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Humans are increasingly coming into direct physical contact with robots in the
context of object handovers. The technical development of robots is progressing
so that handovers can be better adapted to humans. An important criterion for
successful handovers between robots and humans is the predictability of the
robot for the human. The better humans can anticipate the robot’s actions, the
better they can adapt to them and thus achieve smoother handovers. In the
context of this work, it was investigated whether a highly adaptive transport
method of the object, adapted to the human hand, leads to better handovers
than a non-adaptive transport method with a predefined target position. To
ensure robust handovers at high repetition rates, a Franka Panda robotic arm
with a gripper equipped with an Intel RealSense camera and capacitive proximity
sensors in the gripper was used. To investigate the handover behavior, a study
was conducted with n = 40 subjects, each performing 40 handovers in four
consecutive runs. The dependent variables examined are physical handover
time, early handover intervention before the robot reaches its target position,
and subjects’ subjective ratings. The adaptive transport method does not result
in significantly higher mean physical handover times than the non-adaptive
transport method. The non-adaptive transport method does not lead to a
significantly earlier handover intervention in the course of the runs than the
adaptive transport method. Trust in the robot and the perception of safety are
rated significantly lower for the adaptive transport method than for the non-
adaptive transport method. The physical handover time decreases significantly
for both transport methods within the first two runs. For both transport methods,
the percentage of handoverswith a physical handover time between 0.1 and 0.2 s
increases sharply, while the percentage of handovers with a physical handover
time of >0.5 s decreases sharply. The results can be explained by theories of
motor learning. From the experience of this study, an increased understanding
of motor learning and adaptation in the context of human-robot interaction can
be of great benefit for further technical development in robotics and for the
industrial use of robots.
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1 Introduction

As the development of robots continues, there is growing
scientific interest in the direct physical interaction of robots with
humans (Goodrich and Schultz, 2007). In the field of assembly, for
example, a tool can be handed to an assembler without the assembler
having to take his or her eyes off the task at hand. Formally, an
object handover can be defined as the joint action of a giver and
a receiver who deliberately coordinate their actions to transfer an
object. This frequent collaborative action between humans requires
a complex interplay of prediction, perception, action, learning, and
adaptation by both parties. Implementing a robot-human handover
that is as efficient and fluid as the exchange between humans is
considered an open challenge for the robotics research community
(Ortenzi et al., 2021). Technological developments are influencing
novel ways for robots to function, such as motion profiling, velocity
profiling (Shibata et al., 1995; Huber et al., 2008), grip force control
(Chan et al., 2013), camera-based hand tracking (Zhang et al., 2020)
and sensing (Mamaev et al., 2021) combinedwithmachine learning.
The goal of all these developments is to achieve the best possible
object handover between robots and humans. Successful handovers
between humans represent a benchmark to be achieved in robotics
in terms of speed, fluidity, and acceptance (Glasauer et al., 2010;
Strabala et al., 2013; Ortenzi et al., 2021).

The handover of an object is characterized by complex cognitive
and physical processes that allow humans action to be coordinated
in interaction with other humans (Ortenzi et al., 2021). Humans
use speech, gaze behavior, body movements, and hand and arm
postures to communicate the intention to hand over what as well as
when and where it will be done (Strabala et al., 2013; Ortenzi et al.,
2021). The what component refers to what kind of action the
interaction partner will perform and what his or her intentions
are. The when component, on the other hand, is relevant for
temporal coordination. Information about when the other person
will perform an action and how long it will take contributes to fluid
and accurate timing. For spatial coordination in a shared action
space, it is important to be able to make predictions about where
the other person, as well as the objects they are handling, will be in a
future position (Sebanz and Knoblich, 2009). According to Castiello
(2003), successful collaboration requires understanding the actions
and intentions of the people involved. In addition, it is necessary
to take into account the actions of the interaction partners in their
actions to ensure joint coordination (Glasauer et al., 2010). In the
process, the partners agree on various framework conditions and
aspects of implementation. These can be agreed upon explicitly
through verbal communication or indirectly and adaptively in
the course of the interaction through nonverbal communication
(Huber et al., 2008). Communicative signals allow us to make
predictions about the actions of others. Prediction facilitates the
coordination between the interaction partners (Strabala et al., 2012;
Strabala et al., 2013; Belhassein et al., 2022). If humans were merely
reactive, they would not be able to achieve the fluidity and speed
of coordination that is required in many collaborative activities
(Sebanz and Knoblich, 2009).

At the present time, several theories and models exist that
explain the mutual adaptation of joint actions (Sebanz et al., 2006;
Vesper et al., 2010; Knoblich et al., 2011). At the core of adaptation
to a human partner is the predictability of the partner’s actions.

In contrast to self-generated actions, such as a simple object
manipulation, human-to-human object handovers represent only
semi-predictable tasks, as there is no precise knowledge for humans
about the partner’s future movement behavior (Brand et al., 2022).
The sensory effects of one’s own actions can be well anticipated
in most cases because the underlying processes of motion control
are available for this prediction (Wolpert and Ghahramani, 2000)
or even represented as such (Prinz, 1997; Hommel, 2009; 2019).
People have a basic internal model of another person’s body and
can estimate its current state from visual information (Mason and
Mackenzie, 2005), yet the predictability of movement is limited
because no information about the other person’s motor commands
is available (Blakemore and Decety, 2001). Because other people’s
action control processes are not accessible, the challenge is to
predict others’ actions and match one’s own actions to them,
even though humans themselves do not have direct access to
other people’s action control (Vesper, 2020). This means that
predictions must be based on other people’s observable movements
(Wolpert et al., 2003; Wilson and Knoblich, 2005; Vesper, 2020),
which may make them less accurate than anticipating one’s own
sensory action effects. The extensive practice that people undergo
over the course of their lives may allow them to predict the behavior
of their interaction partner based on knowledge of their situation
(Aglioti et al., 2008; Ikegami and Ganesh, 2017). Brand et al. (2022)
hypothesize that motor control during object handovers involves a
sophisticated and commonly established etiquette of feedforward
and feedback mechanisms that is implicitly shared within the dyad
of two interacting individuals. If this is possible, humans could
anticipatorily adjust their own control based on the current state of
their partner.

In robot-human object handovers, the human partner has
no internal models available to predict the robot’s behavior.
Accordingly, the human partner must plan and adapt its behavior
based on the robot’s action monitoring to ensure fast and reliable
object handovers. Depending on how many degrees of freedom a
robot has, it is difficult to nearly impossible for users to estimate the
location of the handover based on the robot’s potential kinematics.
In motor neuroscience the process of motor adaptation is described
as a process in which the motor system responds to changes
in the body and/or the environment to return to a previous
level of performance under these new conditions (Krakauer and
Mazzoni, 2011). In order to adapt to the robot, the human must
make a prediction based on certain parameters of the robot. The
predictability of the trajectory and the robot’s target position can be
considered as appropriate parameters for handovers. For handovers
that are re-planned at each handover to adapt to the position of
the human partner’s hand (Ortenzi et al., 2021), this prediction will
be more difficult than for handovers that always navigate to the
same handover location on the same trajectory. According to Sebanz
and Knoblich. (2009), the physical handover must be much more
reactive due to the poorer prediction of the movement trajectory,
which has the consequence that humans cannot realize such a fluid
and fast coordination of actions.

Ortenzi et al. (2021), in line with other authors (Mason and
Mackenzie, 2005), divide handovers into a pre-handover phase and
a physical handover. The pre-handover phase includes explicit and
implicit communication between the partners involved, as well
as the grasping and transporting of the object by the giver. The
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FIGURE 1
Phasing of human-human object handovers with directed attention of the receiver to the handover object with the addition of the attributes “active”
and “passive” (mod. according to Ortenzi et al., 2021).

physical handover begins with the first contact of the receiver’s
hand with the object. This phase is completed when the giver
removes his hand from the object and the object is completely in
the hand of the receiver. To better understand human behavior in an
object handover, we add another aspect to the phase classification
presented by Ortenzi et al. (2021). This involves assigning an active
and a passive attribute to the giver and receiver for each action in
the respective phase (Figure 1). Using this description, we want to
illustrate that the receiver behaves actively at two key points of the
object handover. First, by actively expressing the desire to receive a
particular object (1.2), and second, by actively reaching for the object
to initiate the physical interaction (2.2). Based on these explanations,
we assume that a highly adaptive handover that deliberately moves
the handover object toward the receiver’s hand forces the receiver
into a passive role of waiting instead of an active role of grasping the
object. This circumstance may result in the final decision to take the
object being taken away from the initiator of the actual handover
action, which may lead to poorer handover performance in terms of
speed, fluency, and subjective perception.

Currently, it is unclear what the consequences are when the
robot tries to adapt to the human while the human tries to adapt
to the robot. The main goal of this study is to better understand
whether handovers adapted to the humanhand lead to higher overall
handover performance than handovers with a fixed robot target
position, or vice versa. In the case of object handovers between
robots and humans, it is important to understand that the overall
handover performance is a result of the interaction between robot
and human. Based on the assumption of worse predictability of the
trajectory and the target position of the adaptive transport method,
it is first expected that the adaptive transport method leads to
higher physical handover times than the non-adaptive transport
method. Second, the non-adaptive transport method is expected
to result in earlier handover interventions before the robot reaches
its target position than the adaptive transport method. Third, the
adaptive transport method is expected to result in lower subjective

ratings of the handover than the non-adaptive transport method.
Furthermore, there are no studies to date that have performed robot-
human handovers over multiple runs with the same conditions
and high numbers of repetitions. We assume that most studies in
the field of robot-human or human-robot handovers have been
conducted with too few repetitions and too few runs to produce
meaningful results for the evaluation of human behavior or even for
the evaluation of robotic systems. Accordingly, it is assumed that the
subjects’ adaptation to the handover task and the robot over timewill
be reflected in all dependent variables. We assume that the physical
handover time will decrease over the course of the runs, that the
handover will be intervened earlier in the course of the runs, and
that the subjective ratings will either improve or deteriorate.

For this purpose, a study with two experimental groups was
conducted. One experimental group performed handovers with the
adaptive transportmethod, the other experimental groupperformed
handovers with the non-adaptive transport method. To evaluate
the handover performance, the physical handover time, the early
handover intervention before the robot reaches its target position,
and the subjective perception of the subjects are compared.

2 Materials and methods

2.1 Experimental setup

The technical setup of the experiment consists of a table on
which a collaborative robot (model Panda by Franka Emika) is
mounted. The robot has seven degrees of freedom and a payload of
3 kg. Both a 2-jaw gripper and an Intel RealSense RGB D camera
are mounted on the end effector of the robot. Capacitive proximity
sensors are integrated in the gripper jaws.

In the experiment, a velocity controller was implemented using
the Franka velocity Cartesian interface within the ROS framework.
The controller expects a 6D pose vector as input. A velocity vector
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FIGURE 2
Technical setup of the handover experiment with Panda robot arm
and gripper by Franka Emika.

is calculated based on the remaining distance to the target and the
robot’s current velocity, while considering the soft robot limits: a
maximum velocity of 0.7 m/s, a maximum acceleration of 6 m/s2,
and amaximum jerk of 600 m/s³.The control loop operates at 1 kHz,
making the velocity controller feel natural and smooth for users. In
the non-adaptive control policy, the target position for the robot is
predefined, and the robot’s trajectory ismaintained for all handovers
in the non-adaptive mode. For the adaptive control policy, the 6D
pose of the receiver’s hand is tracked and used to update the position
of the human hand as the robot’s target. The update frequency is
30 Hz, which means no noticeable delay is visible to the naked eye.

For stopping the robot there are two different options available:
hard stop and soft stop. The hard stop, on one hand, ignores any
limits and results in an abrupt halt. This function is only used
for the emergency stop. The soft stop on the other hand gradually
reduces the robot’s velocity to zero while adhering to the robot’s
limits. This method was used by default for all handovers. The
implemented controller also takes into account the robot’s limited
working space, disregarding target positions outside of it. This helps
prevent collisions with the table and exceeding the physical limits of
the robot.

A ceramic cup is used as the handover object. The cup is
initially placed in the red container on the left side of the table.
The subjects stand in a predefined position at the front of the table
(Figure 2). The position was chosen so that the handover space for
both the 5th female percentile and the 95th male percentile lies
between the preferred and the maximum working range of the right
arm (DIN EN ISO 14738, 2008). The subjects are in their starting
position outside the reachable space of the robot, they can enter
the collaborative workspace by extending their arm. The physical
handover of the cup takes place in the area of the right third of the
table in the preferred right workspace of the subjects.

2.2 Procedure of an object handover

At the beginning of the handover experiment, the gripper of the
Franka Panda is located above the center of the table (Figure 3). This
position is called the start position. From this starting position, the
cup in the red container is approached. The next step is to grasp the
cup. To do this, the robot first moves to a position above the cup,
opens the gripper, andmoves down to the cup until the gripper’s jaws
are at the height of the cup. When this position is reached, the jaws
close and the cup is securely gripped.With the cup gripped, the robot
then moves to the overview position. This position is chosen so that
the subject’s hand can be tracked by the camera. Google MediaPipe
Hands, an approach from Google Research’s MediaPipe framework
that uses machine learning to ensure fast and robust hand and finger
tracking, is used to detect the subject’s hand (Zhang et al., 2020).

In this study, two different transport methods are used for the
object handovers.The two transport methods are called the adaptive
transport method and the non-adaptive transport method. In the
adaptive transport method, the handover space is first scanned for
a hand. This allows the subjects to control if and when the robot
starts to move. As soon as a hand is detected, the robot arm starts
to move, aimingat the hand as its target point. Based on the camera
data, the robot can adjust its position to a changed hand position
up to 30 cm before reaching the hand. Once the distance to the
hand is less than 30 cm, the position cannot be adjusted. Based on
the last image data of the hand, an end position is calculated and
approached.

In the non-adaptive transport method, the handover space is
also scanned for a hand. In this case, hand tracking is used only
as a start signal to start the handover process. Once the hand is
detected, the robot moves to a previously defined target position.
The target position and the traversed path are identical for each
handover using the non-adaptive transport method. The target
position was chosen to be between the preferred and maximum
working range of the subjects’ right arm from an ergonomic point
of view. The robot moved at an average speed of 0.3 m/s for all
movements.

Capacitive proximity sensors (Alagi et al., 2016) are used to
detect the grasp. These sensors are integrated into the gripper jaws
of the robot. To detect a grasp, a threshold value was defined that
must be exceeded for the gripper to release the cup (Mamaev et al.,
2021). Simultaneously with the opening of the gripper, the robot
moves up 10 cm to give the subjects more space to grasp the cup.
For both transport methods, the subjects can wait for the robot to
reach its target position and then grasp the cup, or they can grasp the
cup while the robot is still moving toward its target position. After
successfully grasping the cup, the subjects place it back into the red
container. At the same time, after releasing the cup, the robot moves
back to the red container to pick up the cup again.Thenext handover
starts again with the robot grasping the cup.

2.3 Sample

Forty students and employees of the Karlsruhe Institute of
Technology (KIT) participated in the study (age: 26.33 ± 5.21 years;
25 males). Seven subjects had previous experience with robots and
were evenly distributed between the two experimental groups. All
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FIGURE 3
Sequence of a handover: (A) initial position of the robot, (B) robot grasps the cup, (C) subject gives the signal to start handover, (D) subject grasps cup,
(E) robot releases cup, (F) subject returns cup.

subjects were right-handed and performed the experiment with
their right hand. All subjects voluntarily participated in the study
and were fully informed about the study procedure, their rights, and
the anonymity of the data. All subjects signed an informed consent
form. There was no compensation for participation in the study.

2.4 Experimental procedure

Prior to the study, the subjects were assigned to experimental
group adaptive or non-adaptive in a parallelized manner. The
experimenter demonstrated two object handovers to all subjects,
each using a transport method appropriate for the experimental
group, and explained the handover task. The technical operation
of the robot setup was not explained to the subjects. The subjects
did not perform a test trial and started directly with the first run of
handovers.

Figure 4 provides an overview of the study design. For the
subjects, a run consisted of ten consecutive handovers. After the ten
handovers, the subjects went to a separate computer and answered
five questions about their subjective perception.The questions of the
questionnaire could be answered on a 5-point Likert scale and were
as follows.

• Did you perceive the handover as fluid?
• Could you easily take the object from the robot?
• Do you trust the robot to do the right thing?
• Did you feel safe during the handover?
• How satisfied are you with the handover overall?

After answering the questions, the subjects returned to the
robotic table and completed the next run. Both experimental groups
performed ten handovers in each of the four runs, using the same
transport method. The break between the runs was approximately
1 min. Following this pattern, each subject completed a total of four
runs. Thus, each subject completed a total of 40 handovers and
answered the five questions a total of four times. The total time per
subject was approximately 40 min.

2.5 Data processing

To study the handover performance, the influence of the
transport method, as an independent variable, on the physical
handover time, the early handover intervention, and the subjective
perception of the subjects, as a dependent variable will be examined
at multiple time points.

The physical handover time is measured by the capacitive
proximity sensors of the robot and is defined as the time between the
first physical contact of the subject with the handover object and the
exceeding of the threshold, which then causes the cup to be released.
The physical handover time is expressed in seconds.

For the descriptive presentation of the physical handover time
data, the data were first examined for outliers. Values >0.5 s
were defined as outliers. Based on the outlier analysis, six classes
were formed with a distance of 0.1 s from <0.1 s to >0.5 s. The
completed handovers were assigned to the defined classes based
on their physical handover times and reported as a percentage of
all completed handovers in the respective experimental group. The
changes in the percentages of the handovers in the course of the four
runs are additionally analyzed and differentiated according to the
defined classes.

The early handover intervention is defined as the difference
vector between the coordinate point of the robot’s overview position
and the coordinate point of the object release triggered by the
subjects in three-dimensional space:

Op = Overview point; Rp = Release point

prematurehandover = |O⃗p − R⃗p| =(
Opx

Opy

Opz

)−(
Rpx

Rpy

Rpz

)

The lower the value in cm, the closer the object was grasped
to the robot’s overview position, and therefore the earlier the
participants intervene in the robot’s transport movement.

To test for significant differences in physical handover time
and early handover intervention between groups (adaptive,
non-adaptive) and runs (1–4), analyses of variance in the form of
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FIGURE 4
Study design.

two-factor mixed ANOVA are performed. Not all data are normally
distributed. However, since ANOVA is considered robust to a
violation of the normal distribution when sample sizes are equal,
it is considered appropriate for this study (Schmider et al., 2010;
Wilcox, 2012; Field et al., 2014). ANOVAs are followed by post
hoc testing with Bonferroni correction. The significance level is
set a priori at p = 0.05. The effect size is given by eta squared (η2).
If sphericity was violated, the degrees of freedom were adjusted
using the Greenhouse-Geisser correction. In order to investigate
the subjective perception of the subjects regarding the handover,
the data of the answered questionnaires are used. To quantify the
differences between the different transport methods, the data were
first processed descriptively and plotted. To statistically validate the
results, pairwise comparisons of runs 1–4 were calculated using
the Wilcoxon test. Group differences in each run were calculated
using the Mann-Whitney U test. The effect size is reported using
the biserial rank correlation. The significance level was set a priori at
p = 0.05.

3 Results

Theresults section is divided into three subsections that consider
the three performance parameters of the study: physical handover
time, early handover intervention, and subjective evaluation. The
physical handover time is considered in terms of the differences
in the mean values, between the study groups and the completed
runs. An overview of the percentages of all completed handovers
within the class limits over the course of the runs follows. The early
handover intervention is considered based on the differences in the
mean values between the study groups and the completed runs. The
third subchapter presents the answers to the questions about the
subjects’ subjective perceptions.

3.1 Influence of the transport method on
the physical handover time

3.1.1 Comparison of the mean values of the
physical handover time

Figure 5 gives an overview of the progression of the mean
physical handover times over the course of the four runs.There is no

statistically significant interaction between the runs and the groups
[F (3,110) = 0.108, p = .959, η2 = .001]. There is no significant main
effect of groups on physical handover time [F (1, 38) = 1.542, p =
.222, η2 = .012]. Physical interaction timedecreases significantly over
the course of the runs [F (3,114) = 21.780, p < .001, η2 = .014]. In
group adaptive, the physical handover time significantly decreases
from 0.80 s (±0.41 s) in the first run to 0.45 s (±0.29 s) in the second
run [t (19) = 4.161, pbonf = 0.002, d = 1.076]. In group non-adaptive,
the physical handover timedecreases from0.67 s (±0.34 s) in the first
run to 0.38 s (±0.22 s) in the second run also significantly [t (19) =
3.900, pbonf = 0.006, d = 1.008].

There are no statistically significant differences between
experimental groups A (adaptive) and B (non-adaptive), while
for both experimental groups, the mean physical handover time
decreases significantly from the first to the second run.

3.1.2 Comparison of the percentages of
handovers within the class boundaries of the
physical handover time

Looking at themean values, it is clear that the physical handover
time decreases over the course of the four runs. At the same time, the
mean values show high standard deviations. Six classes were defined
to provide amore nuanced view of how the reduction inmean values
occurs and in which areas the greatest changes occur.The handovers
were assigned to the defined classes separately by runs and study
group. Figure 6 gives a descriptive overview of the development of
the percentages of handovers within the classes <0.1 s to >0.5 s over
the course of the four runs. For each class, the group differences and
the differences over the course of the four runs are considered.

In summary, for handovers <0.1 s, the adaptive transport group
has lower percentages compared to the non-adaptive transport
group. For handovers with handover times between 0.1 s and
0.2 s, there are no major differences in the percentages of the two
experimental groups. In both experimental groups, there is an
increase in the percentage of handovers between 0.1 s and 0.2 s
over the course of the four runs. For handovers between 0.2 s and
0.3 s; 0.3 s and 0.4 s; and >0.5 s, the adaptive transport group has
higher percentages compared to the non-adaptive transport group.
For handovers >0.5 s, the adaptive transport method results in
higher percentages than the non-adaptive transport method. For
handovers >0.5 s, both experimental groups experience a decrease
in percentages over the course of the first two runs.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1155143
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Käppler et al. 10.3389/frobt.2023.1155143

FIGURE 5
Comparison of the mean physical handover times of the two experimental groups over the course of the four runs.

The largest percentage increase for both study groups occurred
for handovers between 0.1 s and 0.2 s, while the largest percentage
decrease for both study groups occurred for handovers >0.5 s.

3.2 Influence of the transport method on
the early handover intervention in the
handover

3.2.1 Comparison of the mean values of the early
handover intervention

Figure 7 shows the progression of the mean early intervention
scores over the course of the four runs. There is no statistically
significant interaction effect between runs one to four and the groups
[F (3,114) = 0.696, p = 0.556, η2 = 0.002]. The effects between the
study groups show no significant differences [F (1,38) = 1.010, p =
0.321, η2 = 0.022]. There is a significant main effect of the runs with
earlier handover interventions in the course of the runs [F (3,114) =
10.074, p< .001, η2 =0.029]. In thenon-adaptive group, the handover
is not intervened significantly earlier in the course from the first
to the fourth run. For group adaptive, the handover is intervened
significantly earlier in the course from the first to the third [t (19) =
4.036, pbonf = 0.003, d = 0.505], and compared from the first to the
fourth run [t (19) = 4.137, pbonf = 0.002, d = 0.517]. Group adaptive
grasps the handover object 54.87 cm (±6.8 cm) away from the start
position in the first run and 51.11 cm (±7.2 cm) away from the start
position in the fourth run.

In the experimental group with the non-adaptive transport
method, the handover object is not grasped significantly earlier from
the first to the fourth run. In the adaptive transport group on the
other hand, the handover object is grasped significantly earlier in
the third and fourth run than in the first run.

3.3 Influence of the transport method on
the subjective evaluation

Figure 8 provides an overview of the progression of the
subjective ratings over the course of the runs. The evaluation of
trust in the robot shows no significant differences for group adaptive
as well as for group non-adaptive within the four runs. In the
second run, group adaptive (3.9 ± 0.85) and group non-adaptive
(4.6 ± 0.6) show a significant difference in the trust score (W =
106.000, p = 0.006, r = −0.470). In the third run, there is also a
significant difference (W = 102.500, p = 0.004, −0.488) in trust
ratings between group adaptive (4.0 ± 0.6) and group non-adaptive
(4.6 ± 0.6).

Group adaptive’s rating of perceived safety during the handover
shows a significant decrease (W = 62.000, p = 0.009, r = 0.879) in
rating from 4.6 (±0.6) in the first run to 4.0 (±0.83) in the second
run. Group non-adaptive’s score shows no significant differences
across the four runs. In the second run, group adaptive (4.0 ± 0.83)
and group non-adaptive (4.7 ± 0.47) show a significant difference in
their ratings of perceived safety (W = 99.000, p = 0.003, r = −0.505).
In the third run, there is also a significant difference (W = 98.500,
p = 0.003, r = −0.508) in the evaluation of the perception of safety
between group adaptive (4.1 ± 0.6) and group non-adaptive (4.7 ±
0.67). Another significant difference in the perception of safety is
present in the fourth run (W = 125.500, p = 0.015, r = −0.373)
between the adaptive (4.3 ± 0.86) and the non-adaptive group
(4.9 ± 0.37).

The transport method shows a significant influence on the trust
in the robot and the perception of safety during the handovers. In
contrast, the transport method does not influence the perceived
fluency of the handover, the ease of taking, and the overall satisfaction
with the handover.
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FIGURE 6
Comparison of the percentages of handovers of both experimental groups within the four runs using the defined class limits of the physical handover
time: [< 0.5 s]; [> 0.1; 0.2 s]; [> 0.2; 0.3 s]; [> 0.3; 0.4 s]; [> 0.4; 0.5 s]; [> 0.5 s].

4 Discussion

Theprimary objective of this studywas to compare the handover
performance of a handover online adapted to the human handwith a
handover whose final position was predetermined. For this purpose,
a study with two experimental groups was conducted. Group
adaptive performed 4 × 10 handovers using the adaptive transport
method, while group non-adaptive performed 4 × 10 handovers
using the non-adaptive transport method. Physical handover time,
early handover intervention and subjective perception were used as
measures to evaluate the handovers.

The adaptive transport method does not result in significantly
higher mean physical handover times than the non-adaptive
transport method. The non-adaptive transport method does not
result in significantly earlier intervention in the handover process
than the adaptive transport method. The adaptive transport
method results in significantly lower trust and perceived safety
ratings than the non-adaptive transport method. The physical

handover time decreases significantly within the first two runs for
both experimental groups. Early handover intervention increases
significantly in the adaptive transport group in the course of the
runs. The adaptive transport group showed a significant decrease in
the safety perception rating over the course of the runs.

4.1 Influence of the transport method on
handovers

The adaptive transport method leads to higher mean physical
handover times in all runs. However, the differences to the non-
adaptive transport method are not significant. The mean values
of both transport methods show high standard deviations, which
are due to handovers with very high physical handover times.
Dividing the handovers into classes of physical handover time gives
a more precise insight into the distribution of the handovers. The
adaptive transport method results in lower percentages for very fast
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FIGURE 7
Comparison of the mean values of the early handover intervention, parameterized by the distance between the overview position of the robot and the
release position of the object, of the two experimental groups during the four runs.

handovers and higher percentages for slower handovers compared
to the non-adaptive transport method. For the early handover
intervention, there are no statistical differences between the adaptive
and the non-adaptive transport method. The transport method has
no significant effect on the subjectively perceived fluency of the
handover, the ease of taking the object, and the overall satisfaction
with the handover. The same sensor technology was used for the
handover of the object in both experimental groups. The function
of the gripper accounts for a large part of the grasping and releasing
of the object and thus has a large influence on the evaluation of the
above-mentioned parameters. Trust in the robot and the perception
of safety are rated significantly lower for the adaptive transport
method than for the non-adaptive transport method.

In the adaptive transport method, the start signal for the
handover is given by the subjects, after which the subjects observe
the robot’s movement path, and estimate the target position based
on this. It can be assumed that the adaptive transport method
is associated with more uncertainties in predicting the robot’s
target position, which leads to lower trust and perception of
safety. By varying the starting position of the subject’s hand,
the robot’s trajectory is adjusted, which can cause the robot’s
motion to lose predictability for the subjects. This complicates the
predictability of the trajectory and target position compared to
the non-adaptive transport method. In the non-adaptive transport
method, the subjects get used to the same trajectory and target
position more easily, which gives them more freedom in deciding
when to intervene and how to hold the hand for the handover.
This may explain the higher trust and sense of safety towards the
robot. On the other hand, it could also be argued that the robot’s
intention is clearer to the subjects with the adaptive transport
method because the robot targets the subjects’ hand, whereas the
non-adaptive transport method bluntly follows the same trajectory
with the same target position. The earlier handover intervention of
the adaptive group in the course of the runs could be explained by an

increased confidence in the robot. However, this is contradicted by
the subjectively significantly lower evaluated confidence and safety
perception.

4.2 Adaptation to the robot in the course
of the runs

A closer look at the studies that have been conducted
in the area of human-human, robot-human, and human-robot
handovers reveals that they either have small sample sizes or have
performed only a small number of handover repetitions, or both
in combination (Becchio et al., 2008; Huber et al., 2008; Basili et al.,
2009; Dehais et al., 2011; Aleotti et al., 2012; Pan et al., 2018).
Depending on the purpose of the study, the small sample size and the
small number of repetitions were sufficient to answer the respective
research question or to evaluate and advance the respective technical
development. However, in agreement with Leichtmann et al. (2022),
we see great potential in conducting studies with larger sample sizes
and also higher numbers of repetitions, thereby uncovering more
details of human behavior in cooperation with robots and making
them useful for further research and development.

Through the four runs performed, each with ten handovers, it
was shown that both transport methods significantly reduce the
mean physical handover time from the first to the second run.
The percentage of handovers with a handover time between 0.1 s
and 0.2 s in both experimental groups increases sharply over the
course of the four runs, regardless of the transport mode. In the
class of handovers with handover times >0.5 s, the course of the
four runs leads to a strong decrease in the percentages. Based on
the physical handover time, two central tendencies of adaptation can
be identified in the course of the runs. First, subjects try to reduce
handovers with very long interaction times. Second, subjects try to
perform handovers with interaction times between 0.1 s and 0.2 s.
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FIGURE 8
Comparison of the subjective perceptions of the two experimental groups in the four handover runs. Ratings on a 5 point scale from 1: no, not at all; to
5: yes, completely. Written informed consent was obtained from the [individual(s) AND/OR minor(s)’ legal guardian/next of kin] for the publication of
any potentially identifiable images or data included in this article.

From a neuroscientific perspective, visual feedback requires
approximately 100 ms (Wolpert et al., 2013) to be processed by
the retina and transmitted to the visual cortex. Döhring et al.
(2020) propose that tactile sensory feedback about an object can
be processed within the first 80–100 ms. Further delays occur in
further processing. The combined delay of the sensorimotor loop is
approximately 200 ms (Wolpert et al., 2013) until the response to a
visual or tactile stimulus. This means that fast movements cannot
use sensory feedback. Accordingly, open-loop control must be used
to initialize a movement (Wolpert et al., 2013). In most motor
systems, motor control is achieved by both processes, feedforward
and feedback. Since sensory feedback is not available for the first
part of a movement, feedforward processes alone generate the initial
motor commands. As the movement progresses, information about
the movement becomes available, leading to feedback control to
intervene (Wolpert et al., 2013).

Regarding the increase in the percentage of handovers between
0.1 and 0.2 s, one could speculate that the increase in percentages

could be explained by a decrease in feedback-based control and an
increase in feedforward control. In a previous study of human-to-
human handovers, a high number of handovers were performed
with an empty plastic cup (Käppler et al., 2021). These handovers
were recorded with a marker-based motion capture system and
analyzed for their physical handover time. The mean handover time
of the empty cup from human to human in this study was ∼0.16 s,
which is between 0.1 s and 0.2 s and suggests that there is some kind
of optimal speed for the physical handover time here. In this context,
it is important to check whether the data from the motion capture
recording are comparable to the data generated by the capacitive
proximity sensors.

Since the subjects have already performed many object
handovers with other people in their lives, they have a certain
idea of how fast and smooth an object handover should be. The
changes in the listed values can be explained in the context of
error-based learning. Through the process of error-based learning,
human motor behavior is constantly adapting. When the motor
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system encounters an error, its assessment of the body and the
environment changes, and the next movement is immediately
modified to counteract the underlying error (Diedrichsen et al.,
2010). If the problems that occur during handovers with the robot
are considered perturbations, then the changes in the data can be
attributed to motor adaptation. This describes the ability of the
motor system to regain its previous performance under changed
external or internal conditions (Krakauer and Mazzoni, 2011).

Descriptively, the subjects tend to reduce the distance between
the robot’s overview position and the grasping position of the
object for both transport methods. For the non-adaptive transport
method, this reduction is not significant. For the adaptive transport
method, it was shown that the distance between the overview
position of the robot and the grasping position of the object is
significantly reduced over the course of the runs. A hypothesis by
Izawa et al. (2008) assumes that the goal of the nervous system is
to maximize performance in a new environment. Internal models
are used to search for a better movement plan to minimize the
implicit motor effort and maximize the yield of the movement.
The property of maximizing the yield of the movement can explain
why subjects tend to engage early in the handover. The subjects
try to speed up the overall handover process by intervening
earlier. At the same time, this approach reduces the amount of
information processing required. During the movement of the
robot, a continuous observation of the robot arm takes place.
Based on the observation of the robot movement, estimations for
the best possible intervention location and time are continuously
calculated. By intervening earlier in the robot movement, the costs
are shifted from an observation effort to an effort for prediction.
Whether this actually saves costs remains unclear. In any case,
the yield is higher due to the faster executed object handover.
Accordingly, the overall balance is positive. In this context, the
question arises whether early handover intervention is a general
human behavior or whether it occurs because the overall process is
too slow. It would be interesting to conduct further studies on early
handover intervention with different movement speeds to check at
what point the movement speed optimally matches the subjects’
grasping.

4.3 Limitations

Leichtmann et al. (2022) show in their article that HRI user
studies face similar problems of replicability as other behavioral
science disciplines. Accordingly, this section highlights the main
limitations of this study.

The sample of the study came from the KIT environment.
It is quite conceivable that the investigated sample has a higher
affinity for technology and thus fewer inhibitions to interact with
a robot than the basic population of all people. In this study, a
commercially available Franka Panda robot including a gripper was
used. The capacitive proximity sensor technology used to trigger
the handover of the object and to record the physical handover
time is a prototype development that can be requested from the
IPR for replication or further development of the experimental
setup. Further, regarding the hardware used, it should be noted that
capacitive proximity sensing works best with conductive materials
and materials with high electrical permittivity. Accordingly, this

type of sensing is not equally applicable to every type of object
property. The threshold value for the capacitive proximity sensors
to release the object was pre-set to a fixed value. However, the
threshold value depends on several factors. The area of the object
being grasped, and therefore the size of the subject’s hand, as well as
skin conductance and ambient humidity can all affect how well the
sensor works. For future research, a calibration of the sensor to the
respective subject could be developed. However, calibration will also
lead to initial habituation. With prior knowledge and habituation, it
is not possible to investigate how subjects intuitively adapt to the
robot.

The speed of movement of the subjects was not recorded in
this study. We focused on conducting the study using the robot’s
integrated sensor technology. The detailed recording of the subjects’
movement speed as well as their acceleration and deceleration
behavior could provide important additional information for
the evaluation and interpretation of the subjects’ behavior. The
measurement parameters of physical handover time and early
handover intervention have the potential to be collected as
standardized metrics across a variety of different measurement
systems, such as marker-based motion capture systems or
capacitive proximity sensors. As requested by Steinfeld et al. (2006)
and Aly et al. (2017), the two measurement parameters should
contribute to an easier and fairer comparison between different
technical solutions. In this context, appropriate comparative studies
of the respective measurement systems need to be carried out.

In the presented study, the robot arm was statically mounted on
the table where the handovers took place. The subjects were fully
focused on receiving the object from the robot. The transferability
of the results of this study should be tested in a more practical
context. The type of robotic setup used is well conceivable in
an assembly setting, but the focus will be more on the assembly
task, which is why further studies should be conducted in the
future on handovers without focusing on the handover object while
performing a secondary task. In the context of social care robots,
it is important to consider that the physical handover of the object
is preceded by an approach to the person by a mobile platform of
the robot. Therefore, it should be investigated in the future whether
the results of this study are also valid when the physical handover is
preceded by an approach of the robot to the person.

5 Implications

In the course of this study, it has been shown that the collected
data can change significantly during the runs. These changes in the
data can be attributed to the adaptation of the subjects to the robot
and to the handover task. Therefore, in human-robot interaction
studies, it is recommended to always have a sufficient number of
repetitions of a movement and to perform at least two, preferably
three or more runs per test condition.

Based on this study, it is recommended to use comparable
metrics when designing human-robot or robot-human handover
studies to make studies with similar focus comparable. The
physical handover time and early handover intervention metrics
have the potential to be collected using a variety of different
measurement systems, such as marker-based motion capture
(like VICON, ARTTRACK, etc.) or capacitive and other sensors
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integrated into the robot.Themeasurement parameters can be easily
integrated into robotic systems with appropriate computational
routines and provide a great scientific added value in human-robot
studies.

It is also important to understand the context of use and the
user’s goals for using a robot with the appropriate capabilities. If
a person actively wishes to have an object handed to them, the
final impulse should come from the receiver. If the attention of
the receiver is focused on the object to be handed, the handover
should be designed so that the user actively grasps the object rather
than transporting it completely to the hand. On the other hand,
if the goal is to blindly grasp the object without the receiver’s
visual attention, this requires adaptation to the receiver’s hand.
If the attention of the receiver is not focused on the object
being handed, then the object should be transported to the hand
so that physical contact is made and the receiver can react
to it.

The study showed that an adaptive transport method does not
lead to faster physical handovers than a non-adaptive transport
method.As the technical development in the field of robot-humanor
human-robot handovers progresses, it becomes more important to
pay more attention to the research field of human motor control and
especially to the research in the field ofmotor adaptation. In the past,
a lot of research has been conducted and published in the field of
motor adaptation (Krakauer et al., 2019).The theories behindmotor
adaptation processes need to be applied to joint actions between
humans and human-robot interactions. It is important to use this
knowledge to tailor robot adaptation mechanisms to the humans
who will later use the robot. In conclusion, this study has provided
valuable insights into the factors that influence the success of object
handovers between robots and humans. Overall, this study makes a
significant contribution to the field of human-robot interaction by
providing a deeper understanding of how to design effective object
handovers.
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