Physical movements, cognitive, visual, speech and
auditory. Physical movements can be categorized based on motion
granularity: 1) Gross motor, 2) Fine-grained motor, and 3) Tactile.
Gross motor tasks’ physical movements displace the entire body,
such as walking, running, and climbing stairs, or major portions,
such as swinging an arm (e.g., Cleland et al., 2013; Chen and Xue,
2015; Allahbakhshi et al., 2020). Fine-grained motor tasks involve
body extremities’ motion (i.e., wrists and fingers), such as grasping
and object manipulation (e.g., Zhang et al., 2008; Fathi et al., 2011;
Laput and Harrison, 2019). Tactile tasks’ physical movements result
in sense of touch, such as mouse clicks, keyboard strokes, and
carrying a backpack (e.g., Hsiao et al., 2015; Lee and Nicholls,
1999). Cognitive tasks use the brain to process new information,
as well as recall or retrieve information from memory (e.g.,
Kunze et al., 2013a; Yuan et al., 2014; Salehzadeh et al., 2020). Visual
task examples include identifying different objects, and reading
(e.g., Bulling et al., 2010; Ishimaru et al., 2017; Srivastava et al.,
2018). Speech-reliant tasks are voice articulation dependent,
such as communicating over the radio (e.g., Dash et al., 2019;
Abdulbaqi et al., 2020), while auditory tasks are acoustic events in
the environment, such as an important announcement or emergency
sounds (e.g., Stork et al., 2012; Hershey et al., 2017; Laput et al.,
2018). Most existing task recognition approaches focus primarily
on detecting physical gross motor and fine-grained motor tasks.
However, some tasks involve little to no physical movement. Robots
need a holistic understanding of tasks’ various activity components
to detect them accurately.

3 Related work

Human task recognition has been an active field of research
for more than a decade; therefore, a number of review papers with
a wide range of scope and objectives exist in the literature (Lara
and Labrador, 2013; Cornacchia et al., 2017; Nweke et al., 2018;
Wang et al., 2019; Chen K. et al., 2021; Ramanujam et al., 2021;
Bian et al., 2022; Zhang S. et al., 2022). This manuscript focuses on
wearable sensor-based human task recognition; thus, this section
is only focused on this domain. A brief overview of the latest task
recognition surveys from the last decade is presented.

One of the earliest surveys provided an overall task recognition
framework, along with its primary components incorporating
wearable sensors (Lara and Labrador, 2013). The survey categorized
the manuscripts based on their learning approach (supervised

or semi-supervised) and response time (offline or online), and
qualitatively evaluated them in terms of recognition performance,
energy consumption, obtrusiveness, and flexibility. The highlighted
open problems included the need for composite and concurrent task
recognition. Other comprehensive surveys of task recognition using
wearable sensors discussed how different task types can be detected
by i) breadth of sensingmodalities, ii) choosing appropriate on-body
sensor locations, iii) and learning approaches (Cornacchia et al.,
2017; Elbasiony and Gomaa, 2020).

The prior reviews primarily surveyed classical machine
learning based approaches (e.g., Support Vector Machines and
Decision Trees) for task recognition. More recent surveys reviewed
manuscripts that leveraged deep learning (Nweke et al., 2018;
Wang et al., 2019; Chen K. et al., 2021; Ramanujam et al., 2021;
Zhang S. et al., 2022). Nweke et al. (2018) and Wang et al. (2019)
presented a taxonomy of generative, discriminative, and hybrid deep
learning algorithms for task recognition, while Ramanujam et al.
(2021) categorized the deep learning algorithms by convolutional
neural network, long short-term memory, and hybrid methods
to conduct an in-depth analysis on the benchmark datasets.
A comprehensive review of the deep learning challenges and
opportunities was presented (Chen K. et al., 2021). Zhang S. et al.
(2022) focused on the most recent cutting-edge deep learning
methods, such as generative adversarial networks and deep
reinforcement learning, along with a thorough analysis in terms
of model comparison, selection, and deployment.

Previous task recognition surveys primarily focused on
discussing algorithms using wearable sensors. An in-depth
understanding of the state-of-art sensing modalities is as important
as the algorithmic solutions. A recent survey categorized task
recognition-related sensing modalities into five classes: mechanical
kinematic sensing, field-based sensing, wave-based sensing,
physiological sensing, and hybrid (Bian et al., 2022). Specific sensing
modalities were presented by category, along with the strengths and
weaknesses of each modality across the categorization.

Other surveys focused solely on video-based task recognition
algorithms, typically using surveillance-based datasets (Ke et al.,
2013; Wu et al., 2017; Zhang H.-B. et al., 2019; Pareek and
Thakkar, 2021), while Liu et al. (2019) reviewed algorithms that
leveraged the change in wireless signals, such as the received
signal strength indicator and Doppler shift to recognize tasks.
The in situ, potentially deconstructed (e.g., 2023 Turkey–Syria
earthquake) first response HRT cannot rely on such sensors for task
recognition.

Most existing literature reviews focus primarily on algorithms
that detect tasks involving physical movements; thus, the reviewed
algorithms are biased to only include gross and fine-grained motor
task recognition methods. Compared to the prior literature reviews,
this manuscript acknowledges that tasks have multiple dimensions
and proposes a task taxonomy based on motion granularity (i.e.,
gross motor, fine-grained motor, and tactile), as well as other
task component channels (i.e., visual, cognitive, auditory and
speech). The manuscript’s primary contributions are summarized
below.

• A comprehensive list of wearable sensor-based metrics are
evaluated to assess the metrics’ ability to detect tasks within the
context of the first-response HRT domain.
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• A systematic review of relevant manuscripts over the years that
are categorized by the seven activity components and grouped
based on the machine learning methods.
• A set of criteria to evaluate the reviewed manuscripts’ ability to

recognize tasks performed by first-response human teammates
operating in HRTs.

The criteria developed to evaluate the metrics and algorithms
may appear restrictive, as they are grounded in the first-response
domain; however, the classifications provided are widely applicable
for domains that involve unstructured, dynamic environments that
require wearable sensors and demand a holistic understanding of a
human’s task state.

4 Task recognition metrics

Task recognition algorithms require metrics (e.g., inertial
measurements, pupil dilation, and heart-rate) to detect the tasks
performed by humans. The task recognition metrics incorporated
by an algorithm inform how accurately a given set of tasks
and the associated activity components can be detected for
a particular task domain; therefore, selecting the right set of
metrics takes precedence over algorithm development. Thirty task
recognition metrics were identified across the existing literature.
Three criteria were developed to evaluate the metrics’ ability
to detect tasks performed by first-response HRTs operating in
uncertain, unstructured environments.

Sensitivity refers to a metric’s ability to detect tasks reliably. A
metric’s sensitivity is classified as High if at least three citations
indicate that the metric detects tasks with ≥80% accuracy, while
a metric is classified as Medium if the task detection accuracy
is ≥70%, but <80%. Low metric sensitivity occurs if the metric
detects tasks with <70% accuracy. Metrics without sufficient
citations to determine their sensitivity are classified as Indeterminate,
and additional evidence is required to substantiate the metric’s
sensitivity.

Versatility refers to a metric’s ability to detect tasks across
different task domains. A metric’s versatility is High if the metric is
cited for discriminating tasks in at least two or more task domains.
Similarly, if the metric was used for classifying tasks belonging to
only one task domain, the versatility is Low.

Suitability evaluates a metric’s feasibility to detect tasks in
various physical environments (i.e., structured vs unstructured),
which depends on the sensor technology for gathering the metric.
Some metrics (e.g., eye gaze) can be acquired using many different
sensors and technologies, but the review’s focus on disaster response
encourages the use of wearable sensors over environmentally
embedded sensors. A metric’s suitability is conforming if it is cited to
be gathered by a wearable sensor that is unaffected by disturbances
(e.g., sensor displacement noise, excessive perspiration, and change
in lighting conditions), while non-conforming otherwise.

The task recognition metrics and the corresponding sensitivity,
versatility, and suitability classifications are provided in Table 1.
The Activity Component column in Table 1 indicates which
component(s) (i.e., gross motor, fine-grained motor, tactile, visual,
cognitive, auditory, and speech) are associated with the metric. The
metrics are categorized based on their sensing properties. Each

metric is evaluated based on the three evaluation criteria in order
to identify the most reliable, minimal set of metrics required to
recognize HRT tasks.

4.1 Inertial metrics

Inertial metrics consists of: i) linear acceleration, which
measures a body region’s three-dimensional movement via
an accelerometer; and ii) the body part’s three-dimensional
orientation (i.e., rotation and rotational rate) using gyroscope and
magnetometer. Inertial metrics are primarily used for detecting
physical tasks, which includes gross motor, fine-grained motor
and tactile tasks (Cleland et al., 2013; Lara and Labrador, 2013;
Vepakomma et al., 2015; Cornacchia et al., 2017).

Linear acceleration is themostwidely employed, and can be used
as a standalone task recognition metric. Orientation is often used
in combination with linear acceleration. The type and number of
tasks detected by the inertial metrics can be linked to the number
and placement of the sensors on the body (Atallah et al., 2010;
Cleland et al., 2013). For example, inertial metric sensors to detect
gross motor tasks are placed at central or lower body locations
(i.e., chest, waist and thighs) (Ravi et al., 2005; Kwapisz et al., 2011;
Mannini and Sabatini, 2011; Gjoreski et al., 2014), while fine-
grained motor tasks require the sensor on the forearms and wrists
(Zhang et al., 2008; Koskimaki et al., 2009; Min and Cho, 2011;
Heard et al., 2019a), and tactile tasks place the sensors at the
hand’s dorsal side and fingers (Jing et al., 2011; Cha et al., 2018;
Liu et al., 2018). Linear acceleration has high sensitivity, while
standalone orientation is indeterminate. The inertial metrics have
high versatility and conform with suitability criteria.

4.2 Eye gaze metrics

Eye gaze metrics record the coordinates (gx, gy) of the gaze
point over time. Raw eye gaze data is often processed to yield eye
movement metrics representative of a human’s visual behavior and
can be leveraged for task recognition. Fixations, saccades, scanpath,
blink rate, and pupil dilation represent some of the important
eye gaze-based metrics (Kunze et al., 2013b; Steil and Bulling,
2015; Martinez et al., 2017; Hevesi et al., 2018; Srivastava et al.,
2018; Kelton et al., 2019; Landsmann et al., 2019). These metrics
are commonly used for recognizing visual tasks, while some prior
research have also detected cognitive tasks (Kunze et al., 2013c;
Islam et al., 2021).

Fixations are stationary eye states during which gaze is held
upon a particular location (Bulling et al., 2010), while saccades are
the simultaneous movement of both eyes between two fixations
(Bulling et al., 2010). Fixation has high sensitivity (e.g., Steil
and Bulling, 2015; Kelton et al., 2019; Landsmann et al., 2019),
while a saccade has medium sensitivity (e.g., Bulling et al., 2010;
Ishimaru et al., 2017; Srivastava et al., 2018). Bothmetrics have high
versatility and conform with suitability.

A scanpath is a fixation-saccade-fixation sequence
(Martinez et al., 2017). Scanpaths have medium sensitivity
(Martinez et al., 2017; Srivastava et al., 2018; Islam et al., 2021),
conform with suitability, and have low versatility.
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TABLE 1 Metrics evaluation overview by Sensitivity (Sens.), Versatility (Verst.), and Suitability (Suit.), where⋁, ∏, and⋀, represent Low, Medium, and High,
respectively (.) indicates Indeterminate, while * indicate hypothesis predicted for the particular metric. Suitability is classified as conforming (C) or
non-conforming (NC).

Category Metrics Sens Verst Suit Activity component

Inertial Acceleration ⋀ ⋀ C Gross

Fine-grained

Tactile

Orientation (⋀*) ⋀ C Gross

Fine-grained

Eye Gaze Fixation ⋀ ⋀ C Visual

Saccades ∏ ⋀ C Visual

Scanpath ∏ ⋁ C Visual

Blink rate (⋁*) ⋀* C Visual

(⋀*) ⋀* C Cognitive*

Pupil dilation (⋀*) (⋀*) NC Visual*

Cognitive*

Electro-physiological EOG ∏ ⋀ NC Visual

(⋀*) ⋀ NC Cognitive

sEMG ⋀ ⋀ NC Gross

Fine-grained

(⋀*) ⋀ NC Tactile

EEG ⋀ ⋁ NC Cognitive

ECG ⋁ ⋁ C Gross

Heart-rate ⋁ ⋁ C Gross

Heart-rate variability (⋀*) (⋀*) C Cognitive*

Vision Optical flow ⋀ ⋀ NC Gross

∏ ⋀ NC Fine-grained

Human-body pose ∏ ⋀ NC Gross

⋀ ⋀ NC Fine-grained

Object detection ⋁ ⋀ NC Gross

Fine-grained

Acoustic Spectrogram ⋀ ⋀ C Auditory

MFCCs ⋀ ⋀ C Auditory

Noise level (⋁*) (⋀*) C Auditory

Speech Transcript (∏*) (⋁*) C Speech

Keywords (∏*) (⋁*) C Speech

Speech rate (⋀*) (⋀*) C Speech

Voice intensity (⋀*) (⋀*) C Speech

Voice pitch (⋀*) (⋀*) C Speech

Localization Outdoor localization ⋁ ⋀ NC Gross

Indoor localization ⋀ ⋀ NC Gross

Fine-grained

Miscellaneous Physiological ⋁ ⋀ C Gross
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Blink rate represents the number of blinks (i.e., opening and
closing eyelids) per unit time (Bulling et al., 2010). Blink rate is
often used in conjunction with fixations and saccades to provide
further context. The metric’s sensitivity is indeterminate, but it is
hypothesized to have low sensitivity and is used predominantly to
detect desktop or office-based visual tasks (e.g., Bulling et al., 2010;
Ishimaru et al., 2014a). Prior research reviews indicate that blink
rate highly correlates with the cognitive workload (Marquart et al.,
2015; Heard et al., 2018a); therefore, blink rate is hypothesized
to have high sensitivity toward cognitive task recognition. This
metric is also hypothesized to have high versatility given its
potential to be used in multiple task domains, and it conforms with
suitability.

Pupil dilation, or pupillometry, is the change in pupil diameter.
The metric’s sensitivity is indeterminate; however, hypothesized to
have high sensitivity and versatility toward cognitive and visual
task recognition based on its ability to reliably detect cognitive
workload (Ahlstrom and Friedman-Berg, 2006; Marquart et al.,
2015; Heard et al., 2018a), and its high correlation in various visual
search tasks (Porter et al., 2007; Privitera et al., 2010; Wahn et al.,
2016). Environmental lighting changes can significantly impact the
metric’s acquisition, so it does not conform with suitability.

4.3 Electrophysiological metrics

The electrophysiological metrics refer to the electrical
signals associated with various body parts (e.g., muscles,
brain and eyes). These signals can be leveraged for task
recognition, as they are highly correlated with tasks humans
conduct. The most common electrophysiological metrics are
electromyography, electrooculography, electroencephalography,
and electrocardiography.

Electromyography measures the potential difference caused by
contracting and relaxing muscle tissues. Surface-electromyography
(sEMG) is a non-invasive technique, wherein electrodes placed
on the skin measure the electromyography signals. A forearm
positioned sEMG commonly detects fine-grained motor tasks (e.g.,
Koskimäki et al., 2017; Heard et al., 2019b; Frank et al., 2019), while
upper limb positioned sEMG can detect gross motor tasks (e.g.,
Scheme and Englehart, 2011; Trigili et al., 2019). sEMG has high
sensitivity and versatility for detecting gross and fine-grained motor
tasks. The metric has been employed for detecting various finger
and intricate hand motions (e.g., Chen et al. (2007a; b); Zhang et al.
(2009)); thus, it is hypothesized to have high sensitivity for detecting
tactile tasks. Finally, the metric does not conform with suitability, as
sweat accumulation underneath the electrodesmay compromise the
sEMG sensor’s adherence to the skin, as well as the associated signal
fidelity (Abdoli-Eramaki et al., 2012).

The Electrooculography (EOG) metric measures the potential
difference between the cornea and the retina caused by eye
movements.Themetric has medium sensitivity for classifying visual
tasks (e.g., typing, web browsing, reading and watching videos)
(Bulling et al., 2010; Ishimaru et al., 2014b; Islam et al., 2021). The
metric is capable of detecting cognitive tasks (e.g., Datta et al.,
2014; Lagodzinski et al., 2018), but its cognitive sensitivity is
indeterminate. The metric has high versatility (Datta et al., 2014;
Lagodzinski et al., 2018). EOG does not conform with suitability,

because it is susceptible to noise introduced by facial muscle
movements (Lagodzinski et al., 2018).

Electroencephalography (EEG) collects electrical neurophysiological
signals from different parts of the brain. EEGmeasures two different
metrics: i) the event-related potential measures the voltage signal
produced by the brain in response to a stimulus (e.g., Zhang X. et al.,
2019; Salehzadeh et al., 2020); and ii) the power spectral density
measures the power present in the signal spectrum (e.g., Kunze et al.,
2013a; Sarkar et al., 2016). Both metrics have high sensitivity. EEG
signals may be inaccurate when a human is physically active, so the
metrics are best suited for detecting cognitive tasks in a sedentary
environment. Therefore, the EEG metrics have low versatility. EEG
signals suffer from low signal-to-noise ratios (Schirrmeister et al.,
2017; Zhang X. et al., 2019), and incorrect sensor placement can
create inaccuracies; therefore, EEG metrics do not conform with
suitability.

Electrocardiography (ECG) measures the heart’s electrical
activity. Standalone ECG signals are not sensitive enough to detect
tasks; therefore, ECG is often used in conjunction with inertial
metrics to detect gross motor tasks (Jia and Liu, 2013; Kher et al.,
2013). ECG signal has low versatility, as it has been used to detect
only ambulatory tasks (e.g., Jia and Liu, 2013; Kher et al., 2013), but
it does conform with suitability.

The ECG signals can be used to measure two other metrics: i)
heart-rate measures the number of heart beats per minute, while ii)
heart-rate variability measures the variation in the heart-rate’s beat-
to-beat interval. Heart-rate has low sensitivity for detecting gross
motor tasks (e.g., Tapia et al., 2007; Park et al., 2017; Nandy et al.,
2020) and is often used for distinguishing the humans’ intensity
when performing physical tasks (Tapia et al., 2007; Nandy et al.,
2020). Heart-rate has low versatility, as it can only detect ambulatory
tasks. The heart-rate metric conforms with suitability if a human’s
stress and fatigue levels remain constant. The heart-rate variability
metric has seldom been used for task recognition (Park et al.,
2017), but it is sensitive to large variations in cognitive workload
(Heard et al., 2018a). Therefore, the metric is hypothesized to have
high sensitivity for cognitive task recognition. The metric conforms
with suitability, and is hypothesized to have high versatility.

4.4 Vision-based metrics

Vision-based metrics (e.g., optical flow, human-body pose
and object detection) use videos and images containing human
motions in order to infer the tasks being performed (Fathi et al.,
2011; Garcia-Hernando et al., 2018; Ullah et al., 2018; Neili Boualia
and Essoukri Ben Amara, 2021). These metrics are acquired via
environmentally embedded cameras installed at fixed locations, or
using wearable cameras mounted on a human’s shoulders, head, or
chest (e.g., Mayol and Murray, 2005; Fathi et al., 2011; Matsuo et al.,
2014).

Vision-based metrics detect gross and fine-grained motor
tasks by enabling various computer vision algorithms [e.g., object
detection, localization, and motion tracking He et al. (2016);
Deng et al. (2009); Redmon et al. (2016)], which are relevant for
task recognition. The metrics’ use is discouraged for the intended
HRT domain, because i) environmentally embedded cameras are
not readily available in unstructured domains; ii) high susceptibility
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to background noise from lighting, vibrations, and occlusion; iii)
raise privacy concerns, and iv) computationally expensive to process
(Lara and Labrador, 2013). The metrics have medium to high
sensitivity, high versatility, and non-conforming with suitability.

4.5 Acoustic metrics

Acoustic metrics leverage the characteristic sounds in order to
detect auditory events in the surrounding environment. Auditory
event recognition algorithms commonly use two types of frequency-
domain metrics. A spectrogram is a three-dimensional acoustic
metric representing a sound signal’s amplitude over time at various
frequencies (Haubrick and Ye, 2019). The spectrogram has high
sensitivity and versatility (e.g., Laput et al., 2018; Haubrick and Ye,
2019; Liang and Thomaz, 2019). Cepstrum represents the short-
term power spectrum of a sound, and is obtained by applying an
inverse Fourier transformation on a soundwave’s spectrum.TheMel
Frequency Cepstral Coefficients (MFCCs) represent the amplitudes
of the resulting cepstrum on a Mel scale. The MFCC metric has
high sensitivity and versatility (e.g., Min et al., 2008; Stork et al.,
2012). Both metrics conform with suitability, as long as the audio
is captured via a wearable microphone.

Noise level measures a task environment’s loudness in decibels.
Noise level correlates to an increase in auditory workload
(Heard et al., 2018b), but has not been used for task recognition;
however, the metric is hypothesized to detect auditory events
when the events are fewer (≤3). The metric’s sensitivity, versatility,
and suitability are hypothesized to be low, high, and conforming,
respectively.

4.6 Speech metrics

Communication exchanges between human teammates can
be translated into text, or a Verbal transcript, such that the
message is captured as it was spoken. Transcripts can be generated
manually (Gu et al., 2019), or using an automatic speech recognition
tool [e.g., SPHINX (Lee et al., 1990), Kaldi (Povey et al., 2011),
Wav2Letter++ (Pratap et al., 2019)]. The transcribed words are
encoded inton−dimensional vectors [e.g.,GloVe vector embeddings
(Pennington et al., 2014)] to be used as inputs for detecting
speech-reliant tasks (Gu et al., 2019). Representative keywords that
are spoken more frequently can be used for detecting tasks
(Abdulbaqi et al., 2020). Keywords can be detected for every
utterance automatically using word-spotting (Tsai and Hao, 2019;
Gao et al., 2020). Identifying keywords for each task is non-
trivial and requires considerable human effort. Both transcript and
keywords metrics’ sensitivity is indeterminate, but is hypothesized
to be medium (Gu et al., 2019; Abdulbaqi et al., 2020). The metrics
conform with suitability, provided the speech audio is obtained
using a wearable microphone that minimize extraneous ambient
noise.Themetrics are exceptionally domain specific; therefore, their
versatility is hypothesized to be low.

Several speech-relatedmetrics (e.g., speech rate, pitch, and voice
intensity) that do not rely on natural language processing have
proven effective for estimating speechworkload (Heard et al., 2018a;
Heard et al., 2019a; Fortune et al., 2020). Speech rate captures verbal

communications’ articulation rate by measuring the number of
syllables uttered per unit time (Fortune et al., 2020).Voice intensity is
the speech signal’s root-mean-square value, while Pitch is the signal’s
dominant frequency over a time period (Heard et al., 2019a). These
metrics have not beenused for task recognition; therefore, additional
evidence is required to substantiate their evaluation criteria. The
metrics’ sensitivity and versatility are hypothesized to be high. The
suitability criterion is conforming, assuming that the speech audio
is obtained via wearable microphones.

4.7 Localization-based metrics

Localization-based metrics infer tasks by analyzing either the
absolute or relative position of items of interest, including humans.
The outdoor localization metric measures a human’s absolute
location (i.e., latitude and longitude coordinates) using satellite
navigation systems. This metric has low sensitivity, (Liao et al.,
2007), but can support task recognition by providing context
(Reddy et al., 2010; Riboni and Bettini, 2011). The metric is highly
versatile and non-conforming with suitability (Lara and Labrador,
2013).

Indoor localization determines the relative position of items,
including humans, relative to a known reference point in indoor
environments by acquiring the change in radio signals. Radio
Frequency Identification (RFID) tags andwirelessmodems installed
at stationary locations are the standard options. The indoor
localization metric infers tasks by determining humans’ location or
identifying objects lying in close proximity (Cornacchia et al., 2017;
Fan et al., 2019). The metric has high sensitivity and versatility. The
metric requires environmentally embedded sensors; therefore, it is
non-conforming for suitability.

4.8 Physiological metrics

Physiological metrics provide precise information about a
human’s vital state. Several physiological metrics exist: i) Galvanic
skin response, which measures the skin’s conductivity, ii) Respiration
rate, which represents the number of breaths taken per minute, iii)
PostureMagnitude, whichmeasures a human’s trunk flexion (leaning
forward) and extension (leaning backward) angle in degrees, and iv)
Skin temperature, are themost commonly used physiologicalmetrics
for task recognition (Min and Cho, 2011; Lara et al., 2012). The
physiological metrics have low sensitivity, as they react to activity
changes with a time delay. The metrics have high versatility and
conform with suitability.

5 Task recognition algorithms

Over one hundred task recognition algorithms across different
activity components and task domains were identified and reviewed.
The algorithms are evaluated using the following criteria: sensitivity,
suitability, generalizability, composite factor, concurrency, and
anomaly awareness. The evaluation criteria and the corresponding
requirements were chosen in order to assess an algorithm’s viability
for detecting tasks in a human-robot teaming domain.
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5.1 Evaluation criteria

Sensitivity refers to an algorithm’s ability to detect tasks reliably.
An algorithm’s sensitivity is classified asHigh if the algorithmdetects
tasks with ≥80% accuracy, whileMedium if the algorithm’s accuracy
is ≥70%, but <80%, and Low if the accuracy is <70%. The accuracy
thresholds were chosen by fitting a skewed Gaussian curve on the
reviewed task recognition algorithms’ accuracies.

An algorithm’s suitability evaluates its feasibility for detecting
tasks in various physical environments. An algorithm conforms
if it can detect tasks independent of the environment by
incorporating wearable, reliable metrics, and is non-conforming
otherwise.

Generalizability represents an algorithm’s ability to identify
tasks across humans. The generalizability criterion depends
on the achieved accuracy, given the algorithm’s validation
method. An algorithm conforms if it achieves ≥80% accuracy
with leave-one-subject-out cross-validation or in-the-wild
validation.

TheComposite factor criterion determines whether an algorithm
can detect tasks composed of multiple atomic activities. If a detected
task incorporates two or more atomic activities, then the algorithm
conforms with the composite task criterion. Typically, long duration
tasks that incorporate multiple action sequences per task are
composite in nature.

Concurrency determines if the algorithm can detect tasks
executed simultaneously. Concurrency has multiple forms: i) a task
may be initiated prior to completing a task, such that a portion of
the task overlaps with the prior task (i.e., interleaved tasks), and
ii) multiple tasks performed at the same time (i.e., simultaneous
tasks) (Allen and Ferguson, 1994; Liu et al., 2017). An algorithm
conforms if it can detect at least one form of concurrency, and is
non-conforming otherwise.

Anomaly Awareness determines an algorithm’s ability to detect
an out-of-class task instance, which arises when an algorithm
encounters sensor data that does not correspond to any of the
algorithm’s learned tasks. An algorithm conforms with anomaly
awareness if it can detect out-of-class instances.

Most task recognition algorithms can only detect a predefined
set of atomic tasks and are unable to detect concurrent tasks or
out-of-class instances (Lara and Labrador, 2013; Cornacchia et al.,
2017). Thus, unless identified otherwise, the reviewed algorithms
do not conform with composite factor, concurrency and anomaly
awareness.

5.2 Overview of task recognition algorithm
categories

Task recognition algorithms typically incorporate supervised
machine learning to identify the tasks from the sensor data (see
Section 2). These algorithms can be grouped into several categories
based on feature extraction, ability to handle uncertainty, and
heuristics. Three common data-driven task recognition algorithm
categories exist in the literature, which are.

• Classical machine learning rely on features extracted from raw
sensor data to learn a prediction model. Classical approaches

are suitable when there is sufficient domain knowledge to
extract meaningful features, and the training dataset is small.
• Deep learning avoids designing handcrafted features, learns

the features automatically (Goodfellow et al., 2016), and is
generally suitable when a large amount of data is available for
training the model. Deep learning approaches leverage data
to extract high-level features, while simultaneously training a
model to predict the tasks.
• Probabilistic graphical models utilize probabilistic network

structures (e.g., Bayesian Networks (Du et al., 2006), Hidden
Markov Models (Chung and Liu, 2008), Conditional Random
Fields (Vail et al., 2007)) to model uncertainties and the
tasks’ temporal relationships, while also identifying composite,
concurrent tasks.

The data-driven models’ primary limitations are that they i) cannot
be interpreted easily, and ii) may require large amount of training
data to be robust enough to handle individual differences across
humans and generalize across multiple domains.

Knowledge-driven task recognitionmodels exploit heuristics and
domain knowledge to recognize the tasks using reasoning-based
approaches [e.g., ontology and first-order logic (Triboan et al., 2017;
Safyan et al., 2019; Tang et al., 2019)]. Knowledge-drivenmodels are
logically elegant and easier to interpret, but do not have enough
expressive power to model uncertainties. Additionally, creating
logical rules to model temporal relations becomes impractical when
there are a large number of tasks with intricate relationships (Chen
and Nugent, 2019; Liao et al., 2020).

5.3 Gross motor tasks

Gross motor tasks occur across multiple task categories, such as
Activities of Daily Living (ADL), fitness, and, industrial. A high-level
overview of the reviewed algorithms with regard to the evaluation
criteria is presented by algorithm category in Table 2.

5.3.1 Classical machine learning
Most gross motor task recognition algorithms incorporate

classical machine learning using inertial metrics, often measured
at central and lower body locations (Cornacchia et al., 2017), such
as the chest (e.g., Li et al., 2010; Lara et al., 2012; Braojos et al.,
2014), waist (e.g., Arif et al., 2014; Weng et al., 2014; Capela et al.,
2015; Allahbakhshi et al., 2020), and thighs (e.g., Braojos et al., 2014;
Gjoreski et al., 2014; Weng et al., 2014). Generally, inertial metrics
measured at upper peripheral locations (e.g., forearms and wrists)
are not suited for detecting gross motor tasks (Kubota et al., 2019).

Algorithms may also combine inertial data with physiological
metrics, such as ECG, heart-rate, respiration rate, or skin
temperature (e.g., Parkka et al., 2006; Jia and Liu, 2013; Kher et al.,
2013; Park et al., 2017; Nandy et al., 2020). These algorithms
extract time- and frequency-domain features and use conventional
classifiers [e.g., Support Vector Machine (SVM) (Jia and Liu, 2013;
Park et al., 2017), Decision Trees (Parkka et al., 2006; Tapia et al.,
2007), Random Forest (Allahbakhshi et al., 2020; Nandy et al.,
2020), or Logistic Regression (Lara et al., 2012)]. Physiological data
can increase recognition accuracy by providing additional context,
such as distinguishing between intensity levels [e.g., running and
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TABLE 2 Gross motor task recognition algorithms evaluation overview by Sensitivity (Sens.), Suitability (Suit.), Generalizability (Genr.), Composite Factor
(Comp.), Concurrency (Conc.), and Anomaly Awareness (Anom.). Sensitivity is classified as Low (⋁), Medium (∏), or High (⋀), while other criteria are classified as
conforming (C), non-conforming (NC), or requiring additional evidence (RE).

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Classical Machine Learning

Artificial neural network Kher et al. (2013) ⋀ C NC NC NC NC

Decision trees Parkka et al. (2006) ⋀ C C NC NC NC

Tapia et al. (2007) ⋁ C NC NC NC NC

Ensemble Nandy et al. (2020) ⋀ C C NC NC NC

k-Nearest Neighbors Kubota et al. (2019) ⋀ NC C NC NC NC

Ladjailia et al. (2020) ⋀ NC RE NC NC NC

Logistic regression Lara et al. (2012) ⋀ C NC NC NC NC

Plurality voting Ravi et al. (2005) ⋀ C NC NC NC NC

Random forest Allahbakhshi et al. (2020) ⋀ C C NC NC NC

Recurrent neural network Batzianoulis et al. (2017) ⋀ NC NC NC NC NC

Relevance vector machines Jia and Liu (2013) ⋀ C NC NC NC NC

SVM Park et al. (2017) ⋀ C C NC NC NC

Kumar and John (2016) ⋀ NC C NC NC NC

Schuldt et al. (2004) ⋁ NC NC NC NC NC

Deep Learning

CNN Chen and Xue (2015) ⋀ C C NC NC NC

Alsheikh et al. (2016) ⋀ C NC NC NC NC

Ignatov (2018) ⋀ C C NC NC NC

Lee et al. (2017) ⋀ C NC NC NC NC

LSTM Inoue et al. (2018) ⋀ C NC NC NC NC

CNN + LSTM Fan et al. (2019) ⋀ NC RE NC NC NC

Peng et al. (2018) ⋀ C NC C NC NC

Chen et al. (2021b) ∏ C NC C NC NC

CNN + GRU Xu et al. (2019) ⋀ C NC C NC NC

Transformer Dirgová Luptáková et al. (2022) ⋀ C NC NC C NC

Probabilistic Graphical Model

Bayesian network Zhang et al. (2013) ⋁ C NC C C NC

Conditional random field Hu et al. (2016) ⋀ NC RE NC NC NC

Gaussian mixture model Trigili et al. (2019) ∏ NC NC NC NC NC

Hidden Markov model Jalal et al. (2017) ⋀ NC RE NC NC NC

Kolekar and Dash (2016) ∏ NC NC NC NC NC

Knowledge-driven

Dynamic time warping Ding et al. (2015) ⋀ NC RE NC NC NC

Principal component analysis Pawar et al. (2007) ⋀ C NC NC NC NC

Trigger-based Orr et al. (2018) ⋀ NC RE NC C NC

running with weights (Nandy et al., 2020)]. However, the metrics
may also disrupt real-time task recognition, as they are not sensitive
to sudden changes in physical activity. For example, incorporating

heart-rate reduced performance when heart-rate remained high
after performing physically demanding tasks, even when the human
was lying or sitting (Tapia et al., 2007).
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Classical machine learning algorithms involving vision-based
metrics leverage optical flow extracted from stationary cameras
for gross motor task recognition (e.g., Kumar and John, 2016;
Ladjailia et al., 2020). Task specific motion descriptors derived from
optical flow are used as features to train a machine learning
classifier (e.g., SVM (Kumar and John, 2016) or k-Nearest Neighbors
(Ladjailia et al., 2020)).

Generally, classical machine learning based gross motor task
detection algorithms typically have high sensitivity, primarily due
to the atomic and repetitive nature of gross motor tasks. These
algorithms conform with suitability when the metrics incorporated
are wearable and reliable (Ravi et al., 2005; Parkka et al., 2006;
Tapia et al., 2007; Lara et al., 2012; Jia and Liu, 2013; Kher et al.,
2013; Park et al., 2017; Allahbakhshi et al., 2020; Nandy et al.,
2020), and are non-conforming otherwise (Schuldt et al., 2004;
Kumar and John, 2016; Kubota et al., 2019; Ladjailia et al., 2020).
Overall, the algorithms conform with generalizability, as they
typically achieved high accuracy using a leave-one-subject-out
cross-validation (Parkka et al., 2006; Kumar and John, 2016;
Park et al., 2017; Kubota et al., 2019; Allahbakhshi et al., 2020;
Nandy et al., 2020). All evaluated algorithms are non-conforming
for the concurrency, composite factor, and anomaly awareness
criteria.

5.3.2 Deep learning methods
Classical machine learning algorithms require handcrafted

features that are highly problem-specific, and generalize poorly
across task categories (Saez et al., 2017). Additionally, those
algorithms cannot represent the composite relationships among
atomic tasks, and require significant human effort to select features
and sensor data thresholding (Saez et al., 2017). Comparative
studies indicate deep learning algorithms outperform classical
machine learning when large amount of training data is available
(Gjoreski et al., 2016; Saez et al., 2017; Shakya et al., 2018).

Deep learning algorithms involving inertial metrics typically
require little to no sensor data preprocessing. A Convolutional
Neural Network (CNN) detected eight gross motor tasks (e.g.,
falling, running, jumping, walking, ascending and descending a
staircase) using raw acceleration data (Chen and Xue, 2015).
Although inertial data preprocessing is not required, it may be
advantageous in some situations. For example, a CNN algorithm
transformed the x, y, and z acceleration into vector magnitude
data in order to minimize the acceleration’s rotational interference
(Lee et al., 2017). The acceleration signal’s spectrogram, which is
a three dimensional representation of changes in the acceleration
signal’s energy as a function of frequency and time, was used to train
a CNN model (Alsheikh et al., 2016). Employing the spectrogram
improved the classification accuracy and reduced the computational
complexity significantly (Alsheikh et al., 2016).

Most recent algorithms leverage publicly available huge
benchmark datasets (e.g., Roggen et al., 2010; Reiss and Stricker,
2012) to build deeper and more complex task recognition models.
Deep learning algorithms combine CNNs with sequential modeling
networks (e.g., Long Short-term Memory (LSTMs) (Peng et al.,
2018; Chen L. et al., 2021), Gated Recurrent Units (GRUs) (Xu et al.,
2019)) to detect composite gross motor tasks from inertial data.
The DEBONAIR algorithm (Chen L. et al., 2021) incorporated
multiple convolutional sub-networks to extract features based

on the input metrics’ dynamicity and passed the sub-networks’
feature maps to LSTM networks to detect composite gross motor
tasks (e.g., vacuuming, nordic walking, and rope jumping). The
AROMA algorithm (Peng et al., 2018) recognized atomic and
composite tasks jointly by adopting a CNN + LSTM architecture,
while InnoHAR algorithm (Xu et al., 2019) combined the Inception
CNN module with GRUs to detect composite gross motor tasks.
Several other algorithms draw inspiration from natural language
processing to detect gross motor task transitions (Thu and
Han, 2021) and concurrency (Dirgová Luptáková et al., 2022) by
utilizing bi-directional LSTMs and Transformers, respectively.
Bi-directional LSTMs concatenate information from positive as
well as negative time directions in order to predict tasks, whereas
Transformers incorporate self-attention mechanisms to draw long-
term dependencies by focusing on the most relevant parts of the
input sequence.

RFID indoor localization is common for task recognition
(e.g., Ding et al., 2015; Hu et al., 2016; Fan et al., 2019). The RFID’s
received signal strength indicator and phase angle metrics are used
to determine the relative distance and orientation of the tags
with respect to the associated embedded environment readers
(Scherhäufl et al., 2014). The two common task identification
methods are: i) tag-attached, and ii) tag-free (Fan et al., 2019).
DeepTag (Fan et al., 2019) introduced an advanced RFID-based
task recognition algorithm that identified tasks in both tag-
attached and tag-free scenarios. The deep learning-based algorithm
used a preprocessed received signal strength indicator and phase
angle information that combined a CNN with LSTMs in order
to predict seven ADL tasks. Generally, the gross motor task
recognition algorithms involving indoor localization have high
sensitivity, but do not conform with suitability and composite
factor.

Deep learning algorithms’ increased network complexity and
abstraction alleviates most of the classical machine learning
algorithms’ limitation, resulting in high sensitivity, especially when
the data is abundant (Gjoreski et al., 2016; Saez et al., 2017);
however, caution must be exercised to not overfit the algorithms.
Deep learning algorithms can achieve high classification accuracy
on multi-modal sensor data without requiring special feature
engineering for each modality. For example, a hybrid deep learning
algorithm trained using an 8-channel sEMG and inertial data
detected thirty gym exercises (e.g., dips, bench press, rowing)
(Frank et al., 2019). Deep learning algorithms rarely validate
their results via leave-one-subject-out cross-validation, as in most
cases the algorithms are validated by splitting all the available
data randomly into training and validation datasets; therefore,
the algorithms’ generalizability criteria either requires additional
evidence, or is non-conforming.

5.3.3 Probabilistic graphical models
Algorithms’ task predictions are not always accurate, as there is

always some uncertainty associated with the predictions, especially
when tasks overlap with one another, or share similar motion
patterns (e.g., running vs running with weights). Additionally,
humans may perform two or more tasks simultaneously, which
complicates task identification when using classical and deep
learning methods that are typically trained to predict only one
task occurring at a time. Probabilistic graphical task recognition
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algorithms are adept at managing these uncertainties, and have the
ability to model simultaneous tasks.

Probabilistic graphical models can detect gross motor tasks
across various metrics [e.g., indoor localization (Hu et al., 2016),
sEMG (Trigili et al., 2019), inertial (Lee and Cho, 2011; Kim et al.,
2015), human-body pose (Jalal et al., 2017), optical flow (Kolekar
and Dash, 2016), and object detection (Zhang et al., 2013)]. Hidden
Markov Models are the most widely utilized probabilistic graphical
algorithm for gross motor task recognition (e.g., Lee and Cho, 2011;
Kim et al., 2015; Kolekar and Dash, 2016; Jalal et al., 2017), because
Hidden Markov Model’s sequence modeling properties can be
exploited for continuous task recognition (Kim et al., 2015). Hidden
Markov Models also allow for modeling the tasks hierarchically
(Lee and Cho, 2011), and can distinguish tasks with intra-class
variances and inter-class similarities (Kim et al., 2015). Other
probabilistic models [e.g., Gaussian Mixture Models (Trigili et al.,
2019)] can also detect gross motor tasks. A probabilistic graphical
model, the Interval-temporal Bayesian Network, unified Bayesian
network’s probabilistic representation with interval algebra’s (Allen
and Ferguson, 1994) ability to represent temporal relationships
between atomic events (Zhang et al., 2013) to detect composite
and concurrent gross motor tasks. The algorithm’s sensitivity
and generalizability are low and non-conforming, respectively.
The algorithm’s suitability is non-conforming, as it employed
vision-based metrics. Finally, the algorithm’s composite factor and
concurrency conform.

5.3.4 Knowledge-driven algorithms
Grossmotor rule-based task recognition algorithms incorporate

template matching or thresholding to recognize tasks. A Dynamic
Time Warping (Salvador and Chan, 2007) based algorithm detected
free-weight exercises by computing the similarity between Doppler
shift profiles of the reflected RFID signals (Ding et al., 2015).
A principal component analysis thresholding algorithm detected
ambulatory task transitions by analyzing themotion artifacts in ECG
data induced by body movements (Pawar et al., 2007; 2006).

Rule-based algorithms can detect concurrent tasks, if the rules
are relatively simple to derive using the sensor data. A multiagent
algorithm (Orr et al., 2018) detected up to seven gross motor atomic
tasks (e.g., dressing, cleaning, and food preparation). The algorithm
detected up to two concurrent tasks using environmentally-
embedded proximity sensors.

Rule-based systems are ideal for gross motor task detection
when the sensor data is limited and can be comprehended in
a relatively straightforward manner. For example, the prior rule-
based multiagent algorithm detected concurrent tasks, as it was
easy to form the rules using the proximity sensor data. Rule-
based algorithms are unsuitable when the sensor data cannot be
interpreted easily (i.e., instances of high dimensionality), or when
there are a large number of tasks that have intricate relationships.

5.3.5 Discussion
Most machine learning based algorithms can detect gross motor

tasks reliably with acceptable suitability and generalizability when
the tasks are atomic and non-concurrent with repetitive motions
(e.g., Parkka et al., 2006; Chen and Xue, 2015; Park et al., 2017;
Allahbakhshi et al., 2020). The human-robot teaming domain often
involves composite tasks that may occur concurrently. None of the

existing grossmotor task detection algorithms satisfy all the required
criteria for the intended domain.

The interval-temporal algorithm (Zhang et al., 2013) is the
preferred approach for gross motor task detection. The algorithm
can detect concurrent and composite tasks, but had low sensitivity
and is non-conforming for suitability and generalizability, which
can be attributed to the vision-based metrics and low-level Bayesian
network’s poor classification accuracy. However, the algorithm is
independent of the metrics (Zhang et al., 2013), as it operates
hierarchically, utilizing the low-level atomic event predictions.
Therefore, a modified version more suited to the intended domain
may incorporate a classical machine learning algorithm [e.g.,
Random Forest (Allahbakhshi et al., 2020)] or a deep network [e.g.,
CNN (Chen and Xue, 2015)], depending on the amount of data
available, to detect the low-level atomic tasks using inertial metrics.
The interval-temporal algorithm can be used to detect the composite
and concurrent gross motor tasks.

5.4 Fine-grained motor tasks

Fine-grained motor tasks often involve highly articulated and
dexterous motions that can be performed in multiple ways. The
execution and the time taken to complete the tasks differ from
one human to the other. These aspects of fine-grained motor tasks
can create ambiguity in the sensor data, making it difficult for
the algorithms to detect such tasks; therefore, a wide range of
methods adopting various sensing modalities exist for detecting
fine-grained tasks accurately. The evaluation criteria for each
reviewed fine-grained task recognition algorithm by algorithm
category is provided in Table 3.

5.4.1 Classical machine learning
Classical machine learning algorithms are suitable for detecting

fine-grained motor tasks only when the tasks are short in
duration, atomic, or repetitive (Heard et al., 2019a). Among the
classical machine learning algorithms, k-Nearest Neighbors (e.g.,
Koskimaki et al., 2009; Kubota et al., 2019; Ladjailia et al., 2020),
Random Forest (e.g., Wang et al., 2015; Li et al., 2016a; Heard et al.,
2019b), and SVM (e.g., Min and Cho, 2011; Pirsiavash and
Ramanan, 2012; Matsuo et al., 2014) are the most popular choices
for fine-grained motor task detection.

Several classical machine learning algorithms use egocentric
wearable camera videos for detecting ADL tasks (e.g., Pirsiavash
and Ramanan, 2012; Matsuo et al., 2014; Garcia-Hernando et al.,
2018). Image processing techniques (e.g., histogram of orientation
or spatial pyramids) are used to detect objects and conventional
machine learning algorithms recognize the tasks from the detected
objects. These algorithms may also incorporate saliency detectors
(Matsuo et al., 2014), or depth information (Garcia-Hernando et al.,
2018) to identify the objects being manipulated. Temporal motion
descriptive features from optical flow can also be used for
recognizing fine-grained tasks. A k-Nearest Neighbors algorithm
classified the fine-grained motor tasks (Ladjailia et al., 2020) based
on a histogram constructed using the motion descriptors from
optical flow.

Forearm sEMG signals can detect tasks that are difficult for
a vision-based algorithm to differentiate when using the same
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TABLE 3 Fine-grainedmotor task recognition algorithms’evaluation overview.

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Classical Machine Learning

Ensemble Min and Cho (2011) ⋀ C C C NC NC

k-Nearest Neighbors Koskimaki et al. (2009) ⋀ C C NC NC NC

Kubota et al. (2019) ⋁ NC NC NC NC NC

Ladjailia et al. (2020) ⋁ NC NC NC NC NC

Random forest Wang et al. (2015) ⋀ NC C NC NC NC

Li et al. (2016a) ⋀ NC RE C NC NC

Heard et al. (2019b) ⋁ NC NC C NC NC

SVM Laput et al. (2015) ⋀ NC C NC NC NC

Pirsiavash and Ramanan (2012) ⋁ NC NC NC NC NC

Matsuo et al. (2014) ⋁ NC NC NC NC NC

Zhang and Harrison (2015) ⋁ NC NC NC NC NC

Deep Learning

CNN Laput and Harrison (2019) ⋀ C C NC NC C

Li et al. (2016b) ⋀ NC RE C NC NC

Li et al. (2020a) ⋁ NC NC C NC NC

Ma et al. (2016) ∏ NC NC C NC NC

Castro et al. (2015) ⋀ NC NC NC NC NC

CNN + LSTM Ullah et al. (2018) ⋀ NC NC NC NC NC

Frank et al. (2019) ⋁ NC NC NC NC NC

LSTM Garcia-Hernando et al. (2018) ⋁ NC NC NC NC NC

LSTM bi-directional Zhao et al. (2018) ⋀ NC C C C NC

Residual + Attention Mekruksavanich et al. (2022) ⋀ C NC C NC NC

Al-qaness et al. (2022) ∏ C NC C NC NC

Transformer Zhang et al. (2022b) ⋀ C C NC NC NC

Probabilistic Graphical Model

Bayesian network Liu et al. (2017) ⋀ C RE C C NC

Wu et al. (2007) ⋀ NC NC NC NC NC

Fortin-Simard et al. (2015) ⋀ NC RE NC NC NC

Hevesi et al. (2018) ⋁ C NC NC NC NC

Conditional random field Fathi et al. (2011) ⋁ NC NC C NC NC

Gaussian mixture model Min et al. (2007) ⋀ C C NC NC NC

Min et al. (2008) ⋀ C C NC NC C

Hierarchical latent SVM Lillo et al. (2017) ⋀ NC C C C NC

Temporal memory Zhang et al. (2008) ⋀ C C NC NC NC

Markov chains Saguna et al. (2013) ⋀ NC NC C C NC

Probabilistic NN Wang et al. (2012) ⋀ C NC NC NC NC

Temporal graph Liao et al. (2020) ⋀ C RE C C NC
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conventional classifiers. A comparison between an sEMG [i.e., Myo
armband (Sathiyanarayanan andRajan, 2016)] and amotion capture
sensor revealed that the former had higher efficacy in recognizing
fine-grained motions (e.g., grasps and assembly part manipulation
tasks) (Kubota et al., 2019). The classifiers with the sEMG data
detected the minute variation in the muscle associated with each
grasp; resulting in significantly higher recognition accuracy than
using the motion capture data.

Some classical machine learning algorithms that use a single
Inertial Measurement Unit (IMU) can classify fine-grained
ADL tasks [e.g., eating and drinking (Zhang et al., 2008)], and
assembly line activities [e.g., hammering and tightening screws
Koskimaki et al. (2009)].This approach is suitable for tasks involving
a single hand (i.e., the dominant), when the number of recognized
tasks is small (e.g., <5). For instance, five assembly line tasks were
recognized using a wrist worn IMU’s acceleration and angular
velocity data (Koskimaki et al., 2009). The associated time- and
frequency-domain features were used to train a k-Nearest Neighbors
algorithm to classify the tasks. A two-stage classification approach
using acceleration metrics obtained by a wrist-worn accelerometer
recognized eating and drinking (Zhang et al., 2008). However, when
the tasks are composite or larger in number, the algorithms augment
the IMU with different sensing modalities. Algorithms typically
combine IMU with sEMG metrics measured at upper peripheral
locations, such as the forearms and wrists, in order to capture
highly articulated motions (Kubota et al., 2019). Increasing sensing
modalities provides more task context, enabling an algorithm to
discriminate a broader set of tasks.

A recent system attempted to recognize twenty-three composite
clinical procedures by using metrics from two Myo armbands
and statically embedded cameras (Heard et al., 2019a). The Myo’s
sEMG and inertial metrics were combined with the camera’s human
body pose metric to train a Random Forest classifier with majority
voting. Many clinical procedures require multiple articulated fine-
grained motions that range from <10s to >60s to complete. Long-
duration fine-grained procedures are difficult to detect due to intra-
class variability, inter-class similarity, and individual differences
among participants.The video provided contextual information that
improved the procedure recognition accuracy by alleviating intra-
class variance and inter-class similarity.

A multi-modal framework, incorporating five inertial sensors,
data gloves and a bio-signal sensor, detected eleven atomic tasks
(e.g., writing, brushing, typing) and eight composite tasks (e.g.,
exercising, working, meeting) (Min and Cho, 2011). A hybrid
ensemble approach combined classifier selection and output fusion.
The sensors’ inputs were initially recognized by a Naive Bayes
selection module. The selection module’s task probabilities chose a
set of task-specific SVM classifiers that fused their predictions into
a matrix in order to identify the tasks.

Classical machine learning algorithms’ classification accuracies
range between 45% and 65%; thus, they generally have low
sensitivity. The algorithms’ suitability criterion depend on the
metrics employed. The composite factor and generalizability criteria
also vary across algorithms, as they depend on the tasks detected
and the validation methodology. Overall, most algorithms are non-
conforming for the concurrency and composite factors, making them
unsuitable for detecting fine-grained motor tasks for the intended
HRT domain.

5.4.2 Deep learning
Theambiguous, convoluted sensor data fromfine-grainedmotor

tasks causes the feature engineering and extraction to be laborious.
Deep learning algorithms overcome this limitation by automating
the feature extraction process. There are three different types of
deep learning algorithms for fine-grained motor task recognition:
i) Convolutional, ii) Recurrent, and iii) Hybrid. Convolutional
algorithms typically incorporate only CNNs to learn the spatial
features from sensor data for each task and distinguish them by
comparing the spatial patterns (e.g., Castro et al., 2015; Li et al.,
2016b; Ma et al., 2016; Laput and Harrison, 2019; Li L. et al.,
2020). Recurrent algorithms detect the tasks by capturing the
sequential information present in the sensor data, typically using
memory cells (e.g., Garcia-Hernando et al., 2018; Zhao et al., 2018).
Hybrid algorithms extract spatial features and learn the temporal
relationships simultaneously by combining convolutional and
recurrent networks (Ullah et al., 2018; Fan et al., 2019; Frank et al.,
2019).

Deep learning algorithms using egocentric videos fromwearable
cameras combine object detection with task recognition. A CNN
with a late fusion ensemble predicted the tasks from a chest-
mounted wearable camera (Castro et al., 2015) by incorporating
relevant contextual information (e.g., time and day of the week)
to boost the classification accuracy. Two separate CNNs were
combined together to recognize objects of interest and handmotions
(Ma et al., 2016).The networks were fine tuned jointly using a triplet
loss function to recognize fine-grained ADL tasks with medium to
high sensitivity.

Analyzing changes in body poses spatially and temporally can
provide important cues for fine-grained motor task recognition
(Lillo et al., 2017). An end-to-end CNN network exploited
camera images for estimating fifteen upper body joint positions
(Neili Boualia and Essoukri Ben Amara, 2021). The estimated joint
positions permitted discriminating features to recognize tasks. The
CNN architecture had two levels: i) fully-convolutional layers
that extracted the salient feature, or heat maps, and ii) fusion
layers that learned the spatial dependencies between the joints by
concatenating the convolutional layers. The CNN-estimated joint
positions served as input to train a multi-class SVM that predicted
twelve ADL tasks with high sensitivity.

Hybrid deep learning algorithms are becoming increasingly
popular for task recognition across metrics (Ullah et al., 2018;
Fan et al., 2019; Frank et al., 2019). An optical flow-based algorithm
(Ullah et al., 2018) leveraged deep learning to extract temporal
optical flow features from the salient frames, and incorporated a
multilayer LSTM to predict the tasks using the temporal optical
flow features. Another hybrid deep learning algorithm (Frank et al.,
2019) trained on the sEMG and inertial metrics detected assembly
tasks. The algorithm’s CNN layers extracted spatial features from
the merits at each timestep, while the LSTM layers learned how
the spatial features evolved temporally. Hybrid algorithms can
provide excellent expressive and predictive capabilities; however,
these algorithms’ performance relies heavily on the size of training
dataset (Frank et al., 2019).

A CNN-based algorithm incorporated inertial metrics from an
off-the-shelf smartwatch to detect twenty-five atomic tasks (e.g.,
operating a drill, cutting paper, and writing) (Laput and Harrison,
2019). A Fourier transform was applied to the acceleration data
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to obtain the corresponding spectrograms. The CNN identified
the spatial-temporal relationships encoded in the spectrograms
by generating distinctive activation patterns for each task. The
algorithm also rejected (i.e., detected) unknown instances.

Deep learning algorithms can recognize concurrent and
composite fine-grained motor tasks directly from raw sensor data
using complex network architectures, provided sufficient data is
available (Ordóñez and Roggen, 2016; Zhao et al., 2018). Human
task trajectories are continuous in that the current task depends on
both past and future information. A deep residual bidirectional
LSTM algorithm (Zhao et al., 2018) detected the Opportunity
dataset’s composite tasks by incorporating information from
positive as well as negative time directions. The dataset contains
five composite ADLs (e.g., relaxation, preparing coffee, preparing
breakfast, grooming, cleaning), involving a total number of 211
atomic events (e.g., walk, sit, lying, open doors, reach for an object).
Several metrics, including acceleration and orientation of various
body parts, and three-dimensional indoor position were gathered.

Recent deep learning algorithms leverage attention mechanisms
to model long-term dependencies from inertial data (Al-
qaness et al., 2022; Zhang Y. et al., 2022; Mekruksavanich et al.,
2022). The ResNet-SE algorithm (Mekruksavanich et al., 2022)
classified composite fine-grained motor tasks on three publicly
available datasets. The algorithm incorporated residual networks to
address loss degradation, followed by a squeeze-and-excite attention
function to modulate the relevance of each residual feature map.
The Multi-ResAtt algorithm (Al-qaness et al., 2022) incorporated
residual networks to process inertial metrics from IMUs distributed
over different body locations, followed by bidirectional GRUs with
attention mechanism to learn time-series features.

Generally, deep learning algorithms are highly effective at
detecting atomic fine-grained motor tasks, but their ability to detect
composite and concurrent tasks reliably is indeterminate. The latter
may be due to insufficient ecologically-valid composite, concurrent
task recognition datasets available publicly. Utilizing generative
adversarial networks (Wang et al., 2018; Li X. et al., 2020) to expand
datasets by producing synthetic sensor data may alleviate the issue.

5.4.3 Probabilistic graphical models
Bayesian networks are the most common probabilistic graphical

models for fine-grained motor task detection (e.g., Wu et al.,
2007; Fortin-Simard et al., 2015; Liu et al., 2017; Hevesi et al., 2018),
followed by Gaussian Mixture Models (e.g., Min et al., 2007;
Min et al., 2008). Many such algorithms augment the inertial data
with a different sensing modality (e.g., Min et al., 2007; Wu et al.,
2007; Min et al., 2008; Hevesi et al., 2018) in order to provide
more task context, which enables discriminating a broader set of
tasks. Recognition of up to three day-to-day early morning tasks
(Min et al., 2007) augmented with a microphone, resulted in the
recognition of six tasks (Min et al., 2008).The intendedHRTdomain
requires multiple sensors to detect tasks belonging to different
activity components, although adding new modalities arbitrarily
may deteriorate the classifier performance (Frank et al., 2019).

Hierarchical graphical models detect composite tasks by
decomposing them into a set of smaller classification problems.
Fathi et al.’s (2011) meal preparation task detection algorithm
decomposed hand manipulations into numerous atomic actions,
and learned tasks from a hierarchical action sequence using

conditional random fields. Another hierarchical model that
operated at three levels of abstraction detected composite,
concurrent tasks using body poses (Lillo et al., 2017).

Identifying the causality (i.e., action and reaction pair) between
two events allows for easier human interpretation, and for modeling
far more intricate temporal relationships (Liao et al., 2020). A
graphical algorithm incorporated the Granger-causality (Granger,
1969; 1980) test for uncovering cause-effect relationships among
atomic events (Liao et al., 2020). The algorithm employed a generic
Bayesian network to detect the atomic events. A temporal causal
graph was generated via the Granger-causality test between atomic
events. Each graph represented a particular task instance. The
graph nodes represented the atomic events and directed links
with weights represented the cause-effect relationships between the
atomic events. An artificial neural network is trained using these
graphs as inputs to predict the composite, concurrent tasks. The
algorithm was evaluated on the Opportunity (Roggen et al., 2010)
and OSUPEL (Brendel et al., 2011) datasets, indicating that the
algorithm is independent of the metrics.

Overall, probabilistic graphical models typically have high
sensitivity for detecting fine-grained motor tasks. The algorithms,
especially hierarchical (e.g., Lillo et al., 2017) and the Granger-
causality based temporal graph (Liao et al., 2020), are independent
of the metrics due to data abstraction; therefore, their suitability
is classified as conforming. Most task recognition algorithms are
susceptible to individual differences (see Table 3). Even those that
conform with generalizability may experience a significant decrease
in accuracy when classifying an unknown human’s data (Laput
and Harrison, 2019); thus, the generalizability criterion requires
additional evidence. Algorithms can only identify tasks reliably for
humans on which they were trained, suggesting that online and
self-learning mechanisms are needed to accommodate new humans
(Wang et al., 2012).The composite factor and concurrency vary across
algorithms, but are non-conforming overall. The anomaly awareness
criterion is classified as non-conforming, as most probabilistic
graphical models do not detect out-of-class tasks.

5.4.4 Discussion
Classical machine learning algorithms are unreliable for

detecting fine-grained motor tasks due to poor sensitivity and
generalizability. Deep learning algorithms can detect the atomic
fine-grained motor tasks reliably, but not composite, concurrent
tasks. Moreover, deep learning typically requires a large number
of parameters, very large datasets and can be difficult to train
(Lillo et al., 2017). Deep learning’s automatic feature learning
capability prohibits exploiting explicit relationships among tasks
and semantic knowledge, making it difficult to detect composite,
concurrent fine-grained motor tasks. Probabilistic graphical models
offer some suitable alternatives; however, none of the existing
algorithms satisfy all the required criteria for the intended domain.

The Granger-causality based temporal graph algorithm
(Liao et al., 2020) and the three-level hierarchical algorithm
(Lillo et al., 2017) are the most suitable for fine-grained motor
task detection given all the other algorithms. Both algorithms
have high sensitivity and can detect concurrent and composite
tasks. The Granger-causality algorithm conforms with suitability,
but requires additional evidence to substantiate its generalizability.
The hierarchical algorithm conforms with generalizability, but is
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TABLE 4 Tactile task recognition algorithms’evaluation overview.

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Classical Machine Learning

Decision trees Jing et al. (2011) ⋀ NC C NC NC NC

Ensemble Cha et al. (2018) ⋀ C C NC NC NC

SVM Hsiao et al. (2015) ⋀ NC RE NC NC NC

Voting Sha et al. (2020) ⋀ NC NC NC NC NC

Deep Learning

CNN Côté-Allard et al. (2019) ⋀ NC NC NC NC NC

CNN + LSTM Rahimian et al. (2020) ⋀ NC NC NC NC NC

Probabilistic Graphical Model

Gaussian mixture model Ju and Liu (2014) ⋀ NC C NC NC NC

Hidden Markov model Zhang et al. (2011) ⋀ NC NC NC NC NC

Naive bayes classifier Chen et al. (2007b) ⋀ NC NC NC NC NC

Chen et al. (2007a) ⋀ NC NC NC NC NC

non-conforming with suitability, as it employed a vision-based
system for estimating human-body pose metric. However, the
metric can be estimated using a series of inertial motion trackers
(Faisal et al., 2019); therefore, a human-robot teaming domain
friendly version of both algorithms can be developed theoretically.

5.5 Tactile tasks

Tactile interaction occurs when humans interact with objects
around them (e.g., keyboard typing, mouse-clicking and finger
gestures). Individual classifications for each tactile task algorithm by
its category are provided in Table 4.

5.5.1 Classical machine learning
Most classical machine learning algorithms incorporate inertial

metrics measured at the fingers or dorsal side of the hand.
These approaches typically detect finger gestures and keystrokes
depending on the measurement site (e.g., Jing et al., 2011; Cha et al.,
2018; Liu et al., 2018; Sha et al., 2020). Several of these approaches
usemultiple ring-like accelerometer device worn on the fingers (e.g.,
Jing et al., 2011; Zhou et al., 2015; Sha et al., 2020). The time- and
frequency-domain features (e.g., minimum, maximum, standard
deviation, energy, and entropy) extracted from the acceleration
signals were used to train classical machine learning algorithms
(e.g., decision tree classifier and majority voting) to detect finger
gestures (e.g., finger rotation and bending) and keystrokes. Although
these approaches incorporated inertial metrics, none conform
with suitability due to lack of reproducibility (i.e., the ring-like
sensor is not commercially available) and wearing a ring-like
device may hinder humans’ dexterity, impacting task performance
negatively.

Inertial metrics from the dorsal side of the hand detected
seven office tasks (e.g., keyboard typing, mouse-clicking, writing)
(Cha et al., 2018). Time- and frequency-domain features extracted

from the acceleration signals were used to train an ensemble
classifier. The algorithm achieved high accuracy (>90%) in an
in-the-wild evaluation. Most misclassifications occurred during
transitions between tasks, implying that inertial-based tactile
task recognition may be susceptible to task transitions due to
signal variations. The high error rates during transitions can
lead to lower classification accuracy, especially when tasks switch
frequently.

Classical machine learning algorithms’ generally have high
sensitivity. The algorithms’ are typically non-conforming for the
suitability criterion, as many supporting research efforts focus
on developing and validating new sensor technology for sensing
tactility, rather than detecting tactile tasks (e.g., Iwamoto and
Shinoda, 2007; Ozioko et al., 2017; Kawazoe et al., 2019). The
generalizability criteria also vary across algorithms, as they depend
on the validation methodology. Finally, the algorithms are non-
conforming for the concurrency and composite factors, making
them unsuitable for detecting tactile tasks for the intended HRT
domain.

5.5.2 Deep learning
Several publicly available sEMG-based hand gesture datasets

(e.g., Atzori et al., 2014; Amma et al., 2015; Kaczmarek et al., 2019)
support deep learning algorithms to detect tactile hand gestures
(e.g., Côté-Allard et al., 2019; Rahimian et al., 2020). A hybrid deep
learning model consisting of two parallel paths (i.e., one LSTM path
and one CNN path) was developed (Rahimian et al., 2020). A fully
connected multilayer fusion network combined the outputs of the
two paths to classify the hand gestures.

Recognizing tactile tasks is an under-developed area of research,
as the tasks are nuanced and often overshadowed by fine-
grained motor tasks. Generally, deep learning algorithms have high
sensitivity; however, the incorporated sEMG metrics with a random
dataset split for validation cause them to not conform with the
suitability and generalizability criteria.
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5.5.3 Probabilistic graphical model
Probabilistic graphical models for tactile task recognition

typically involve simple algorithms (e.g., Hidden Markov Models
(Zhang et al., 2011), Gaussian Mixture Models (Ju and Liu, 2014),
and Bayesian Networks (Chen et al., 2007a; b)) when compared
to the prior gross motor and fine-grained motor sections (see
Sections 5.3.3 and 5.4.3), as the tasks detected are inherently atomic
(e.g., hand and finger gestures). sEMG signals are one of the most
frequently used metrics for detecting hand and finger gestures
(e.g., Chen et al., 2007b; Zhang et al., 2011; Côté-Allard et al., 2019;
Rahimian et al., 2020). Chen et al.’s (2007b) gesture recognition
algorithm pioneered the use of sEMG signals. Twenty-five hand
gestures (i.e., six wrist actions and seventeen finger gestures)
were detected using a 2-channel sEMG placed on the forearm. A
Bayesian classifier was trained using the mean absolute value and
autoregressive model coefficients extracted from the sEMG. The
algorithm was extended to include two accelerometers, one placed
on the wrist and the other placed on the dorsal side of the hand
(Chen et al., 2007a).

Overall, probabilistic graphical models also tend to have
high sensitivity for detecting tactile tasks. Most algorithms are
susceptible to individual differences and incorporate sEMG metrics;
thus, the algorithms are non-conforming for the suitability and
generalizability criteria. Additionally, the algorithms are non-
conforming for the concurrency and composite factors, as the
evaluated tactile tasks are inherently atomic.

5.5.4 Discussion
All data-driven algorithms can detect tactile tasks with >80%

accuracy (Chen et al., 2007a; Jing et al., 2011; Zhang et al., 2011; Ju
and Liu, 2014; Hsiao et al., 2015; Cha et al., 2018; Rahimian et al.,
2020; Sha et al., 2020) primarily because the detected tasks (i.e.,
finger and hand gestures) were atomic; therefore, the algorithms
have high sensitivity. Except for the office-based tactile task
classifier (Cha et al., 2018), none of the existing algorithms conform
with suitability, because either the sensors incorporated were
commercially unavailable for reproducibility, or the metrics
employed were unreliable. All the algorithms are non-conforming
with the concurrency and composite factor criteria, because tactile
tasks are rarely composite or concurrent. Finally, none of the
algorithms detect out-of-class instances; therefore, they do not
conform with anomaly awareness. A recommended tactile task
detection algorithm to support the intended domain is the interval-
temporal algorithm (Zhang et al., 2013), or the Granger-causality
based temporal graph (Liao et al., 2020) with the inclusion of
inertial metrics measured at the dorsal side of the hand to
capture the tactile component, along with the fine-grained motor
component.

5.6 Visual tasks

Eye movement is closely associated with humans’ goals, tasks,
and intentions, as almost all tasks performed by humans involve
visual observation. This association makes oculography a rich
source of information for task recognition. Fixation, saccades,
blink rate, and scanpath are the most commonly used metrics for
detecting visual tasks (Bulling et al., 2010; Martinez et al., 2017;

Srivastava et al., 2018), followed by EOG potentials (Ishimaru et al.,
2014b; Ishimaru et al., 2017; Lu et al., 2018). Visual tasks typically
occur in office or desktop-based environments, where the
participants are sedentary. The classifications of the reviewed visual
task recognition algorithms are presented by algorithm category in
Table 5.

5.6.1 Classical machine learning
Classicalmachine learning using eye gazemetrics (e.g., saccades,

fixation, and blink rate) for visual task recognition was pioneered by
Bulling et al. (2010). Statistical features (e.g., mean, max, variance)
extracted from the gaze metrics, as well as the character-based
representation to encode eye movement patterns, were used to train
a SVM classifier to detect five office-based tasks. The algorithm’s
primary limitation is that the classification is provided at each
time instance t independently and does not integrate long-range
contextual information continuously (Martinez et al., 2017). A
temporal contextual learning algorithm, the Auto-context model,
overcame this limitation by including the past and future decision
values from the discriminative classifiers (e.g., SVM and k-Nearest
Neighbors) recursively until convergence (Martinez et al., 2017).

Low-level eye movement metrics (e.g., saccades and fixations)
are versatile and easy to compute, but are vulnerable to overfitting,
whereas high-level metrics (e.g., Area-of-Focus) may offer better
abstraction, but requires domain and environment knowledge
(Srivastava et al., 2018). These limitations can be mitigated by
exploiting low-level metrics to yield mid-level metrics that provide
additional context. The mid-level metrics were built on intuitions
about expected task relevant eye movements. Two different mid-
level metrics were identified: shape-based pattern and distance-based
pattern (Srivastava et al., 2018). The shape-based pattern metrics
were based on encoding different combinations of saccade and
scanpath, while distance-based pattern metrics were generated
using consecutive fixations. The low- and mid-level metrics were
combined to train a Random Forest classifier to detect eight office-
based tasks, including five desktop-based tasks and three software
engineering tasks.

Various algorithms were developed focused solely on detecting
reading tasks using classical machine learning (e.g., Kelton et al.,
2019; Landsmann et al., 2019). The complexity of the reading task
varied across algorithms. Reading detection can be as rudimentary
as classifying active reading or not (Landsmann et al., 2019), or as
complex as distinguishing between reading thoroughly vs skimming
text (Kelton et al., 2019).

Based on feature mining, existing reading detection algorithms
can be categorized into two methods: i) Global methods that
mine eye movement metrics over an extended period (>30s) to
build a reading detector (e.g., Bulling et al., 2010; Ishimaru et al.,
2017; Martinez et al., 2017; Srivastava et al., 2018), and ii) Local
methods that extract the metrics within a narrow temporal window
(<3s) (e.g., Kollmorgen and Holmqvist, 2007; Biedert et al., 2012).
Global methods result in better accuracy, but do not detect reading
in real-time, due to longer window sizes, while local methods
allow for (near) real-time reading detection, but have low accuracy
(Kelton et al., 2019).

Classical machine learning algorithms (e.g., Bulling et al., 2010;
Ishimaru et al., 2014b; Martinez et al., 2017; Srivastava et al., 2018;
Landsmann et al., 2019) have medium to high sensitivity. Most
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TABLE 5 Visual task recognition algorithms’evaluation overview.

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Classical Machine Learning

Auto-context model Martinez et al. (2017) ⋀ C RE NC NC NC

Decision trees Landsmann et al. (2019) ⋀ C C NC NC NC

Ishimaru et al. (2014a) ⋀ C NC NC NC NC

k- Nearest Neighbors Ishimaru et al. (2014b) ∏ NC NC NC NC NC

Random Forest Srivastava et al. (2018) ∏ C NC NC NC NC

SVM Kelton et al. (2019) ⋀ C NC NC NC NC

Bulling et al. (2010) ∏ C NC NC NC NC

Lu et al. (2018) ⋀ NC C NC NC NC

Deep Learning

CNN Islam et al. (2021) ⋁ NC NC NC NC NC

CNN + LSTM Ishimaru et al. (2017) ⋁ NC NC NC NC NC

Graph CNN Lan et al. (2020) ⋁ C NC NC NC NC

Encoder-Decoder Meyer et al. (2022) ⋀ C C NC NC NC

algorithms conform with the suitability criterion, while rarely
conforming with the generalizability criterion. All algorithms are
non-conforming for the concurrency and composite factors, making
them unsuitable for the intended HRT domain.

5.6.2 Deep learning
Recent deep learning algorithms leverage CNNs to detect visual

tasks directly using raw 2D gaze data obtained via wearable eye
trackers. GazeGraph (Lan et al., 2020) algorithm converted 2D
eye gaze sequence into a spatial-temporal graph representation
that preserved important eye movement details, but rejected
large irrelevant variations. A three-layered CNN trained on this
representation detected various desktop and document reading
tasks. An encoder-decoder based convolutional network detected
seven mixed physical and visual tasks by combining 2D gaze data
with head inertial metrics (Meyer et al., 2022).

Several other algorithms apply deep learning techniques using
EOG potentials to detect reading task (Ishimaru et al., 2017;
Islam et al., 2021). Two deep networks, a CNN and a LSTM, were
developed to recognize reading in a natural setting (i.e., outside
of the laboratory). Three metrics (i.e., blink rate, 2-channel EOG
signals, and acceleration) from wearable EOG glasses were used to
train the deep learning models.

Obtaining datasets at a large scale is difficult, due to high
annotation costs and human effort, while lack of labeled data
inhibits deep learning methods’ effectiveness. A sample efficient,
self-supervised CNN detected reading task (Islam et al., 2021) using
less labeled data. The self-supervised CNN employed a “pretext”
task to bootstrap the network before training it for the actual target
task. Three reading tasks (i.e., reading English documents, reading
Japanese documents, both horizontally and vertically), as well as
a no reading class, were detected by the self-supervised network.
The pretext task recognized the transformation (i.e., rotational,
translational, noise addition) applied to the input signal. The pretext

pre-training phase initialized the network with good weights, which
were fine-tuned by training the network on the target task (i.e.,
reading detection task) dataset.

The deep learning algorithms (e.g., Ishimaru et al., 2017;
Lan et al., 2020; Islam et al., 2021) typically tend to have low
sensitivity. Further, the EOG deep learning algorithms do not
conform with suitability, as the employed metrics are unreliable, as
it is susceptible to noise introduced by facial muscle movements
(Lagodzinski et al., 2018). These limitations discourage the use of
deep learning for visual task recognition.

5.6.3 Discussion
None of the existing algorithms detected visual tasks within

the targeted HRT context. The two classical machine learning
algorithms: i) Auto-context model (Martinez et al., 2017) and ii)
Srivastava et al.’s (2018) algorithm appear to be more appropriate
for detecting visual tasks. Both algorithms had >70% accuracies
across a range of visual tasks and employed eye gaze metrics;
thus, conforming with suitability and partially with sensitivity. The
algorithms’ generalizability criterion requires additional evidence, as
the former’s validation scheme is unclear, while the latter does not
have sufficient accuracy. None of the reviewed algorithms conform
with the concurrency and composite factor criteria. The encoder-
decoder algorithm (Meyer et al., 2022) is also a viable alternative, as
it achieved >80% with leave-one-subject-out cross validation using
eye gaze metrics.

5.7 Cognitive tasks

Cognition describes mental processes, including reasoning,
awareness, perception, knowledge, intuition, and judgment
(Lagodzinski et al., 2018), as such,most tasks require some cognitive
capability. For instance, although tasks, such as reading, writing,
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TABLE 6 Cognitive task recognition algorithms’evaluation overview.

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Classical Machine Learning

Decision trees Ishimaru et al. (2014a) ⋀ C NC NC NC NC

Ensemble Grana et al. (2020) ⋀ NC NC NC NC NC

k-Nearest Neighbors Kunze et al. (2013a) ∏ NC NC NC NC NC

SVM Lagodzinski et al. (2018) ⋀ NC NC NC NC NC

Datta et al. (2014) ⋀ NC NC NC NC NC

Deep Learning

CNN Zhang et al. (2019b) ⋀ NC NC NC NC NC

Sarkar et al. (2016) ⋀ NC C NC NC NC

CNN + LSTM Salehzadeh et al. (2020) ⋀ NC NC NC NC NC

watching videos predominantly involve visual, fine-grained motor,
or tactile components, they also entail a cognitive component.
Therefore, it is impractical to disregard the cognitive task elements,
but classifying all such tasks as cognitive is also infeasible. Thus,
only those algorithms that explicitly mention identifying the tasks’
cognitive aspect are reviewed. The evaluation of the reviewed
cognitive task recognition algorithms is presented in Table 6.

5.7.1 Classical machine learning
EEG potentials, obtained by placing non-invasive electrodes

on humans’ scalp, are the primary electrophysiological metrics
used to detect cognitive tasks. Features (e.g., amplitude and
power spectral density) extracted from the EEG frequency bands
(i.e., alpha (8–12 Hz), beta (13–30 Hz), theta (4–8 Hz), and
delta (< 4 Hz)) can be used to train classical machine learning
algorithms (Mostow et al., 2011; Kunze et al., 2013b; Grana et al.,
2020). Reading is the most widely detected cognitive task using EEG
sensing. A k-Nearest Neighbors classifier distinguished between
reading and non-reading tasks (e.g., drawing, watching a video and
listening to music), as well as distinguishing reading different kinds
of document, using a wearable EEG sensor (Kunze et al., 2013c).

EOG is the other electrophysiological metric employed for
detecting cognitive tasks (Datta et al., 2014; Lagodzinski et al.,
2018). The efficacy of different EOG features in detecting cognitive
tasks was investigated (Datta et al., 2014). Three features (i.e.,
adaptive autoregressive parameters, wavelet coefficients and Hjorth
parameters) were extracted from a laboratory-developed two-
channel EOG signal acquisition device. These features were used
independently and in combinations to train a SVM classifier to
detect eight cognitive tasks (e.g., reading, writing, copying a text,
web browsing, watching a video, playing an online game, and word
search).

Several other algorithms combine data from multiple sensing
modalities to improve cognitive task recognition accuracy
(Ishimaru et al., 2014a; Lagodzinski et al., 2018; Grana et al., 2020).
For example, combining blink rate and head motion by fusing
the eye gaze data with acceleration data improved a decision
tree classifier’s accuracy in detecting four cognitive tasks (e.g.,
reading, solving a math problem, watching a video and talking)

(Ishimaru et al., 2014a). The Codebook algorithm recognized six
cognitive tasks (e.g., reading a printed page, watching a video,
engaging conversation, writing handwritten notes and sorting
numbers) by clustering the subsequences sampled from a data
sequence based on similarity (Lagodzinski et al., 2018). The
resulting cluster centers act as the set of codewords (i.e., codebook).
A SVM classifier was trained to classify the histogram reflecting the
codeword frequency to predict the tasks.

Classical machine learning algorithms typically have high
sensitivity; however, the incorporated metrics (i.e., EOG and EEG)
are unreliable and cannot accommodate individual differences.
Therefore, the algorithms’ suitability and generalizability are non-
conforming. The composite factor and concurrency are non-
conforming as well.

5.7.2 Deep learning
Recent deep learning advances facilitate detecting cognitive

tasks using EEG potentials acquired from off-the-shelf, wireless,
wearable EEG devices. Most EEG wearable devices (e.g., EMOTIV,
2021; MUSE, 2021; Neurosky, 2021) record prefrontal EEG signals,
which are correlated to a human’s intellectual, emotional and
cognitive states (Salehzadeh et al., 2020). A deep EEG network
detected three cognitive tasks (e.g., reading, speaking, and watching
a video) using data collected from a wearable EEG sensor’s (MUSE,
2021) two prefrontal EEG channels (Salehzadeh et al., 2020). The
hybrid deep learning algorithm incorporated a CNN to populate
the feature maps from raw EEG potentials, followed by a LSTM
network for modeling the temporal state of the EEG feature maps.
Most existing EEG-based algorithms focus on application-specific
classification algorithms, which may not translate to other domains.
A transferable EEG-based cognitive task recognition algorithm
that can adaptively support varying EEG channels as input and
operate on a wide range of cognitive applications was developed
(Zhang X. et al., 2019).The algorithm combined deep reinforcement
learning with an attention mechanism to extract robust and distinct
deep features.

Detecting cognitive tasks with fewer EEG sensors in an
unconstrained, natural environment is a challenging task, due to
low signal-to-noise ratio, lack of baseline availability, change of
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TABLE 7 Auditory task recognition algorithms’evaluation overview.

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Classical Machine Learning

Random Forest Stork et al. (2012) ⋀ NC C NC NC NC

SVM Yatani and Truong (2012) ∏ NC NC NC NC NC

Deep Learning

CNN Laput et al. (2018) ⋀ C C NC NC NC

Hershey et al. (2017) ⋀ RE RE NC NC NC

Liang and Thomaz (2019) ⋁ NC NC NC NC NC

Haubrick and Ye (2019) ∏ C NC NC C NC

Salamon and Bello (2017) ∏ RE NC NC NC NC

baseline due to domain environment and individual differences, as
well as uncontrolled mixing of various tasks (Sarkar et al., 2016).
A deep learning algorithm (Sarkar et al., 2016) revealed that the
backward sensor selection (Bishop and Nasrabadi, 2006) technique
can reduce the sensor suite significantly (i.e., from nine probes to
three) without compromising accuracy. Two deep neural networks,
a deep belief network and a CNN, were trained using the EEG power
spectral density to distinguish between listening and watching
tasks.

Similar to the classical machine learning approaches, the
deep learning algorithms also tend to have high sensitivity, but
incorporate EEG metrics that suffer from low-signal-to-noise
and individual differences; therefore, the algorithms’ suitability
and generalizability are non-conforming. Additionally, none of
reviewed algorithms conform with the concurrency and composite
factor.

5.7.3 Discussion
Generally, cognitive tasks can be classified with >80% accuracy;

therefore, the algorithms’ typically have high sensitivity. Excluding
Ishimaru et al.’s (2014a) decision tree classifier, none of the other
algorithms conform with suitability, as the metrics employed were
EEGor EOG.Thus, none of the discussed algorithms are appropriate
for detecting cognitive tasks for the intended HRT domain. Given
(a) that cognitive and visual tasks are closely associated, and (b)
the efficacy of multimodality sensing (Ishimaru et al., 2014a), it
is hypothesized that a classical machine learning algorithm that
incorporates metrics, such as pupil dilation, blink latency and blink
rate, as well as heart-rate variability will be viable for detecting
cognitive tasks.

5.8 Auditory tasks

Auditory event recognition involves identifying characteristic
ambient sounds in order to detect tasks in an environment
(Mesaros et al., 2017; Laput et al., 2018). Auditory event recognition
algorithms typically use microphone sensor(s) to detect the sound
events. Individual classifications for each auditory event detection
algorithm by its category are provided in Table 7.

5.8.1 Classical machine learning
Auditory event detection algorithms that incorporate MFCCs

typically use classical machine learning (e.g., Stork et al. (2012)
(Yatani and Truong, 2012)), while deep learning algorithms
incorporate spectrograms (e.g., Hershey et al., 2017; Laput et al.,
2018; Haubrick and Ye, 2019; Liang and Thomaz, 2019). A Random
Forest based voting algorithm, Non-Markovian Ensemble Voting,
used MFCCs to recognize characteristic sounds produced by
twenty-two ADL tasks (Stork et al., 2012). The predictions were
refined over time by collecting consensus via voting from the past
and future predictions.

A wearable acoustic sensor, BodyScope, worn around the
neck classified several ADL tasks (Yatani and Truong, 2012).
The BodyScope sensor contained a microphone surrounded by a
stethoscope chest piece for sound amplifications in order to exploit
the sounds that occurred at a human’s mouth and throat regions
to recognize the tasks. For instance, when a person speaks to
someone, they generate vocal sounds, while eating and drinking
produce chewing, sipping, and swallowing sounds. Several time- and
frequency-domain features (e.g., zero-crossing rate and MFCCs)
were used to train an SVM classifier.

Both algorithms achieved >70% accuracy during an in-the-
wild study; therefore, the algorithms’ sensitivity is medium to high.
Although the metrics used were reliable, the ensemble voting
algorithm incorporated an environmentally embeddedmicrophone,
while the BodyScope sensor suffers from non-reproducibility;
therefore, the algorithms’ suitability is classified as non-conforming.
Finally, the algorithms’ composite factor and concurrency are
classified as non-conforming.

5.8.2 Deep learning
Deep learning algorithms can leverage the time, frequency

and amplitude information in an audio signal’s spectrogram to
extract the spatio-temporal features. Most auditory event detection
deep learning algorithms (e.g., Laput et al., 2018; Haubrick and Ye,
2019; Liang and Thomaz, 2019) leverage transfer learning. These
algorithms fine-tune the existing VGGish model (Hershey et al.,
2017) [i.e., pre-trained on the YouTube Audio Set (Gemmeke et al.,
2017)] with additional layers to detect the target auditory events.
The VGGish model used a log Mel spectrogram as input to output a
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128-dimensional feature embedding for every second of an audio
sample. A transfer learning framework detected fifteen ADL tasks
(e.g., talking, watching television, brushing, shaving, and listening to
music) from the audio recorded using an off-the-shelf smartphone
(Liang and Thomaz, 2019). A five-layer CNN was added to the
VGGish’s feature embedding to predict the ADL tasks.

Polyphonic event detection algorithms recognize multiple
auditory events occurring simultaneously (Chan and Chin, 2020),
typically via deep neural networks. A VGGish-based algorithm
stacked multiple binary classifiers to the feature vector (Haubrick
and Ye, 2019), while others have developed various recurrent and
hybrid deep neural networks to detect polyphonic sound events
(Cakir et al., 2015; Parascandolo et al., 2016; Cakır et al., 2017).

Audio augmentation can be exploited by deep learning to
improve the recognition rate. Augmenting the original audio
with a set of deformations (e.g., time stretching, pitch shifting,
dynamic range compression, and background noise mixing)
improved a CNN’s classification accuracy significantly on a range
of environmental sound classification tasks (Salamon and Bello,
2017).Ubicoustics, a real-time, auditory event recognition algorithm
was trained by incorporating various augmentation techniques
to simulate the sounds that resemble real-world audio samples
(Laput et al., 2018).

Deep learning algorithms tend to outperform classical machine
learning approaches in terms of accuracy. Thus, deep learning
algorithms, especially the VGGish-based models (Laput et al., 2018;
Haubrick and Ye, 2019; Liang and Thomaz, 2019), are the most
suited for detecting auditory events, primarily due to their feature
extraction capability and the availability of abundant audio datasets
(Gemmeke et al., 2017; Mesaros et al., 2017). Most algorithms are
validated by splitting all the available data randomly into training
and validation datasets; therefore, the algorithms’ generalizability
criteria either require additional evidence, or are non-conforming.
All evaluated algorithms are non-conforming for the composite
factor and anomaly awareness criteria.

5.8.3 Discussion
Most auditory event detection algorithms typically have

medium to high sensitivity (e.g., Stork et al., 2012; Yatani and
Truong, 2012; Hershey et al., 2017; Laput et al., 2018; Haubrick
and Ye, 2019). The algorithms’ suitability criterion depends on
whether the microphone is worn or embedded in the environment.
The algorithms’ generalizability criteria either require additional
evidence or non-conforming. The polyphonic detection algorithms
conform with concurrency; therefore, a deep polyphonic detection
algorithm (e.g., Haubrick and Ye, 2019) is recommended for the
intended HRT domain, as it is more likely to contain multiple,
simultaneous sound sources (Chan and Chin, 2020). None of the
reviewed algorithms conform with composite factor and anomaly
awareness.

5.9 Speech tasks

Verbal communication plays a key role in task performance,
such as assigning tasks, sharing or confirming important
information, and reporting task completion, especially in a
dynamic environment (Zhang and Sarcevic, 2015). Speech-reliant

TABLE 8 Speech task recognition algorithms’evaluation overview.

Category Paper Sens Suit Genr Comp Conc Anom

Algorithm

Deep Learning

Attention Gu et al. (2019) ∏ NC NC NC NC NC

CNN Abdulbaqi et al. (2020) ⋁ NC NC NC NC NC

task recognition in a highly dynamic environment [e.g., trauma
resuscitation (Bergs et al., 2005)] encounters several challenges,
such as inconsistent verbal reports between tasks, the potentially
succinct and non-grammatical nature of verbal communication,
overlapping multi-person speech, and interleaved verbal exchanges
due to multi-tasking (Jagannath et al., 2019). Only two speech task
recognition algorithms were identified, their classifications are cited
in Table 8.

5.9.1 Deep learning
Little research exists on speech-reliant task recognition

(Jagannath et al., 2018), with the existing algorithms being based
on deep learning (e.g., Gu et al., 2019; Abdulbaqi et al., 2020). A
text-based task recognition algorithm employed a verbal transcript
derived from a medical team’s communication as input to predict
ten trauma resuscitation tasks (Gu et al., 2019). The algorithm used
both speech and ambient sounds for task prediction. A multimodal
attention network was applied to process the transcribed spoken
language and the ambient sounds in order to predict the tasks. The
main limitation was reliance on manually-generated transcripts,
which is infeasible for a contemporaneous task recognition system
(Abdulbaqi, 2020). Automatic transcript generation requires a
computationally expensive speech recognition tool. Additionally,
poor audio quality caused by distant talking, ambient noise, succinct
and non-grammatical speaking can increase an automatic speech
recognition tool’s error rate; thus, the algorithm’s performance in
real-world scenarios is expected to be lower than the cited result
(Gu et al., 2019).

An alternative speech-reliant task recognition algorithm
depended only on one keyword to detect trauma tasks
(Abdulbaqi et al., 2020). The speech-reliant algorithm used one
representative keyword per utterance as input to a deep neural
network, in addition to the ambient sounds. This keyword was
determined by calculating the most frequent words list for each task
based on the premise that frequently occurring words for particular
tasks can serve as features for the neural network’s task prediction.
Word-spotting tools (e.g., Tsai and Hao, 2019; Gao et al., 2020) can
extract keywords efficiently, reducing the reliance on traditional
speech recognition. The deep learning architecture consisted of
an audio network, a keyword network, and a fusion network.
The audio network adapted a modified VGGish deep network
(Simonyan and Zisserman, 2014) to extract features from the audio
spectrogram,while the keyword network extracted important verbal
features from the keyword list. The fusion network concatenated
the output of both networks to predict the speech-reliant
tasks.

The use of speech to recognize tasks is an under-developed
area. The reviewed algorithms had low to medium sensitivity

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2023.1123374
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Baskaran and Adams 10.3389/frobt.2023.1123374

(e.g., Gu et al., 2019; Abdulbaqi et al., 2020). The algorithms’
suitability criterion was classified as non-conforming, because
the incorporated metrics are domain and task specific. Both
algorithms’ are non-conforming with generalizability, composite
factor, concurrency and anomaly awareness.

5.9.2 Discussion
Verbal communication in a highly dynamic setting [e.g., trauma

medical team (Zhang and Sarcevic, 2015)] occurs at a high
level (e.g., discussing task plans and intentions) and at a low
level (e.g., coordinating, executing and reporting task completion)
(Jagannath et al., 2018). Identifying speech patterns and keywords
during verbal communication can detect the tasks, as well as track
their progress (i.e., preparing-performing-reporting). Incorporating
verbal exchanges [e.g., transcripts (Gu et al., 2019) or keywords
(Abdulbaqi et al., 2020)] in tandem with the audio stream increased
the accuracy by at least 15% in both algorithms, indicating
that speech patterns and keywords can serve as differentiators
for speech-reliant tasks. The algorithms’ main limitations are
that the metrics are highly domain-specific and require natural
language processing, along with substantial manual effort to
identify task specific sensitive keywords (see Section 4). Therefore,
the algorithms cannot be readily transferred across domains. A
suitable alternative may involve modifying the algorithm to use
the audio stream in conjunction with speech workload metrics
(e.g., speech rate, voice intensity, and voice pitch) instead of verbal
exchanges.

6 Discussion

HRTs often perform a wide range of tasks, such that the
set of all tasks performed by human teammates may involve
combinations of all activity components. Thus, an overall task
recognition model capable of detecting tasks with multiple different
activity components is hypothesized to improve the task recognition
inmore complex domains. None of the reviewed algorithmsmeet all
the criteria necessary to achieve this goal, due to identifying tasks
with a limited set of activity components, and the algorithms’
limitations with regard to the evaluation criteria: sensitivity,
suitability, generalizability, composite factor, concurrency, and
anomaly awareness.

Two algorithms, Grana et al.’s (2020) and Ishimaru et al.’s
(2014a), come the closest to addressing the issues, as they identify
four activity components. The former identified a gross motor task,
while the latter identified a fine-grained motor task in addition
to detecting visual, cognitive, and auditory tasks. However, both
algorithms failed to satisfy all the required evaluation criteria. Most
other algorithms detected tasks involving at most two activity
components: gross and fine-grained motor, fine-grained motor
and tactile, or visual and cognitive tasks. Finally, none of the
reviewed algorithms detected tasks across all the identified activity
components.

Several algorithms conform with sensitivity, suitability,
and generalizability. Other than the cognitive and speech task
recognition algorithms, there exists at least one algorithm that
can detect tasks reliably while conforming with suitability and
generalizability for each individual activity component. Existing

algorithms are highly limited in satisfying the other three criteria:
composite, concurrent, and anomaly awareness.

HRT tasks are typically composite in nature in that
they are composed of differing combinations of multiple
activity components; therefore, understanding the tasks’ various
components is required in order to detect the tasks accurately, as well
as track their progress. Thirteen algorithms, all of which were either
gross or fine-grained motor task recognition algorithms, attempted
to detect composite tasks. Eight algorithms detected composite tasks
with high accuracy, while only three (Min and Cho, 2011; Liu et al.,
2017; Liao et al., 2020) managed to detect tasks with high accuracy
using reliable metrics from wearable sensors. A similar trend was
observed for concurrency detection. Eight algorithms attempted to
detect concurrent tasks, seven of which belonged to gross or fine-
grained motor categories. Five of those algorithms detected tasks
with high sensitivity, while only two (Liu et al., 2017; Liao et al.,
2020) satisfied the sensitivity and suitability criteria.

Only two algorithms (Min et al., 2008; Laput and Harrison,
2019) conform with anomaly awareness. The remaining algorithms’
primary limitation for anomaly awareness was the assumption that
humans will not perform tasks outside of a predefined set, which
is not the case for the intended domain. Therefore, there remains
a need for a task recognition algorithm that can detect out-of-
class instances reliably. Such an algorithm can draw from existing
novelty and anomaly detection research (e.g., Masana et al., 2018;
Chalapathy and Chawla, 2019; Kwon et al., 2019; Perera and Patel,
2019; Pang et al., 2021).

7 Challenges and future directions

Despite the rapid growth in task recognition research, there
are still a number of largely unexplored challenges. Some research
challenges and future directions that can help realize the full
potential of task recognition for uncertain, dynamic environments,
especially within the context of first-response HRTs are presented.

• Composite Task Recognition: Existing task recognition
methods can detect short-duration or repetitive atomic tasks
(e.g., walking, running, reading) with high accuracy; however,
detecting long-duration composite tasks (e.g., triaging a victim,
digging a wildland fire trench) that involve multiple activity
components remain difficult. A task recognition algorithm that
incorporates several sensors as input to recognize the composite
task’s multiple activity components is desired. For example, the
algorithm can incorporate inertial and sEMG metrics to detect
gross motor, fine-grained motor, and tactile tasks, as well as
integrate pupil dilation, fixation, and saccades from a wearable
eye tracker to detect visual tasks.
• Leverage interactions between activity components: Most

composite tasks can be decomposed into atomic tasks across
activity components. These atomic tasks typically follow a
temporal ordering within the components. For example, taking
a picture of a suspicious object requires visually scanning and
cognitively evaluating the object prior to the fine-grained motor
and tactile picture capturing task. A composite task recognition
algorithm can leverage the interactions between the activity
components in order to simultaneously (a) optimize each
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component’s atomic task detections, and (b) construct the
composite tasks from the low-level atomic task detections.
• Adaptively segmentingmetrics:Most existing task recognition

algorithms segment the sensor data into temporal chunks using
a fixedwindow size as input to themachine learning algorithms.
A short-duration task may require a smaller window size, so
that the task is not overshadowed (e.g., confused) by unrelated
data, while a long-duration task may require a larger window
size to have sufficient context.Therefore, it may be necessary for
a task recognition algorithm to use an adaptive sliding window
approach.This approachwill permit expanding and contracting
the window size based on the task, which may lead to more
accurate detection.An ensemble learning algorithmmay also be
leveraged, where the algorithmmakes predictions overmultiple
fixed window sizes and fuses the predictions across the window
sizes intelligently to detect the tasks.
• Lack of an ecologically-valid HRT dataset: Machine learning

algorithms only perform as well as the quality of the
training data. Training and evaluating algorithms, especially
deep learning models require large datasets. Most task
recognition studies depend on existing benchmark datasets
(e.g., Opportunity (Roggen et al., 2010), WISDM (Weiss et al.,
2019),PAMAP2 (Reiss and Stricker, 2012) that only involve day-
to-day physical tasks and seldom incorporate composite tasks
with multiple activity components. Additionally, most of these
datasets only entail inertial and heart-rate metrics gathered in
a highly controlled environment, which limits the algorithms’
capability to detect tasks across activity components. Datasets
involving components other than the gross and fine-
grained motor components are not available publicly. A
composite, concurrent HRT task recognition evaluation that
incorporates tasks involving multiple activity components
performed in an ecologically valid setting is desired. A
multimodal dataset that incorporates metrics acquired
from multiple wearable sensors (e.g., whole-body inertial
measurements, sEMG, eye tracking, and microphone audio) is
required.

8 Conclusion

HRTs collaborating to achieve tasks under various conditions,
especially in unstructured, dynamic environments, will require
robots to adapt autonomously to a human teammate’s state. An
important element of such adaptation is the robot’s ability to infer
the human teammate’s current tasks, as understanding human
actions and their interactions with the world provides the robot
with more context as to what type of assistance the human may
need. A multi-dimensional task recognition algorithm is needed to
identify composite and atomic tasks performed by HRTs working

in unstructured, dynamic environments in order to trigger such
autonomous robot adaptations that can result in improved teaming
outcomes.

This literature review classified task recognition algorithms
based on six criteria: sensitivity, suitability, generalizability,
composite factor, concurrency and anomaly awareness. The
algorithms’ limitations include recognizing tasks with a limited set
of activity component, not detecting composite and concurrent
tasks across components, not being viable for HRT domain, and not
accounting for individual differences.
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