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On-orbit service spacecraft with redundant actuators need to overcome orbital
and attitude coupling when performing proximity maneuvers. In addition,
transient/steady-state performance is required to fulfill the user-defined
requirements. To these ends, this paper introduces a fixed-time tracking regulation
and actuation allocation scheme for redundantly actuated spacecraft. The
coupling effect of translational and rotational motions is described by dual
quaternion. Based on this, we propose a non-singular fast terminal sliding mode
controller to guarantee fixed-time tracking performance in the presence of
external disturbances and system uncertainties, where the settling time is only
dependent on user-defined control parameters rather than initial values. The
unwinding problem caused by the redundancy of dual quaternion is handled
by a novel attitude error function. Moreover, optimal quadratic programming is
incorporated into null space pseudo-inverse control allocation that ensures the
actuation smoothness and never violates the maximum output capability of each
actuator. Numerical simulations on a spacecraft platform with symmetric thruster
configuration demonstrate the validity of the proposed approach.

KEYWORDS

dual quaternion, spacecraft control, fixed-time stability, control torque allocation,
optimization

1 Introduction

Orbit and attitude coordination benefits the motion accuracy and efficiency of spacecraft
by controlling orientation and position simultaneously. Several works in non-cooperative
target capture (Huang et al., 2006; Zhang et al., 2017) and space teleoperation (Wang et al.,
2019a) have demonstrated that these tasks can be performed through separate orientation and
position control loops through the corresponding actuators, which ease the stability analysis
and control synthesis. However, they might not be directly applied in proximate on-orbit
servicing tasks due to the coupling effect between translation and orientation motions. On the
one hand, rotation motion driven by reaction flywheels will result in orbital motion and vice
versa. On the other hand, space load (e.g. space manipulator) motion will impact the pose
of the whole system subject to the conservation of angular momentum (Wang et al., 2021).
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How to model the coordinated dynamic that involves translation
and orientationmotions of spacecraft remains challenging for stability
analysis and control design. Dual quaternion (DQ) is an alternative
to describe the aforementioned coupling effect (Brodsky and Shoham,
1999). With a DQ-based velocity-free controller (Filipe and Tsiotras,
2013), the relative position and attitude were globally asymptotic
stable for rigid body motion. The DQ-based modeling also becomes
promising in spacecraft formation (Nixon and Shtessel, 2022) and
perception (Srivatsan et al., 2016; Reynolds et al., 2020), whereas lacks
the consideration of transient-state performance. As an important
metric to evaluate transient-state convergence performance, settling
time has gradually transformed from control objective to control
parameter, thus allowing for more flexible control structures in terms
of finite/fixed-time stability (Bhat and Bernstein, 2000; Zhu et al.,
2011; Polyakov et al., 2015; Chen et al., 2022; Wang et al., 2022). In
terms of faster convergence performance and robustness against
disturbances, recent works in (Wang et al., 2020; 2019b) have
witnessed that terminal sliding mode control (TSMC) can provide
a route for finite-time stability. However, the settling time relies on
accurate initial values, which might be limited to practical control
implementation. Since noise signal is inevitable for measurement in
practice, the resulting settling time tends to enlarge the estimation
conservatism.

In addition, spacecraft are generally equipped with redundant sets
of actuators in terms of safety. Control allocation plays an important
role in over-actuated systems to distribute the control output among
the redundant actuators. The fixed, single-gimbal, and double-gimbal
thruster configurations were discussed in (Servidia, 2010). In order
to improve the torque capacity during maneuvers by determining the
initial wheel angular momentum, maximizing the efficiency of torque
distribution for low-capacity reaction wheel assemblies was discussed
in (Choi et al., 2008). In (Schaub and Lappas, 2009), an optimal torque
distribution strategy was developed for reaction wheels to minimize
the instantaneous electrical power requirement. In order to allocate
the moments of the three axes to the corresponding control surfaces,
robust least-square control allocation for unstructured and structured
uncertainties was considered with a combination of H2/H∞ feedback
and feedforward control (Cui and Yang, 2011).

Motivated by the above observation, we use DQ to develop a
non-singular fixed-time terminal sliding mode control (NFxTSMC)
strategy for a 6-degree-of-freedom (DoF) spacecraft with settling time
requirement, which can overcome the unwinding problem induced
by DQ. Moreover, an optimal null-space based pseudo-inverse
(ONSPI) control allocation strategy facilitates alleviating the physical
restrictions on actuation characteristics. The main contributions of
this paper are presented as follows:

1) The DQ-based control scheme features fixed-time and
unwinding-free convergence while handling the coupling between
translation and orientation motions. Compared with the previous
work (Sun et al., 2022), we have shown the scalability of the proposed
control scheme from finite-time to fixed-time stability, where the
settling time only relies on the user-defined control parameters rather
than initial values.

2) Control allocation strategy in a framework of optimal quadratic
programming can address the output constraint of the redundant
actuators. Comparedwith the traditional pseudo-inverse (PI)method,
multiple constraints can be incorporated into the cost function that
provides superior control allocation performances. Optimal quadratic
programming is employed in the null space pseudo inverse control

allocation that ensures the actuation smoothness and never violates
the maximum output capability of each actuator.

The remainder of this paper is organized as follows. In Section 2,
the relative kinematics and dynamics are derived for a class of 6-
DoF orbit and attitude coordination spacecraft systems based on
DQ. In Section 3, an NFxTSMC is proposed considering external
disturbances, system uncertainties, and singularity phenomenon.
Furthermore, the control allocation strategy is designed in Section 4.
In Section 5, numerical simulations on a platform of spacecraft
rendezvous and docking have demonstrated the effectiveness of
the proposed control and actuator allocation method, followed by
conclusions drawn in Section 6.

2 Preliminaries

2.1 Dual quaternion

In order to describe the translational and rotational motion
simultaneously, we introduce DQ (Brodsky and Shoham, 1999): q̂ ≡
η+ ϵξ, where η and ξ are the real and dual part, respectively, and ϵ the
dual operator such that ϵ2 = 0, ϵ ≠ 0.Here, η and ξ are both quaternions.
In the following, ̂(⋅) stands for the DQ variable. Taking â = a+ ϵa′ and
b̂ = b+ ϵb′ as an example, the following operators (Wang and Sun,
2012) are used throughout this paper:

â± b̂≔ a± b+ ϵ(a′ ± b′) ,

â* ≔ a+ ϵ(−a′) ,

âT ≔ aT + ϵ(a′)T,

â−1 ≔ a−1 + ϵ(a′)−1,

(1)

â× b̂≔ a× b+ ϵ(a× b′ + a′ × b) , âb̂ = â⊙ b̂≔ ab+ ϵa′b′, (2)

< â|b̂ >≔ ab+ a′b′, [â|b̂] ≔ aTb′ + a′Tb, (3)

â ◦ b̂≔ ab− a′b′ + ϵ(ab′ + a′b+ a′ × b′) , (4)

â ≤ b̂ i.f.f. a ≤ bAND a′ ≤ b′. (5)

Given the desired pose q̂d, the DQ error can be expressed as:

q̂e = q̂
*
d ◦ q̂ = qe + ϵ

1
2
qe ◦ pe (6)

where qe and pe stand for the quaternion and position errors,
respectively. Taking the time derivative of q̂e yields:

̇q̂e =
1
2
q̂e ◦ ω̂e, ω̂e ≔ ω̂− q̂*e ◦ ω̂d ◦ q̂e, (7)

in which ω̂ and ω̂d are the actual and desired velocity motors.
Therefore, taking the time derivative of ω̂e, we can obtain the DQ error
dynamics (Wang and Sun, 2012):

M̂ ̇ω̂e = û+ M̂[ω̂e × (q̂*e ◦ ω̂d ◦ q̂e) − q̂
*
e ◦ ̇ω̂d ◦ q̂e] − ω̂× M̂ω̂ (8)

where M̂ =m d
dϵ
I+ ϵJ is the dual inertial matrix, m the mass, J the

inertial matrix, I the identity matrix with appropriate dimensions. û
is dual force motor such that

û = ûc + ûd = uc + ud + ϵ(τc + τd) , (9)

where uc and τc are the control force and torque to be designed. ud and
τd are the external force and torque disturbance.
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2.2 Necessary lemmas

Lemma 1 (Bhat and Bernstein, 2000). Consider a class of
continuous-time systems

ẋ = f (x, t) , (10)

where x ∈ U is the system state and f the non-linear function. If there
exists a continuously differentiable functionV:U→ℝ+ ∪ {0} such that
V̇(x) + γVα(x) ≤ 0, with γ, α ∈ (0,1), then the equilibrium of the system
trajectory (10) is globally finite-time stable and the settling time T
satisfies T ≤ V1−α

0
γ(1−α)

, in which V0 is the initial value of V.
Lemma 2 (Polyakov, 2011). The equilibrium of the system

trajectory (10) is globally fixed-time stable if there exist positive
constants: α, β, p, q, k, with pk < 1 and qk > 1, such that

V̇ (x) ≤ −(αVp (x) + βVq (x))k, (11)

and the settling time T follows:

T ≤ 1
αk (1− pk)

+ 1
βk (qk− 1)

. (12)

3 Control design and analysis

Considering the 6-DoF trajectory tracking task, the control
objective can be stated as follows: design a DQ-based controller ûc =
uc + ϵτc such that the relative error states of a class of spacecraft systems
8) converge within the fixed time, under all time and physically
realizable initial conditions. That is, ̂ξe ≔ (qe)v + ϵ(q

′
e)v→ [0,0,0]

T +
ϵ[0,0,0]T and ω̂e→ ̂0 for t→ T, where (⋅)v denotes the vector part
of quaternion and T is the settling time. In the existence of external
disturbances and system uncertainties, the error dynamics can be
equivalently expressed as:

̇ ̂ξe = Θ̂(q̂e) ω̂e,

M̂0
̇ω̂e = ûc + M̂0 [ω̂e × (q̂*e ◦ ω̂d ◦ q̂e) − q̂

*
e ◦ ̇ω̂d ◦ q̂e]

− ω̂× M̂0ω̂+ Φ̂, (13)

where Θ̂(q̂e) =
1
2
(η̂eI+ ̂ξ

×
e ) with ̇η̂e = −

1
2
η̂Te ω̂e. (⋅)× represents the cross

product operator. M̂0 and ΔM̂ the nominal and uncertain part of M̂
such that M̂ = M̂0 +ΔM̂ and therefore Φ̂ can be written as:

Φ̂ = −ΔM̂ ̇ω̂e +ΔM̂[ω̂e × (q̂
*
e ◦ ω̂d ◦ q̂e) − q̂

*
e ◦ ̇ω̂d ◦ q̂e] − ω̂

×ΔM̂ω̂+ ûd. (14)

In order to stabilize ̂ξe and ω̂e within fixed time, traditional sliding
mode (Wang et al., 2018) can be modified as dual form:

Ŝi = Si + ϵS
′
i =
̇̂ξei + b̂i ⊙ sig( ̂ξei)

α, i = 1,2,3, (15)

where Ŝ = [Ŝ1, Ŝ2, Ŝ3]
T, sig( ̂ξei)

α = sig(ξei)α + ϵsig(ξ
′
ei)

α, sig(⋅) =
sgn(⋅)|⋅|α, and sgn(⋅) is the sign function. α ∈ (0,1). b̂i = bi + ϵb

′
i with

bi and b′i being positive constants. Based on the terminal sliding
mode (15), the resulting TSMC can be then designed as a similar
structure in (Dong et al., 2016). However, the implementation of the
above algorithm tends to generate excessive control torque since the
inclusion of negative exponential terms may lead to singularities.

Assumption 1. The real and dual parts of M̂0 are positive-definite,
bounded, and invertible.

Assumption 2. Φ̂ is bounded by an unknown dual constant such
that ‖Φ̂‖ ≤ d̂⊙ ‖Ŝ‖.

Remark 1. Since the real and dual parts of M̂0 represent the mass
and inertial of the rigid-body spacecraft system, Assumption 1 can
always hold. Since each term in Φ̂ is subject to the measurement
range of physical sensors, there exists an upper limitation for Φ̂ that
is bounded, which has been also validated in existing literature (Xiao
and Yin, 2016).

Inspired by (Wang et al., 2009), a variant of the non-singular
sliding mode in dual form is proposed as follows:

Ŝi =
̇̂ξei + α̂1i ⊙ ̂ξei + α̂2i ⊙ Ŝai, i = 1,2,3, (16)

where α̂1i = α1i + ϵα
′
1i, α̂2i = α2i + ϵα

′
2i α1i, α

′
1i, α2i, and α′2i are positive

constants. Ŝai is the auxiliary terminal sliding mode:

Sai =
{{{{
{{{{
{

sig(ξei)
p1 , if S̄i = 0 or S̄i ≠ 0, |ξei| ≥ δ

r1ξei + r2sig(ξei)
2, if S̄i ≠ 0, |ξei| < δ

(17)

S′ai =
{{{{
{{{{
{

sig(ξ′ei)
p1 , if S̄′i = 0 or S̄′i ≠ 0, |ξ

′
ei| ≥ δ
′

r′1ξ
′
ei + r
′
2sig(ξ
′
ei)

2, if S̄′i ≠ 0, |ξ
′
ei| < δ
′

(18)

̂S̄i = S̄i + ϵS̄
′
i =
̇̂ξei + α̂1i ⊙ ̂ξei + α̂2i ⊙ sig( ̂ξei)

p1 , (19)

where r1 = (2− p1)δ
p1−1, r′1 = (2− p1)δ

′p1−1, r2 = (p1 − 1)δ
p1−2, and r′2 =

(2− p1)δ
′p1−2 δ and δ′ are small positive constants. p1 ∈ (0.5,1). On this

basis, the NFxTSMC is designed as:

ûc =− M̂0 [ω̂e × (q̂*e ◦ ω̂d ◦ q̂e) − q̂
*
e ◦ ̇ω̂d ◦ q̂e] + ω̂× M̂0ω̂

− K̂sig(Ŝ) − (M̂0Θ̂(q̂e)
−1)[α̂1 ⊙

̇̂ξe +
̇Θ̂(q̂e) ω̂e

+ α̂2 ⊙W( ̂ξe) ⊙ Θ̂(q̂e) ω̂e + α̂3 ⊙ sig(Ŝ)
p2

+ α̂4 ⊙ sig(Ŝ)
p3] (20)

where α̂3 = α3 + ϵα
′
3, α̂4 = α4 + ϵα

′
4, and K̂ = K+ ϵK

′ α3, α
′
3, α4, α

′
4, K, K′,

and p2 are positive constants, with p2 ∈ (0.5,1) and p3 > 1. W( ̂ξe) is a
diagonal matrix whose ith entry in the main diagonal is

W(ξei) =
{{{{
{{{{
{

p1|ξei|
p1−1, if S̄i = 0 or S̄i ≠ 0, |ξei| ≥ δ

r1 + 2r2 |ξei| , if S̄i ≠ 0, |ξei| < δ

(21)

W(ξ′ei) =
{{{{
{{{{
{

p1|ξ
′
ei|

p1−1, if S̄′i = 0 or S̄′i ≠ 0, |ξ
′
ei| ≥ δ
′

r′1 + 2r
′
2 |ξ
′
ei| , if S̄

′
i ≠ 0, |ξ

′
ei| < δ
′

(22)

Theorem 1. Given the bounded external disturbances and system
uncertainties (14), if the control law (20) is adopted, then the relative
DQ and velocity motors of the DQ-based spacecraft system 8) are
guaranteed to converge within fixed time T1 +T2, which will be
provided later.
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Proof. We will validate the fixed-time performance through the
following two steps: i) the system trajectory reaches the sliding mode
surface within a fixed time under any initial conditions, and ii) within
the fixed time, the system trajectory converges to the equilibriumpoint
alongside the sliding mode surface.

Step i): We adopt the following Lyapunov function candidate:V1 =
1
2
[Ŝ|M̂0Ŝ]. Taking the time-derivative of V1 and substituting (13) into

it yields

V̇1 = [Ŝ|M̂0
̂ξe + M̂0α̂1 ⊙

̇̂ξe + M̂0α̂2 ⊙
̇Ŝa]

= [Ŝ|M̂0
̇Θ̂(q̂e) ω̂e + M̂0α̂1 ⊙

̇̂ξe + M̂0α̂2 ⊙
̇Ŝa + M̂0Θ̂(q̂e)

× M̂−10 (ûc + M̂0 [ω̂e × (q̂*e ◦ ω̂d ◦ q̂e) − q̂
*
e ◦ ̇ω̂d ◦ q̂e]

− ω̂× M̂0ω̂+ Φ̂)] . (23)

Substituting the controller (20) into V̇1, we can derive

V̇1 ≤[Ŝ|M̂0α̂2 ⊙
̇Ŝa − M̂0Θ̂(q̂e)M̂

−1
0 K̂sig(Ŝ)

− M̂0 (α̂2 ⊙W( ̂ξe) ⊙ Θ̂(q̂e) ω̂e + α̂3 ⊙ sig(Ŝ)
p2

+ α̂4 ⊙ sig(Ŝ)
p3) + M̂0Θ̂(q̂e)M̂

−1
0 ⊙ d̂⊙ ‖Ŝ‖]

≤ [Ŝ| − M̂0α̂3 ⊙ sig(Ŝ)
p2 − M̂0α̂4 ⊙ sig(Ŝ)

p3]

≤ −μ(α3‖Si‖
p2+1 + α′3‖S

′
i ‖

p2+1

+ α4‖Si‖
p3+1 + α′4‖S

′
i ‖

p3+1)

≤ −μ1V
p2+1
2

1 − μ2V
p3+1
2

1 (24)

where μ =min{σmin(J),m}, σmin(⋅) is the minimum eigenvalue, μ1 =

2
p2+1
2 μmin{α3,α

′
3}, and μ2 = 2

p3+1
2 μmin{α4,α

′
4}. Thus, using the Lemma

2, the state trajectory will reach the sliding mode within fixed time T1,
where the settling time can be expressed as:

T1 ≤
2

μ1 (1− p2)
+ 2
μ2 (p3 − 1)

. (25)

It therefore implies that Ŝi = ̂0 for i = 1,2,3 after T1. It is worth
pointing out that the coefficients in the upper bound of T1 are only
determined by the user-defined parameters, which are independent of
initial conditions. When t > T1, one can obtain

̇ ̂ξei = −α̂1i ⊙ ̂ξei − α̂2i ⊙ Ŝai. (26)

Step ii): Consider the following Lyapunov function: V2 =
1
2
<

̂ξe| ̂ξe >. Taking the time derivation of V2, we have

V̇2 = −
3

∑
i=1
(α1i|ξei|

2 + α′1i|ξ
′
ei|

2

+ α2i|ξei|
p1+1 + α′2i|ξ

′
ei|

p1+1) ≤ −μ3V
1+p1
2

2 , (27)

where μ3 =min{α1i,α
′
1i,α2i,α

′
2i} for i = 1,2,3. According to the Lemma

1, the system trajectory on the sliding mode is guaranteed to converge
to equilibriumwithin finite time T2, namely ̂ξe→ [0,0,0]T + ϵ[0,0,0]T,

ω̂e→ ̂0, and T2 ≤ 2V
1−p1
2

2 (T1)/μ3(1− p1).
Remark 2. The system trajectory will enter the asymptotic sliding

mode from the terminal sliding one when the sliding mode variables
in (20) approach zero. This mechanism ensures singularity-free
performance in the convergence procedure. In terms of the parameter
selection rule, the error states will converge within the fixed settling
time if larger μ1, μ2, μ3, and smaller p1 and p2 are chosen. K and

K′ are suggested to be large enough for robustness against external
disturbances and system uncertainties.

Remark 3. Traditional TSMCgenerates negative exponential terms
of state variables and can therefore lead to singularities. In contrast,
the proposed controller (20) is non-singular due to the following
facts: state variables are not small enough to cause singularity for
̂S̄ ≠ ̂0; in terms of ̂S̄ = ̂0, the dual controller can be transformed
as:

ûc = −M̂0 [ω̂e × (q̂*e ◦ ω̂d ◦ q̂e) − q̂
*
e ◦ ̇ω̂d ◦ q̂e] + ω̂× M̂0ω̂

− K̂sig(Ŝ) − (M̂0Θ̂(q̂e)
−1)[α̂1 ⊙

̇̂ξe +
̇Θ̂(q̂e) ω̂e + p1

× α̂2 ⊙ sig( ̂ξe)
2p1−1 + α̂3 ⊙ sig(Ŝ)

p2 + α̂4 ⊙ sig(Ŝ)
p3] . (28)

Therefore, the singularity phenomenon will not occur if
p1 ∈ (0.5,1).

The double value of quaternions results in the unwinding problem
of attitude slewing, thereby degrading the global stability of the closed-
loop system (Zheng et al., 2017). Here, an attitude error function is
employed to overcome the unwinding problem as follows:

ϕ = 2(λ1 + λ2q
2
e0 − exp(

q2e0

√q2e0 + μ
)), (29)

er =(exp(
q2e0

√q2e0 + μ
)

qe0 (|qe0| + 2μ)

(|qe0| + μ)
2 )(qe)v. (30)

where λ1, λ2, and μ are positive constants. qe0 is the real part of
qe. The proposed attitude error vector is obviously continuous and
bounded with θ ∈ [−π,π], which guarantees the response rate of
the attitude error vector and the continuity of the attitude error
function simultaneously. Thus, the anti-unwinding NFxTSMC can be
obtained by replacing the original attitude error function and vector by
(29)-(30). It can be derived that the anti-unwinding state is updated as
̂ξ*e = er + ϵ(er ◦ pe).

4 Optimal control torque allocation
strategy

To improve reliability and safety, redundant actuators are often
equipped with spacecraft systems to provide corresponding forces and
torques. Inspired by (Gersh and Peck, 2009), consider the following
constraint condition in dual framework

ûc(t) = D̂⊙ ûa(t) (31)

where ûa denotes the actuation output, and D̂ the control allocation
matrix. Without consideration of the actuator installment faults, the
PI control allocation strategy can be ideally presented as follows

ûa(t) = D̂
† ⊙ ûc(t) . (32)

where D̂† = D̂T ⊙ (D̂⊙ D̂T)−1 is the Moore–Penrose inverse of D̂. The
linear mapping between ûa(t) and ûc(t) is presented through the
PI control allocation. However, the solution given by (32) may not
satisfy the practical thruster range with the limitation of the thruster
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FIGURE 1
Time responses of ρe for different controllers.

FIGURE 2
Time responses of qe for different controllers.
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FIGURE 3
Time responses of ρe in Cases 1 and 2.

configuration (Tang et al., 2011). Thus, the optimal solution can be
improved by employing the null space of the control allocation matrix

ûa (t) = D̂
† ⊙ ûc (t) + ̂ζ (t) (33)

where D̂⊙ ̂ζ(t) = ̂0, namely Null(D̂) = { ̂ζ(t)|D̂⊙ ̂ζ(t) = ̂0}. Thus, the
thruster output can be adjusted to the available range with the proper
choice of ̂ζ(t). Furthermore, ̂ζ can be expressed as: ̂ζ(t) = χ̂(t) ⊙ Γ̂, where
χ̂(t) = [χ̂1(t), χ̂2(t),…, χ̂n−6(t)] is the basic solution of null space, and
Γ̂ = [Γ̂1, Γ̂2,…, Γ̂n−6]

T is the undetermined coefficient. Considering the
smoothness of the actuator outputs (Hu et al., 2014; Li et al., 2015;
Bai et al., 2022), the ONSPI control allocation can be described as an
optimization problem

min
̂ζ(t)

J( ̂ζ (t)) = 1
2
[ ̂ζ (t) |L̂⊙ ̂ζ (t)]

+ 1
2
[ûa (t) − ûa (t− 1) |Q̂⊙ (ûa (t) − ûa (t− 1))]

+ 1
2
[ûa (t) − ûa (t− 2) |R̂⊙ (ûa (t) − ûa (t− 2))]

s.t. Ĝ1 (t) ≤ ̂ζ (t) ≤ Ĝ2 (t) (34)

where Ĝ1(t) = ûmin(t) − D̂
† ⊙ ûc(t), Ĝ2(t) = ûmax(t) − D̂

† ⊙ ûc(t), and
ûmin(t) and ûmax(t) are the known minimum and maximum outputs
of the actuators, respectively. L̂, Q̂, and R̂ are positive and diagonal
weighting matrices with appropriate dimensions, respectively. With
the Lagrange multipliers φ̂1 ≤ ̂0 and φ̂2 ≥ ̂0, we can construct the
Lagrangian function corresponding to the constrained optimization

problem (34)

L( ̂ζ (t) , φ̂1, φ̂2) =
1
2
[ ̂ζ (t) |L̂⊙ ̂ζ (t)] + 1

2
[ûa (t) − ûa (t− 1) |

× Q̂⊙ (ûa (t) − ûa (t− 1))] +
1
2
[ûa (t) − ûa

× (t− 2) |R̂⊙ (ûa (t) − ûa (t− 2))]

+ [φ̂1| ( ̂ζ (t) − Ĝ1 (t))]

+ [φ̂2| ( ̂ζ (t) − Ĝ2 (t))] , (35)

leading to the Karush–Kuhn–Tucker (KKT) condition as follows:

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

Ĝ1 (t) ≤ ̂ζ (t) ≤ Ĝ2 (t) ,

φ̂1 ≤ ̂0, φ̂2 ≥ ̂0,

∇ ̂ζ(t)L( ̂ζ (t) , φ̂1, φ̂2) = ̂0

[φ̂1| ( ̂ζ (t) − Ĝ1 (t))] = 0, [φ̂2| ( ̂ζ (t) − Ĝ2 (t))] = 0,

(36)

where one of the feasible solutions can be represented as:

̂ζ (t) = ̂A⊙ [Q̂⊙ ̂ζ (t− 1) + R̂⊙ ̂ζ (t− 2) + ̂B] (37)

where ̂A = (L̂+ Q̂+ R̂)−1 and ̂B = Q̂⊙ D̂† ⊙ ûc(t− 1) + R̂⊙ D̂
† ⊙

ûc(t− 2) − (Q̂+ R̂) ⊙ D̂
† ⊙ ûc(t).

5 Simulation results

To verify the effectiveness of the proposed NFxTSMC (20),
simulations have been carried out using the rigid-body spacecraft
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FIGURE 4
Time responses of qe in Cases 1 and 2.

TABLE 1 Thruster configuration corresponding to STC.

+X -X +Y -Y +Z -Z

Attitude Control #9 + #14 # 10 + #13 #11 + #16 #12 + #15 #1 + #6 #2 + #5

Orbit Control #1 + #2 #5 + #6 #3 + #4 #7 + #8 #9 + #10 + #11 +#12 #13 + #14 + #15 +#16

FIGURE 5
Symmetric thruster configuration (STC).
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FIGURE 6
Thruster forces of #1-#4 in the STC.

FIGURE 7
Thruster forces of #5-#8 in the STC.

system governed by (8). The TSMC (Dong et al., 2016) and non-
singular fast terminal sliding mode control (NFTSMC) (Sun et al.,
2022) are carried out for comparison, where the identical initial
values are selected for different controllers. In particular, the
control parameters are chosen for purpose of the same settling
time. To eliminate the chattering phenomenon caused by the

sign function in (20), the hyperbolic tangent function is used as a
substitution.

It is assumed that the spacecraft moves in a circular orbit
with a height of 42240 km. The initial relative attitude and
position of the spacecraft are chosen as ρe(0) = [−20,−10,−10]Tm,
qe(0) = [0.6245,0.5,0.5196,0.3]

T, ρed = [0,0,0]
Tm, qed = [1,0,0,0]

T,
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FIGURE 8
Thruster forces of #9-#12 in the STC.

FIGURE 9
Thruster forces of #13-#16 in the STC.

ωe(0) = [0,0,0]Trad/s. The external disturbance force and torque
are ud = 10–2 × [6+ 3 sin(0.6t),5+ 4 sin(0.9t),4+ sin(0.5t)]TN and
τd = 10–5 × [2+ 50 sin(0.8t),3+ 30 sin(0.5t),1+ 70 sin(0.3t)]TNm.
The nominal mass and inertia are m0 = 100 kg and
J0 = diag{18,18,24}kgm2 while the actual ones are m = 95 kg and
J = diag{17,17,22}kgm2. The control parameters are set as: α = 0.67,

p1 = 0.8, p2 = 0.9, p3 = 1.2, δ̂ = 0.5+ ϵ0.0001, K̂ = 1.2+ ϵ1.2, α̂1 = α̂2 =
b̂ = 0.2+ ϵ0.2, α̂3 = α̂4 = 20+ ϵ20. L̂ = 200I10 + ϵ200I10, Q̂ = 10I10 +
ϵ10I10, R̂ = 20I10 + ϵ20I10, and I10 ∈ ℝ10×10 is the inertial matrix.

Figure 1;Figure 2 represent the time responses of relative position
and attitude errors under the effect of the three controllers. Under the
same initial values, the relative position errors driven by the TSMC
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and NFTSMC converge within 78s and 22s, respectively. In contrast,
the proposed NFxTSMC realizes the fastest convergence performance
(19s) due to the fact that the convergence rate and accuracy are
simultaneously considered in the sliding mode and controller design.
In Figure 2, the relative quaternion errors in the proposed controller
converge with less overshoot and a higher convergence rate compared
with other methods. It is noted that the singularity phenomenon is
eliminated in the proposed controller. In order to further validate
the fixed-time performance provided by NFxTSMC, we introduce
different initial values as follows:

Case1: ρe(0) = [−250,−150,100]Tm, qe(0) = [0.7,0.4,0.3,0.51]T,
and ωe(0) = [0,0,0]Trad/s;

Case2: ρe(0) = [2500,−1500,−1000]Tm, qe(0) = [0.3,0.4,0.3,
0.81]T, and ωe(0) = [0.2,−0.3,0.5]Trad/s.

The control parameters and objectives in Cases 1 and 2 remain
identical to the above settings. It can be seen from Figure 3
that initial values do not impact the settling time (10s) and the
corresponding translational convergence performance, while Figure 4
demonstrates the identical settling time of attitude variables under
different initial conditions. It, therefore, validates that the proposed
NFxTSMC ensures fixed-time stability without the need for exact
initial values. Moreover, Figures 1–4 indicate NFxTSMC can realize
robust transient-state performance with less overshoot.

The symmetric thruster configuration (Sun et al., 2022) (see
Figure 5) is employed to test the proposed ONSPI control allocation
scheme. Attitude and orbit control corresponding to thrusters with
respect to x, y, and z axles are summarized in Table  1.

Figures 6–9 show the practical thruster output in the STC, where
Ti corresponds to the ith thruster for i = 1,2,… ,16. As observed,
pair-mounted actuators can provide symmetrical thrusts. The feasible
solution can be found in the pseudo-inverse method within the thrust
limitation (20 N) in the STC, where the negative values can also
be offered by the thruster from the other direction. Compared with
the conventional PI method, the ONSPI method can satisfy control
allocation requirements despite control force limitations. Similarly, it
is demonstrated in Figures 6–9 that the ONSPI approach can generate
smooth actuator output and provide closed-looped stability against
external disturbances.

6 Conclusion

In this paper, we extend the result in (Sun et al., 2022) from finite-
time to fixed-time stability, where the settling time of the spacecraft
system is only dependent on user-defined control parameters rather
than initial values. The proposed non-singular fixed-time control law
provides a more accurate and robust estimation of the settling time
compared with finite-time control. Thus, it will benefit the application
scenarios with measurement errors and unknown environments.
Meanwhile, we demonstrate the scalability of the developed non-
singular fixed-time control framework which facilitates alleviating

the unwinding problem. Furthermore, the disadvantages of the
traditional pseudo-inverse method are eliminated by the optimal
quadratic programming, which ensures that all the practical actuator
outputs are subject to limitation. Finally, numerical simulations to
evaluate the overall performances for non-singularity, fast tracking,
high accuracy, uncertainty resistance, and fixed-time stability have
verified the effectiveness of the proposed method. The actuator faults
and fault-tolerant coordinated controller will be considered in future
work.
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