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Does a robot’s gaze aversion
affect human gaze aversion?
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Gaze cues serve an important role in facilitating human conversations and
are generally considered to be one of the most important non-verbal cues.
Gaze cues are used to manage turn-taking, coordinate joint attention, regulate
intimacy, and signal cognitive effort. In particular, it is well established that gaze
aversion is used in conversations to avoid prolonged periods of mutual gaze.
Given the numerous functions of gaze cues, there has been extensive work on
modelling these cues in social robots. Researchers have also tried to identify the
impact of robot gaze on human participants. However, the influence of robot
gaze behavior on human gaze behavior has been less explored. We conducted a
within-subjects user study (N = 33) to verify if a robot’s gaze aversion influenced
human gaze aversion behavior. Our results show that participants tend to avert
their gaze more when the robot keeps staring at them as compared to when
the robot exhibits well-timed gaze aversions. We interpret our findings in terms
of intimacy regulation: humans try to compensate for the robot’s lack of gaze
aversion.

KEYWORDS

gaze, gaze aversion, human-robot interaction, social robot, gaze control model, gaze
behavior, intimacy, topic intimacy

1 Introduction

It is well established that gaze cues are one of themost important non-verbal cues used in
Human-Human Interactions (HHI) (Kendon, 1967). Several studies have shown the many
roles gaze cues play in facilitating human interactions. When interacting with each other,
people use gaze to coordinate joint attention, communicating their focus of attention and
perceiving their partner’s focus to follow (Tomasello, 1995). Ho et al. (2015) also showed
how people use gaze to manage turn-taking: for instance, gaze directed at or averted from
one’s interlocutor can indicate whether a speaker is intending to yield or hold the turn (for
example, when making a pause), or when the listener is intending to take the turn.

Given the importance of gaze behavior inHHI, researchers inHuman-Robot Interaction
(HRI) have tried to emulate human-like gaze behaviors in robots. The main motivation
behind such Gaze Control Systems (GCS), or models of gaze behavior, has been to exploit
the many functionalities of gaze cues in HHI and realize them in HRI. Moreover, thanks
to the sophisticated anthropomorphic design of many of today’s social robots (e.g., Furhat
robot (Moubayed et al., 2013) or iCub robot (Metta et al., 2010)), it is possible to model
nuanced gaze behaviors with independent eye and head movements. It has been established
that robots’ gaze behaviors are recognized and perceived to be intentional by humans
(Andrist et al., 2014). Robots’ gaze behaviors have also been found to play an equally
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important role in HRI as human gaze in HHI (Imai et al., 2002;
Yamazaki et al., 2008). Thus, researchers have measured the impact
of robots’ gaze behavior on human behavior during HRI. In
Schellen et al. (2021) participants were found to become more
honest in subsequent trials if the robot looked at them when
they were being deceptive. Skantze (2017) and Gillet et al. (2021)
observed that robots’ gaze behavior could lead tomore participation
during group activities. Most of these works have concentrated on
human behavior in general, but not the gaze-to-gaze interaction
between robots and humans. This then leads to our research
question.

• Does a robot’s gaze behavior have any influence on human gaze
behavior in a HRI?

Answering this question is important because it can help in
designing betterGCS and interactions inHRI. Even though previous
works have shown various ways in which humans perceive and
respond to robot gaze behavior, whether there are changes in human
gaze behavior as a direct influence of robots’ gaze behavior has
remained less explored. Moreover, most of these studies have used
head movements instead of eye gaze to model robot gaze behavior,
due to physical constraints of the robots used (Andrist et al., 2014;
Mehlmann et al., 2014; Nakano et al., 2015). While head orientation
is a good approximation of gaze behavior in general, it lacks the
rich information ingrained in eye gaze. Additionally, from a motor
control perspective, eye gaze is much quicker than head motion and
is therefore also more adaptable than moving the head. Thus, we
were interested in verifying if subtle gaze cues performed by a robot
are perceived by humans and if it had any influence on their own
gaze behavior.

In order to verify the impact of robot gaze behavior, we narrowed
our focus to gaze aversions for this study.This was mainly motivated
by two considerations. First, gaze aversion has been shown to play
an important role in human conversations: coordinating turn-taking
(Ho et al., 2015), regulating intimacy (Abele, 1986) and signalling
cognitive load (Doherty-Sneddon and Phelps, 2005). Secondly, it
is an important gaze cue which is relatively easy to perceive and
generate during HRI.

In this work, we designed a within-subjects user study to
measure if gaze aversion exhibited by a robot has any influence on
the gaze aversion behavior of participants. We automated the robot’s
gaze using the GCS proposed in Mishra and Skantze (2022) (more
details in Section 3) to exhibit time- and context-appropriate gaze
aversions. Participants’ gaze was tracked using eye-tracking glasses
throughout the interactions. Subjective responseswere also collected
from the participants after the experiment, using a questionnaire
that asked about their impression of the interaction. Our results
show that participants avert their gaze more when the robot doesn’t
avert its gaze as compared to when it does.

The main contributions of this paper are:

• The first study (to the best of our knowledge) that verified the
existence of a direct relationship between robot gaze aversion
and human gaze aversion.
• A study design to measure the influence of a robot’s gaze

behavior on human gaze behavior.

• An exploratory analysis of the eye gaze data, which pointed
towards a potential positive correlation between gaze aversion
and topic intimacy of the questions.

2 Background

Gaze aversion is the act of shifting the gaze away from one’s
interaction partner during a conversation. Speakers tend to look
away from the listener more often than the other way around
during a conversation. This has been thought to help plan the
upcomingutterance and avoid distractions (Argyle andCook, 1976).
It has been found that holding mutual gaze significantly increases
hesitations and false starts (Beattie, 1981). Speakers process visual
information from their interlocutors, produce speech and plan the
upcoming speech, all at the same time. Prior studies in HHI have
shown that people use gaze aversions to manage cognitive load
(Doherty-Sneddon and Phelps, 2005) because averting gaze reduces
the load of processing the visual information. Ho et al. (2015) found
that speakers signal their desire to retain the current turn, i.e., turn-
holding, by averting their gaze and that they begin their turns with
averted gaze. Additionally, gaze aversion has been found to have
a significant contribution in regulating the intimacy level during
a conversation (Abele, 1986). Binetti et al. (2016) found that the
amount of time people can look at each other before starting to feel
uncomfortable was 3–5 s.

Several studies have modelled gaze aversion behavior in social
robots and evaluated their impact. Andrist et al. (2014) collected
gaze data from HHI and used that to model human-like gaze
aversions on a NAO robot. They found that well-timed gaze
aversions led to better management of the conversational floor and
the robot being perceived as more thoughtful. Zhong et al. (2019)
controlled the robot’s gaze using a set of heuristics and found that
users rated the robot to be more responsive. Subjective evaluation
of the gaze system in Lala et al. (2019) showed that gaze aversions
with fillers were preferred when taking turns. On the other hand,
there have been a few studies that included gaze aversions as a sub-
component of theirGCS, but they did notmeasure any effects of gaze
aversion (Mutlu et al., 2012; Mehlmann et al., 2014; Zhang et al.,
2017; Pereira et al., 2019). For example, Mehlmann et al. (2014)
looked at the role of turn-taking gaze behaviors as a whole to
evaluate their GCS. However, it is important to note that both
Mehlmann et al. (2014) and Zhang et al. (2017) used the gaze
behavior of participants as feedback to manage the robot’s gaze
behaviors. Mehlmann et al. (2014) grounded their architecture on
the findings from HHI, whereas Zhang et al. (2017) relied on
findings from human-virtual agent interactions.

Although it has been established that humans perceive robot
gaze as similar to human gaze in many cases (Yoshikawa et al.,
2006; Staudte and Crocker, 2009), it is still important to verify if
it holds for different gaze cues and situations in an HRI setting
as findings from Admoni et al. (2011) suggest that robot gaze cues
are not reflexively perceived in the same way as human gaze cues.
Thus, it is crucial to investigate whether a relationship exists between
robot gaze behavior and human gaze behavior, how they are related,
and what are the implications of such a relationship. For example,
if it is known that lack of gaze aversion by a robot makes people
uncomfortable, then we might want to include appropriate gaze
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aversions when designing a robot for therapeutic intervention. On
the other hand, we would probably include fewer gaze aversions
when designing an interaction where a robot is training employees
to face rude customers. To the best of our knowledge, this is the first
work that tries to establish a direct relationship between robot gaze
aversion and human gaze aversion behavior.

3 Automatic gaze aversion using Gaze
control systems

To automate the robot’s gaze behavior in this study, we used the
GCS proposed in Mishra and Skantze (2022). It is a comprehensive
GCS that takes into account a wide array of gaze-regulating factors,
such as turn-taking, intimacy, and joint attention. The gaze behavior
of the robot is planned for a future rolling time window, by giving
priorities to different gaze targets (e.g., users, objects, environment),
based on various system events related to speaking/listening states
and objects being mentioned or moved. At every time step, the GCS
makes use of this plan to decide where the robot should be looking
and to better coordinate eye–head movements.

To model gaze aversion, the model processes the gaze plan
at every time step to check if the gaze of the robot is planned
to be directed at the user for a duration longer than 3–5 s (the
preferred mutual gaze duration from HHI (Binetti et al., 2016)).
If that is the case, the model inserts intimacy-regulating gaze
aversions into the gaze plan. This results in a quick glance away
from the user for about 400 ms using the eye gaze only. Additionally,
when the robot’s intention is to hold the floor at the beginning
of an utterance or at pauses, the GCS also inserts gaze aversions
at the appropriate time to model turn-taking and cognitive gaze
aversions.

The parameters of the model are either taken from the literature
or tuned empirically. This, combined with the novel eye-head
coordination, results in a human-like gaze aversion behavior by the
robot. In a subjective evaluation of the GCS through a user study,
it was found to be preferred over a purely reactive model, and the
participants especially found the gaze aversion behavior to be better
(Mishra and Skantze, 2022).

4 Hypotheses

Abele (1986) found that too much eye gaze directed at an
interlocutor would induce discomfort for the speaker and that
periodic aversion of gaze would result in a more comfortable
interaction. The Equilibrium Theory (Argyle and Dean, 1965) also
suggests an inverse relationship between gaze directed at and gaze
averted, arguing that increased gaze at an interlocutor would be
compensated with more gaze aversions by them. While the theory
also discusses other factors such as proxemics, we were interested
only in the gaze aspect and in verifying if there is an effect of
robot gaze on human gaze behavior. Additionally, it is known that
while listening, individuals tend to look more at their speaking
interlocutors whereas while speaking, they tend to exhibit more
gaze aversions (Argyle and Cook, 1976; Cook, 1977; Ho et al., 2015).
Thus, if the robot is not averting its gaze during the interaction,
we can expect the participant to produce more gaze aversion while

speaking, but not necessarily while listening. Based on this, we
formulate the following hypotheses.

• H1 Lack of gaze aversions by a robot will lead to an increase in
gaze aversions by the participants when they are speaking.
• H1a: Participants will avert their gaze away from the robot

longer in the condition when the robot does not avert its gaze
away from the participants. (see Section 5).
• H1b: Participants will look away from the robot more often

when the robot exhibits fixed gaze behavior (does not avert its
gaze).

5 Study design

To investigate the effect of a robot’s gaze aversion on human
gaze aversion, we designed a within-subjects user study with two
conditions. In the control condition, the robot constantly directs its
gaze towards the participant, without averting it; we call this the
FixedGaze (FG) condition. In the experimental condition (whichwe
call theGaze Aversion (GA) condition), the robot’s gaze is automated
using the GCS described in Section 3 which is found to be better at
exhibiting gaze aversion behavior in a subjective analysis. While the
GCS is capable of coordinating individual eye and head movements,
the interaction is designed in such a way that it does not require any
headmovements by the robotwhendirecting its gaze.This is because
the interaction involved mainly intimacy-regulating gaze aversions,
which necessitate only a quick glance away from the interlocutor (see
Section 3). Hence, the robot’s headmovements are not a factor in the
study, which is in line with our aim to verify the effect of robot’s eye
gaze behavior on human gaze behavior.

5.1 Interaction setting

We designed an interview scenario similar to that in
Andrist et al. (2014), where the robot asked the participant six
questions with increasing levels of intimacy (more details in
Subsection 5.2). While Andrist et al. (2014) investigated whether
appropriate gaze aversions by the robot would elicit more disclosure,
we wanted to verify if gaze aversions by a robot would directly elicit
lower gaze aversions by humans, signaling more comfort even with
highly intimate questions (which are known to induce discomfort).
To make the interaction more conversational and less one-sided, the
robot also gave an answer to each question after the participant had
answered it. Questions with different levels of intimacy were used in
order to vary the level to which the participant might feel the need
to avert their gaze.

The robot’s turns were controlled by the researcher using
the Wizard-of-Oz (WoZ) approach. The researcher listened to
the participant’s responses through a wireless microphone and
controlled the robot’s response by selecting one of three options,
which resulted in varying flows of the conversation script. On
selecting “Robot answer”, the robot would answer the question
that was asked to the participant before moving on to ask the
next question. The option “User declined to answer” would prompt
the robot to acknowledge the user’s choice before moving on to
the answer, and then ask the next question. The “User asked to

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1127626
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mishra et al. 10.3389/frobt.2023.1127626

repeat question” option was used to repeat the question. Having a
WoZ paradigm enabled the researcher to control the timing of the
robot’s turn-taking, resulting in a smooth conversational dynamics.
Additionally, it made it possible for the researcher to manage the
interaction from a separate room, reducing the influence that the
presence of a third-person observer might have on the participants.
The robot’s responses were handcrafted to be generic enough to
account for most of the answers that participants might provide.
They always started with an acknowledgement of the participant’s
answer (e.g., “I appreciate what you say about the weather”). Then
a response was chosen at random from previously created pool
of handcrafted answers to the question and appended to the
acknowledgement. In cases where the participant did not answer the
question, the robot always acknowledged that by using phrases like
“That’s okay” and then appended a random response from the pool
of answers.

An example dialog where the participant answered the question
is provided below (R denotes the robot, P denotes a participant).

R: What do you think about the weather today?
P: I think it is perfect. It is neither freezing nor too hot. Just the perfect

balance of sunny and cool. I really don’t like if it is too hot or too
cold.

R: I appreciate what you say about the weather, but honestly, I can’t
relate. I never get to go outside. Maybe you didn’t notice, but I don’t
have legs. So I never have any idea what the weather is like out in
the real world.Mydream is to 1 day see the sky. Perhapsmy creators
will allow me some day.

R: What are your views on pop music?

We used a Furhat robot for the study, which is a humanoid
robot head that projects an animated face onto a translucent mask
using back-projection and has amechanical 3-DoF neck.Thismakes
it possible to generate nuanced gaze behavior using both eye and
head movements, as well as facial expressions and accurate lip
movements (Moubayed et al., 2013). For the experimental condition
(Gaze Aversion; GA) the robot was named Robert and for the
control condition the robot was namedMarty.Wewanted to give the
impression that the participants were interacting with two distinct
robots for each condition, but at the same time, we did not want the
robots themselves to have an influence on the interaction. This led
to the selection of two faces that were similar to each other from the
list of characters already available in the robot. Twomale voices were
selected from the list of available voices based on how natural they
sounded when saying the utterances for the tasks. The participants
were not informed about the different gaze behaviors of the two
robots.

The experiment was conducted in a closed room while
restricting any outside distractions.The participants were alone with
the robot during the interactions. Participants were asked to sit in a
chair that was placed approximately 60–90 cm in front of the robot.
The robot was carefully positioned such that it was almost at eye
level and at a comfortable distance for the participants. A Tobii
Pro Glasses 2 eye-tracker was used to record the participants’ eye
gaze during each interaction. We also recorded the speech of the
participants using a Zoom H5 multi-track microphone. A pair of
Rode Wireless Go microphone systems was also used to stream the
audio from the user to the Wizard. Figure 1 shows an overview of
the experimental setup.

FIGURE 1
Experimental setup for the interview task.

5.2 Intimacy rating of questions

The questions for the task were selected from Hart et al. (2021)
andKardas et al. (2021), who asked their participants to rate them in
terms of sensitivity and intimacy, respectively. In order to account
for any influence culture and demography might have on the
perceived topic intimacy levels of the questions, an online surveywas
conductedwhere residents of Stockholm rated these questions based
on their perceived topic intimacy. Participants were recruited using
social media forums for Stockholm residents (e.g., Facebook groups,
StockholmSubReddit). Another considerationwas to avoid complex
questions that would involve a lot of recalling or problem-solving
(e.g., “What are your views about gun control?”). The motivation for
this is that people are known to avert their gaze when performing
a cognitively challenging task (Doherty-Sneddon and Phelps, 2005).
Wewanted to keep the questions as simple as possible so as to restrict
the influence on gaze aversions to just the robot’s gaze behavior and
the question’s intimacy level.

A total of 28 questions were selected from the questions in
Hart et al. (2021) and Kardas et al. (2021). The participants were
asked to rate the questions on how intimate they felt on a 9-point
Likert scale ranging from “1: Not intimate at all” to “9: Extremely
intimate” (question asked: Please indicate how intimate you find the
following questions (1: not intimate at all; 9: extremely intimate).
Please don’t think too much about each one; just follow your intuition
about what you consider personal/intimate). The responses from
148 participants (68 females, 76 males, one non-binary and two
undisclosed), aged between 18 and 50 (mean = 29.35, SD = 6.89),
were then used to order the questions based on their intimacy
values. Using linear mixed models, it was verified that gender,
age, nationality and L1 did not influence the intimacy ratings. We
selected a total of 12 questions out of them and divided them into
two sets with similar intimacy distribution which were used evenly
across both conditions (FG and GA). We tried to select simple
questions that would not induce a heavy cognitive load. Table 1 lists
the questions and their rated intimacy values from the survey.
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TABLE 1 Mean intimacy ratings of selected questions used in the study.

Question Mean SD Question set

What do you think about the weather today? 1.192 0.558 1

What are your views on pop music? 1.976 1.372 1

How did you celebrate last Christmas? 3.023 1.758 1

Tell me about a conversation you had with another person earlier today 4.330 2.121 1

For what in your life do you feel most grateful? 5.223 1.917 1

What is one of the more embarrassing moments in your life? 6.538 2.016 1

What did you have for breakfast this morning? 1.823 1.308 2

What season do you like the best? Why? 1.838 1.091 2

Do you have anything planned for later today? What will you do? 3.523 1.779 2

What would constitute a perfect day for you? 4.007 1.827 2

Is there something you’ve dreamed of doing for a long time? Why haven’t you done it? 5.430 2.064 2

Can you describe a time you cried in front of another person? 7.023 1.918 2

5.3 Participants

We recorded eye gaze and acoustic data of 33 male participants
(sex assigned at birth). The choice for male participants was
methodologically and logistically motivated. Firstly, topic intimacy
has been found to be perceived differently by people of different
genders (Sprague, 1999). Thus, intimacy during the interaction
might be affected by the participants’ and robot’s gender. To reduce
the influence of this variable (given that it is not a variable of interest
in this study), we controlled it by recruiting participants of only one
gender.

The participants were recruited using social media, notice
boards and the digital recruitment platform Accindi (https://
www.accindi.se/). The participants were all residents of Stockholm.
The cultural background of participants was not controlled for.
Participants’ ages ranged between 21 and 56 (mean = 30.54,
SD = ±8.07). They had no hearing or speech impairments, had
normal/corrected vision (did not require the use of glasses for face-
to-face interactions) and spoke English. They were compensated
with a 100SEK gift card on completion of the experiment. The study
was approved by the ethics committee of Humboldt-Universität zu
Berlin.

5.4 Procedure

As described earlier, the study followed awithin-subjects design.
Each participant interacted with the robot under two conditions;
the order of the conditions was randomized. Each set of questions
(cf. Table 1) was also counterbalanced across the conditions. The
participants were asked to give as much information as they could
when answering the questions. However, they were not forced to
answer any of the questions. In case they did not feel comfortable
answering any questions, the robot acknowledged it and moved on
to the next question. The interaction always started with the robot
introducing itself before moving on to the questions. The entire

experiment took approximately 45 min.The experiment’s procedure
can be broken down into the following steps.

• Step 1: The participants were informed about the experiment’s
procedure, compensation, and data protection, both verbally
and in writing. They then provided their written consent to
participation.
• Step 2: The participants were instructed to speak freely about

a prompted topic for about 2 min. This recording was used
as the baseline speech measure for participants’ speech before
interacting with the robot. The speech data is not discussed in
the present work.
• Step 3: Next, the participants were asked to put on the eye-

tracking glasses, which were then calibrated. After successfully
calibrating the glasses, the researcher left the room and initiated
the interview task. The robot introduced itself and proceeded
with the Q&A.
The researcher kept track of the participant’s responses and
timed the robot’s turns with the appropriate response using
the wizard buttons. Once the interaction came to an end, the
researcher returned to the room for the next steps.
• Step 4: The participants were then asked to remove the

tracking glasses and were provided with a questionnaire to
fill in. The questionnaire had 9-point Likert scale questions
about the participant’s perception of the robot and the flow of
conversation (see Table 2).
• Step 5: Next, they were asked to fill out the Revised NEO

Personality Inventory (NEO-PI-R) (Costa Jr and McCrae,
2008), which measures personality traits. They were also asked
to take the LexTALE test (Lemhöfer and Broersma, 2012),
which indicates their general level of English proficiency,
on an iPad. Both of these tasks served as distractor tasks,
providing a break between the two interactions and allowing
the participants to focus on the second robot with renewed
attention.
• Step 6: The participants were then asked to speak freely

about another prompted topic for about 2 min. This served as
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TABLE 2 Questionnaire used for subjective evaluation.

Dimension Question

Conversation Flow (D1)

My conversation with the robot flowed well

I was able to understand when the robot wanted me to speak

I was able to understand when robot wanted to keep speaking

The robot responded to me at the appropriate time

Human-Likeness (D2)

The robot’s face was very human-like

The robot’s voice was very human-like

The robot’s behavior was very human-like

Throughout the conversation, I was very aware that I was talking to a robot

Overall Impression (D3)

I enjoyed talking with the robot

I felt positively about the robot

I felt positively about the conversation

I felt comfortable while talking with the robot

the baseline for the second interaction before the participant
interacted with the robot (data not discussed here).
• Step 7: After recording the free speech, the participants were

asked to put on the eye-tracking glasses and the tracker was
calibrated again. The researcher left the room and initiated
the next interaction. The robot introduced itself again and
proceeded with the Q&A.
• Step 8: At the end of the interaction, the researcher returned

to the room and provided the participants with the last
questionnaire. Apart from the 9-point Likert scale questions
about the perception of the robot and the conversation
flow, the questionnaire also asked about basic demographic
details.

5.5 Measurements

In order to test H1, we mainly focused on the behavioral
measure of gaze behavior of the participants, which was captured
using the eye-tracking glasses.Our experiment had one independent
variable, the gaze aversion of the robot which was manipulated in
a within-subjects design (GA & FG condition). The order of the
questions remained the same for both the GA and FG conditions,
i.e., increasing intimacy with each subsequent question.

The Tobii Pro Glasses 2 eye-tracker records a video from the
point of view of the participant, and provides the 2D gaze points
(i.e., where the eyes are directed in the 2D frame of the video).
The videos were recorded at 25fps and the eye-tracker sampled the
gaze points at a 50 Hz resolution. Both datasets were synchronized
to obtain timestamp vs. 2D gaze point ([ts, (x,y)]) data for each
recording, i.e., gaze location per timestamp. We used the Haar-
cascade algorithm available in the OpenCV library to detect the face
of the robot in the videos and obtain the timestamp vs. bounding
box of face ([ts, (X,Y,H,W)], X and Y - lower left corner of the
bounding box, H and W - height and width of the bounding box)
data.

Gaze Aversion for each time stamp was calculated by verifying
if the gaze points (x,y) were inside the bounding box [X,Y,H,W]

FIGURE 2
Example of Gaze Aversion detection using the algorithm. Here the
gaze point (x,y) (the red circle) lies within the face’s bounding box
[X,Y,H,W] (blue rectangle), so it is not a Gaze Aversion.

or not. The parameters for Haar-cascade were manually fine-
tuned for each recording to obtain the best fitting bounding boxes
for detecting the robot’s face. An example of non-gaze aversion
detection using the algorithm can be seen in Figure 2.

The timing information for the robot’s utterances can be
obtained from the speech synthesizer. We recorded the robot’s
responses and their time information for all interactions.
This log was used to extract the participant’s speaking and
listening durations. When the robot is speaking, the participant
is the listener and vice versa. This information was used to
extract the gaze aversion of the participant when they were
Speaking and Listening.

For H1a, we used the % of gaze aversion as the metric of
overall gaze aversion. Each timestampwhere it was possible to detect
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whether there was a gaze aversion or not was considered as a gaze
event. We counted the number of gaze aversions (gaCount) and the
total number of gaze events (geTotal) over the duration when the
participants were Speaking and Listening. The % of gaze aversion
( ga%) is then calculated as:

ga% = gaCount/geTotal (1)

ForH1b, we identified individual gaze aversion instances, which
are the number of times the participants directed their gaze away
from the robot. The duration from when participants looked away
from the robot until the time they returned their gaze back at the
robot was counted as one gaze aversion instance.

We also collected subjective feedback from the participants for
both conditions with a questionnaire. The questionnaire included
the 12 questions that were used to measure the responses of the
participants under three dimensions on a 9-point Likert scale (see
Table 2).

The analysis of speech data is beyond the scope of this work and
is analyzed in Offrede et al. (2023).

6 Results

As mentioned in Section 5.1, we used a WoZ approach to
manage the robot’s turns. While the wizard was instructed to
behave in the same way for both the conditions, we wanted to
make sure that the wizard did not influence the turn taking of the
robot, which could in turn influence the gaze aversion behavior
of the participants. We calculated the turn gaps (time between
when the participant had finished speaking and the robot started
to speak) from the audio recordings of the interactions. A Mann-
Whitney test indicated that there was no significant difference in
turn gaps between condition FG (N = 249, M = 1.89, SD = ±2.67)
and condition GA (N = 243, M = 1.77, SD = ±1.63), W = 29848, p
= 0.797. This shows that the wizard managed the turns in the same
way across conditions.

6.1 Effect of Robot’s gaze aversion
behaviour

Of the 33 participants recorded, we excluded two participants’
data from the analysis as the gaze data was corrupted due to some
technical problems with the eye-tracker. Additionally, gaze data
from the eye-trackers were not always available for all timestamps,
due to various reasons such as calibration strength and detection
efficiency. When averting gaze, participants also moved their head
away from their partner’s face. This varied a lot from participant to
participant and led to instances where the robot’s face was out of the
eye-tracker’s camera frame. Moreover, there were instances where
Haar-cascade could not detect the robot’s face for some timestamps
due to various reasons. These factors resulted in instances where it
was not possible to determine if there was a gaze aversion or not.
We were able to capture 87.38% of gaze data (data loss = 12.62%),
which is normal for eye-trackers (Holmqvist, 2017). Overall, only
1.6% of the data (8170 timestamps out of 504011) was affected by
the technical constraints which led to the exclusion of data. Thus,
instances of gaze aversion by participants where Furhat was out-
of-frame (due to head movement) are not very common. Also, the
amount of data lost in this way was the same across conditions so
we do not believe that the excluded data had any influence on the
results reported.

On average, participants averted their gaze more in the FG
condition as compared to the GA condition when they were
Speaking. A two-tailed Wilcoxon signed-rank test indicated a
significant difference in gaze aversion across conditions when the
participants were Speaking (W = 142.0, p = 0.037), as shown in
Figure 3. This supported H1a, which predicted that participants
would avert their gaze for a longer duration when there is no
gaze aversion by the robot (i.e., the FG condition). There was no
significant difference between conditions when participants were
Listening (W = 150.0, p = 0.194) which is expected (see 4). The
mean values of gaze aversion when participants were Speaking and
Listening can be found in Table 3.

FIGURE 3
Total % of gaze aversion while participants were Speaking.
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TABLE 3 Mean% of gaze aversion per condition.

Condition: GA Condition: FG

ga% Mean SD Mean SD

Speaking 0.399 ±0.195 0.456 ±0.199

Listening 0.112 ±0.084 0.137 ±0.155

Analyzing the number of gaze aversion instances performed
by the participants while Speaking showed that participants looked
away from the robot more frequently in the FG condition (Mean =
91.742, SD = ±60.158) as compared to the GA condition (Mean =
70.774, SD = ±46.141). As shown in Figure 4, a two-tailed Wilcoxon
signed-rank test indicated a significant difference in the number of
gaze aversion instances across conditions (W = 496.00, p < 0.001).
This supported H1b, which predicted that participants would look
away from the robot more often when there is no gaze aversion
by the robot. It can be seen that the effect of robot’s gaze aversion
on participants’ gaze behavior is stronger and more distinct when

analyzing gaze aversion instances. We argue that gaze aversion
instance is a better metric to verify the effect.

6.2 Gaze aversion when participants were
Speaking and Listening

It is already known from the HHI literature (Argyle and
Cook, 1976; Cook, 1977; Ho et al., 2015) that people exhibit fewer
gaze aversions while listening and more while speaking. We were
interested to see if there was a similar pattern emerging from the
data.

To verify this, we first calculated the % of gaze aversion when
participants were listening to and answering each of the robot’s
questions. Since the durations of both Speaking and Listening varied
from one participant to the other, we normalized the time into 10
intervals for Speaking and 10 intervals for Listening phase. Next, we
found the aggregate % of gaze aversion for all the questions when
Speaking and Listening. The resulting plot can be seen in Figure 5.

FIGURE 4
Number of Gaze Aversion instances while participants were Speaking.

FIGURE 5
% of Gaze Aversion while participants were Listening and Speaking, for the two conditions.
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FIGURE 6
Mean Gaze Aversion per Question while participants were Speaking.

TABLE 4 Fixed effect estimates of the GLMMmodel.

Term Estimate SE t

Intercept (Question 6) 0.396 0.030 13.138

Question 1 −0.084 0.022 −3.846

Question 2 −0.046 0.021 −2.224

Question 3 −0.071 0.019 −3.731

Question 4 0.009 0.018 −0.515

Question 5 0.047 0.023 2.085

Condition:GA −0.033 0.016 −2.098

Wecan see a clear trend emerging from the plotwith the lowgaze
aversion during the Listening phase when the participants listened to
the robot. However, just before taking the floor (Speaking phase), it
can be seen that the gaze aversion starts increasing. This is in line
with the findings from Ho et al. (2015), who found that speakers
usually started their turns with gaze aversion and averted their
gaze before taking the turn. We also notice that the gaze aversion
peaks at around 20%–30% of the speaker’s turn, before starting
to fall. Towards the end of the turn, we see a sharp decline in
gaze aversion. This is consistent with the findings from Ho et al.
(2015), which show that people end their turns with their gaze
directed at the listener. It can also be seen that even though the
gaze aversion behavior of participants followed a similar pattern for
both conditions, the amount of gaze aversion was lower for the GA
condition. This further supports hypothesis H1.

6.3 Results from the questionnaire

On analyzing the responses from the questionnaire, all three
dimensions were found to have good internal reliability (Cronbach’s

α = 0.8, 0.71 & 0.92 respectively). The participants found the
robot under the FG condition to be significantly more Human-Like
(Student’s t-test, p= 0.029).This result was unexpected and is further
discussed in Section 7. We did not find any significant differences
for the other two dimensions. The mean score for the LexTALE test
was 80.515% (SD=±12.610) which showed that the participants had
good English proficiency (Lemhöfer and Broersma, 2012).

6.4 Exploratory analysis: Topic intimacy

Apart from analyzing the data forH1, we were also interested in
whether any trends emerged through an exploratory analysis of the
topic intimacy of the questions and gaze aversion. By plotting the
mean % of gaze aversion values of all participants for each question
during the Speaking phase, we can see that there is an increase in gaze
aversion as the intimacy values increase with the question order (cf.
Figure 6).

We fit a GLMM (Generalized Linear Mixed Model) with
mean gaze aversion values per question of each participant as the
dependent variable (JASP Team, 2023). The questions’ order and the
conditions were used as the fixed effects variables, and we included
random intercepts for participants and random slopes for question
order and condition per participant. The model suggested that the
gaze aversions increased as the intimacy values increased (χ2 = 41.32,
df = 5, p< 0.001). It also suggested that there wasmore gaze aversion
in the FG condition as compared to the GA condition (χ2 = 4.244,
df = 1, p = 0.039). There were no interaction effects observed. The
coefficients of the model can be found in Table 4.

This points in the direction of a positive correlation between
topic intimacy and gaze aversion. One interpretation of this
finding is that participants tend to compensate for the discomfort
caused by highly intimate questions by averting their gaze. This
is in line with previous findings from HHI that suggest that a
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FIGURE 7
Distribution of mean gaze aversion per condition per question order.

change in any of the conversational dimensions like proximity,
topic intimacy or smiling would be compensated by changing
one’s behavior in other dimensions (Argyle and Dean, 1965).
Figure 7 is a visualization of how gaze aversion varied for each
condition under each question. It can be seen that the gaze
aversion was higher for FG for all the questions (except Q3), and
that there is an increase of gaze aversion with the increase in
question number (which in turn is the topic intimacy value for the
question).

The finding here is interesting because it could mean that the
participants compensated for topic intimacy with gaze aversion even
when it is a robot that was asking the questions. However, since
we didn’t control for the order if the questions, this could also
be because of other factors such as a cognitive effort and fatigue.
Further studies should narrow down the factors that influenced such
behavior.

7 Discussion

The results suggest that participants averted their gaze
significantly more in the FG condition. Moreover, they had more
gaze aversion instances in the FG condition. This was supported by
both Wilcoxon signed-rank tests (see Section 6) and an exploratory
GLMM (see Section 6.4). The results are in line with hypothesisH1:
people compensate for the lack of robot gaze aversion by producing
more gaze aversions themselves (Argyle and Dean, 1965; Abele,
1986).

We did not observe a significant difference across conditions
in gaze aversion when participants were Listening. This could be
attributed to the fact that there were too few gaze aversions during
this phase to observe a significant difference, which is also suggested
by prior studies in HHI (Ho et al., 2015). The gaze aversions varied
between 11%–14%, which meant that the participants directed their
gaze at the robot for about 86%–89% of the time. This is higher
than the numbers reported in HHI, where listeners direct their gaze
at speakers 30%–80% of the time (Kendon, 1967). Our findings

coincide with the findings in Yu et al. (2012), where they reported
that humans directed their gaze more at a robot than at another
human.

Unexpectedly, participants rated the robot in the FG condition
as more human-like compared to the GA condition. A key reason
for that could be the way the GA interaction started. The GCS
used would make the robot keep looking at random places in the
environment unless the interaction is started by the researcher. This
could have resulted in an unnatural behavior where the robot directs
its gaze at random places even though the participant is already
sitting in front of it. On the other hand, in the FG condition the robot
kept on looking straight and only started to track the user when the
interaction started. However, since the participant was sitting right
in front of the robot, it would be perceived as the robot looking at
the participant all the time.

While we did not find any significant differences in the
other two dimensions (Conversation Flow & Overall Impression)
assessed in the self-reported questionnaire, we did see a
significant difference across conditions from the objective
measures (i.e., gaze behavior). This could point to an effect that,
even though it might not be explicitly perceived by people,
a robot’s gaze behavior would implicitly affect human gaze
behavior. This could also be an interesting direction for further
study.

A further exploratory analysis of the data reveals a positive
correlation between gaze aversion and topic intimacy of the
questions. Thus, more intimate questions seem to lead to a larger
avoidance of eye gaze. In our study, more intimate questions
occurred towards the end of the conversation. As the order of the
questions was fixed, the order may of course be a confounding
factor. However, we are not aware of other work showing that
humans would avoid eye gazemore andmore over the conversation.
We argue that eye gaze is rather related to the topic (intimacy),
but further work is needed that controls for this potential
confound.
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8 Limitations and future work

The participants of our study had a rather large age span and
we had only male participants. A clear limitation of this study is
the lack of a balanced dataset. As the results obtained are only for
male participants, these results do not necessarily generalize to other
genders. The choice for male participants was methodologically
and logistically motivated. Firstly, topic intimacy has been found
to be perceived differently by people of different genders (Sprague,
1999). Thus, intimacy during the interaction might be affected by
the participants’ and robot’s gender. To reduce the influence of this
variable (given that it is not a variable of interest in this study), we
controlled it by recruiting participants of only one gender.

In addition to the participants' gaze behavior, the recorded data
were also used to analyze their speech acoustics in relation to that
of the robot (Offrede et al., 2023). Since sex and gender are known
to impact acoustic features of speech (Pépiot, 2014), all processing
and analysis of data need to be carried out separately for males
and females. This would reduce the statistical power of the acoustic
analysis, leading us to choose participants from only one sex. Given
the choice between female or male participants, males were chosen
since they are more numerous in the institute where we collected
data.

Further studies with amore diverse participant pool and female-
presenting robots would be needed to verify this effect in general.
However, it is interesting to note that a recent study (Acarturk et al.,
2021) found no difference in gaze aversion behavior due to gender.
The authors concluded that GA behavior was independent of
gender and suggested “that it arises from the social context of the
interaction.”

It is known that culture also influences our gaze behavior on
many levels, such as how we look at faces (Blais et al., 2008) or
interpretation of mutual gaze and gaze aversions (Collett, 1971;
Argyle and Cook, 1976). McCarthy et al. (2006) observed that
people’s mutual gaze and gaze aversion behaviors during thinking
differed based on the culture of the individuals. However, recent
studies have challenged some of aspects of cultural influences that
have been reported previously (Haensel et al., 2022). Nonetheless,
investigating any effect culture of participantsmay play on their gaze
behavior when interacting with a robot could also be an interesting
area to look into in the future.

9 Conclusion

In this paper, we investigated whether a robot’s gaze behavior
can affect human gaze behavior duringHRI.We conducted awithin-
subjects user study and recorded participants’ gaze data along with
participants’ responses. The analysis of participants’ eye gaze in
both conditions suggests that they tend to avert their gaze more in
the absence of gaze aversions by a robot. An exploratory analysis
of the data also indicated that more intimate questions may lead
to a larger avoidance of mutual gaze. The existence of a direct
relationship between robot’s gaze behavior and human gaze behavior
is an original finding.

The study also shows the importance ofmodelling gaze aversions
in HRI. In the absence of robot gaze aversions, the interaction may
become more effortful for the user while trying to avoid frequent

mutual gaze with the robot. These findings go hand in hand with
the Equilibrium Theory suggesting a trade-off relation between the
robot’s and user’s interactive gaze behavior. Our findings are helpful
for designing systems more capable of adapting to the context and
situation by taking human gaze behavior into account.
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