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Optimization of electrode
positions for equalizing local
spatial performance of a
tomographic tactile sensor

Akira Kojima*, Shunsuke Yoshimoto and Akio Yamamoto

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

A tomographic tactile sensor based on the contact resistance of conductors is
a high sensitive pressure distribution imaging method and has advantages on
the flexibility and scalability of device. While the addition of internal electrodes
improves the sensor’s spatial resolution, there still remain variations in resolution
that depend on the contact position. In this study, we propose an optimization
algorithm for electrode positions that improves entire spatial resolution by
compensating for local variations in spatial resolution. Simulation results for
sensors with 16 or 64 electrodes show that the proposed algorithm improves
performance to 0.81 times and 0.93 times in the worst spatial resolution
region of the detection area compared to equally spaced grid electrodes.
The proposed methods enable tomographic tactile sensors to detect contact
pressure distribution more accurately than the conventional methods, providing
high-performance tactile sensing for many applications.
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1 Introduction

Tactile sensors have been utilized in various fields, such as robotics, human–machine
interface, and biomedical engineering (Dahiya et al., 2010; Tiwana et al., 2012; Al-
Handarish et al., 2020; Pang et al., 2021). For example, a tactile sensor array installed
on a humanoid robot can be used for object recognition (Sundaram et al., 2019;
Pohtongkam and Srinonchat, 2021). A contact pressure distribution obtained using a
tactile sensor can be used for recognizing touch gestures as a human–machine interface
(Cirillo et al., 2017; Zhang et al., 2017). To attach a tactile sensor to human skin for
health monitoring, a stretchable electronic skin capable of sensing multiple stimuli, such
as pressure and temperature, has been proposed (Wang et al., 2015; Hua et al., 2018).
Thus, the demand for flexible, complex shape and large scale tactile sensors has been
increasing.

Physical quantities related to tactile sensors include contact pressure, vibration,
deformation, and temperature. In particular, contact pressure distribution on/between
objects is one of the most important signals for understanding the contact state.
Resistive (Shimojo et al., 2010), capacitive (Li et al., 2017),magnetic (Kawasetsu et al., 2018),
and optical (Yuan et al., 2017) methods are mainly used to measure contact pressure.
Conventional methods to acquire a distribution from discrete pressure values include
arranging multiple wired detectors (Schmitz et al., 2011; Wang et al., 2018), and using the
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detection elements placed at the intersection of the vertical and
horizontal line electrodes (Shimojo et al., 2010; Li et al., 2017;
Sundaram et al., 2019). In these methods, discrete high-density
elements are required to achieve high spatial resolution, which
is complicated to fabricate, and it is difficult to detect object
contact between the elements. Therefore, the application of the
matrix-type detector in complex shape and large-scale sensing is
limited.

Recently, a tactile sensor using electrical impedance tomography
(EIT) has been focused on to realize thin, flexible, stretchable,
and scalable devices (Silvera-Tawil et al., 2015; Lee et al., 2017;
Husain et al., 2021). EIT is an imaging technique for estimating
the impedance distribution in a conductive body by measuring
potentials at electrodes located on a conductor when the current
is injected into the conductor (Brown, 2003; Adler and Boyle,
2017). Typically, EIT requires potential data using multiple
current injection patterns to solve an ill-posed inverse problem.
Nagakubo et al. (2007) proposed a tactile distribution sensor in
which electrodes are placed at the boundary of a sheet of pressure-
sensitive conductive rubber whose resistance changes in response
to pressure. The pressure distribution is converted into a resistance
distribution depending on the rubber’s properties, and the resistance
and pressure distributions are estimated by EIT. Yoshimoto et al.
(2020) proposed a tomographic tactile sensor based on the contact
resistance between two conductive materials. The sensor uses
electromechanically coupled conductors instead of a pressure-
sensitive conductive rubber, which provides superior material
selectivity and sensitivity.

Although EIT-based tactile sensors have the advantage of
flexibility and ease of manufacture, can detect pressure in the
entire continuum, and do not require the detectors to be in
contact such as arrayed sensors, the spatial resolution of the
central area is low when the electrodes are placed only at
the conductor’s boundaries. To improve low spatial resolution,
novel reconstruction algorithms and sensor structures have been
proposed. Neural network approaches have been proposed to
improve the spatial resolution (Biasi et al., 2022) and efficiency
of sensing (Park et al., 2021). Adding internal electrodes can
improve spatial resolution in the central area; however, there is
concern regarding the low spatial resolution at the boundary due
to insufficient current flow through the area. (Lee et al., 2019).
Another approach to improve the sensor’s performance is efficient
electrode positions (Chitturi and Farrukh, 2017; Smyl and Liu,
2020) for EIT. However, a method to reduce spatial dependence
of the performance of tomographic sensor has never been
investigated.

In this paper, we investigate the effect of electrode positions
on an electromechanically coupled tomographic tactile sensor
with internal electrodes. Even when the electrodes are arranged
in grid shape at equal intervals, the spatial resolution of the
sensor varies nonuniformly depending on the position of a
contact point. Therefore, we propose an optimization algorithm
for electrode arrangement to compensate for the variation in local
performance of spatial resolution and to improve the average value
of spatial resolution over the entire detection area. In the following
section, we introduce the proposed algorithm to optimize the
electrode intervals, and show the performance by simulation and
experimental studies.

2 Methods

2.1 Electromechanically coupled
tomographic tactile sensor

This paper deals with an electromechanically coupled
tomographic tactile sensor that utilizes contact resistance of
conductive materials for conversion from pressure to voltage
Yoshimoto et al. (2020). The detector comprises two conductive
sheets: a driving layer and a probing layer. Typically, the driving
layer has low surface resistance (<0.05 Ω/sq) and the probing layer
has a relatively high surface resistance (>20 Ω/sq) to achieve high
sensitivity Yoshimoto et al. (2020). A constant voltage is applied
to the driving layer placed on the probing layer’s top. The probing
layer has multiple electrodes arranged in an array, and a multiplexer
selects the grounding electrode. The two layers are isolated without
force; however, theymake contact when a downward force is applied
to the driving layer, and current flows from the contact point to
the grounding electrode. Since the contact resistance between the
two layers depends on the contact force, a potential distribution is
generated in the probing layer according to the contact condition
(see Figure 1 left). The electrode potential is measured by changing
the pattern of the electrode to be grounded, and the potential input
distribution in the probing layer is reconstructed from the obtained
data using Tikhonov regularization. Finally, the potential input
distribution is converted into a contact pressure distribution using
the properties of contact resistance.

Using difference imaging with Tikhonov regularization, the
solution to the inverse problem can be calculated as follows:

δϕ̃ = (JTJ + λ2J I)
−1JTV , (1)

where λJ is a hyperparameter, I represents an identity matrix, and V
is the voltage vector obtained using all grounding conditions. Using
the relationship between the potential at each node of the mesh ϕk
and the voltage on a sensing electrode Vn, the Jacobian matrix Jn,k is
represented as follows:

Jn,k =
δVn

δϕk
; n = 1…EL; k = 1…K, (2)

where E is the number of sensing electrodes, L is the number of
grounding conditions, and K is the number of elements in the mesh
that represents the detecting region. Figure 1 shows an overview of
the electromechanically coupled tomographic tactile sensor.

2.2 Optimization of electrode arrangement

The sensor’s spatial resolution depends on the contact position.
In some cases, variations in spatial resolution across the detection
area can lead to inaccurate or unreliable measurements. The tactile
sensor is expected to perform sufficiently, no matter which point
in the detection area the input is given. Therefore, the sensor’s
spatial resolution should be uniform at any point in the detection
area. To improve and realize uniform spatial resolution, we propose
an algorithm to optimize the electrode position based on the
linear relationship between the spatial resolution and the electrode
interval.
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FIGURE 1
The target measurement system of the electromechanically coupled tomographic tactile sensor using arrayed electrodes.

2.2.1 Formulation of electrode
arrangement and spatial resolution

When a DC voltage is applied on the probing layer and
an electrode is grounded, the potential distribution in the layer
follows the Laplace equation. Therefore, the potential distribution
and reconstructed input potential are scaled proportionally to the
electrode interval. If the electrodes are arranged in a grid, the
reconstructed potential input distribution around a contact point is
mainly influenced by the arrangement of the four electrodes that
surround the point most internally. Assuming that the potential
distribution area is proportional to the area S of the quadrilateral
comprising the four electrodes, the spread width w of the potential
distribution is expressed as follows:

w2 ∝ S. (3)

The assumption can be considered valid if the quadrilateral does not
differ significantly from the square.The spreadwidthw is interpreted
as the spatial resolution for a single point of contact position. As
shown in Figure 1, the spread width is calculated as the half width
at half maximum (HWHM) of the reconstructed input potential
distribution.

We prove that the average spatial resolution in the entire sensor
is optimal when the spatial resolution distribution is uniformed by
adjusting the electrode arrangement. If the electrode arrangement is
N×N grid type, thenM = (N− 1)2 regions exist in the detection area,
each surrounded by four electrodes. Let Sm and wm be the area and
spread width of the mth region of M, and S be the set of areas. The
spread width W(S) in the entire sensor is calculated as a weighted
average of theM regions, as follows:

W (S) =
M

∑
m=1

Sm
St

wm, (4)

where St is the total area of the sensor. If the area and spread width of
the mth region in the initial state are Sm,0 and w̃m,0, then according
to Eq. 3, wm andW can be expressed as follows.

wm = √
Sm
Sm,0

w̃m,0 (5)

W (S) = 1
St

M

∑
m=1

√ Sm
3

Sm,0
w̃m,0 (6)

Our purpose is to find the optimal Sm for minimizing W under
the restriction ∑Mm=1Sm = St, where the total area St is equal to
the sum of the small regions Sm. Therefore, we can solve the
optimization problem using the Lagrange multiplier method. The
Lagrange function is defined by

F (S,λL) =W− λL(
M

∑
m=1

Sm − St), (7)

with a Lagrange multiplier λL. Then, M+ 1 equations are derived
from Lagrange multiplier method.

{{{{{
{{{{{
{

∂F
∂Sm
= 3
2St
√

Sm
Sm,0

w̃m,0 − λL = 0

M

∑
m=1

Sm = St

(8)

Solving the equations, the optimal Sm and wm become

Sm = St

Sm,0
w̃2
m,0

∑M
m=1

Sm,0
w̃2
m,0

(9)

wm = √
St

∑M
m=1

Sm,0
w̃2
m,0

. (10)

Since wm does not depend on the number m of the region, wm is
equal for all regions when the electrode arrangement is optimized.
Thus, the average of the entire spread width is minimized when the
spread widths of theM regions are equal.

2.2.2 Optimization procedure

When the electrodes are equally spaced, the spread widths in the
M square regions differ; hence, the spatial resolution is lower when
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FIGURE 2
Flow chart of the proposed algorithm. The positions of the manipulating electrodes are updated from the center to the outside. The positions of the
symmetrical electrodes are updated accordingly.

the contact point is in several regions. Our goal is to find the optimal
area Sm that equalizes the spreadwidth of each region andminimizes
the average of the entire spread width. If Eq. 3 holds strictly, then Sm
calculated by Eq. 9 using the initial area Sm,0 and evaluated value
of the spread width w̃m,0 becomes optimal. However, in practice,
residuals between the Sm and the optimal value would remain since
Eq. 3 is approximately valid when the region surrounded by the
four electrodes is not significantly modified and the optimal Sm is
not computed in a single optimization step. Therefore, the optimal
electrode positions are calculated using an iterative procedure that
repeatedly uses Eq. 9 to compute a better solution from the current
areas and spread widths (Figure 2).

Each step of the algorithm comprises mesh generation using
current electrode position, updating area, spread width, and
electrode position. First, the sensor’s detection area is divided into a
mesh for FEM simulation using the current electrode arrangement
and Delaunay triangulation. Then, the potential distributions and
their spread widths for 1,600 input points are evaluated in the
simulation, and each region’s spread width is calculated as the
average of the spread widths in the region. The area of each region
is then determined to compensate for local performance biases.
Finally, the electrode positions are adjusted so that the area of each
region satisfies the calculated value.

Let Sm,l be the area of themth region ofM regions in the lth step.
In the initial state, the electrode arrangement is set up as an equally
spaced grid type, and the area of the 0-th step becomes

Sm,0 =
St
M
. (11)

In the lth step, spread width of themth region, w̃m,l, is computed by
FEM simulation of potential distribution. The area in the (l+ 1)th
step Sm,l+1 is calculated by Eq. 9 using Sm,l and w̃m,l.

Sm,l+1 = St

Sm,l
w̃2
m,l

∑M
m=1

Sm,l
w̃2
m,l

(12)

In the lth step, the positions of the electrodes must be adjusted
so that the area of the mth region satisfies Sm,l. It is sufficient
to determine the positions of the red electrodes in Figure 2, as
the electrode arrangement and the grounded electrode pattern are
symmetrical in the vertical, horizontal, and diagonal directions.The
red electrodes are numbered as in Figure 2, and the position of
the electrode in (i, j) is (x(i,j),y(i,j)), and the area of the quadrilateral
with the electrode in its upper-right corner is S(i,j). Finally, the
electrode displacement |Δp| = |(xl,yl) − (xl−1,yl−1)| is evaluated and

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1157911
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kojima et al. 10.3389/frobt.2023.1157911

1: A1← S(1,1)

2: h1←√A1/2

3: forj← 2 to N/2do

4:  Aj← Aj−1 +S(1,j) ×4

5:  fori← 2 to j−1do

6:   Aj← Aj +S(i,j) ×8

7:  end for

8:  Aj← Aj +S(j,j) ×4

9: hj←√Aj/2

10: end for

11: (x(1,1),y(1,1)) ← (h1,h1)

12: for j← 2 to N/2do

13:  Δh← hj −hj−1
14:  x(1,j)← S(1,j)/Δh−x(1,j−1)
15:  y(1,j)← hj

16:  for i← 2 to j−1do

17:   x(i,j)← S(i,j)/Δh×2−x(i,j−1) +x(i−1,j−1) +x(i−1,j)
18:   y(i,j)← hj

19:  end for

20:  (x(j,j),y(j,j)) ← (hj,hj)

21: end for

Algorithm 1. Calculation of electrode positions

the current electrode position is employed if the displacement is
small enough.Algorithm 1 is a method for calculating the positions
of the red electrodes when the electrode arrangement isN×N. Since
the positions of the electrodes are symmetrical, the shape of the
region formed by the four electrodes is a trapezoid or a kite.

2.3 Experiments

We conducted simulations and experiments to evaluate the
proposed method. First, we applied the optimization algorithm to
two electrode arrangements, i.e., 4× 4 and 8× 8 conditions and
evaluated the equally spaced and optimized electrode arrangements
through simulation. Next, we implemented sensors using 8× 8
arrangement with equally spaced and optimized electrodes. Then,
indentation experimentswere performed on the sensors to verify the
actual behavior.

2.3.1 Simulation study

In the simulation, the detection area of 200 mm × 200 mm was
divided into a 40 × 40 triangular mesh. In the first simulation, 16
electrodes of 10 mm diameter were placed in a 4× 4 arrangement;
in the second, 64 electrodes of 5 mm diameter were placed in an
8× 8 arrangement. The meshes used in the simulation are shown in
Figures 3A, B. The electrode size is small compared to the distance
between electrodes, thus the effect of electrode size is negligible.
Assuming a steady state by a single contact input, a 3.3 V DC
voltage was applied to the contact point position, and the potential

distribution in the detection area under each grounding condition
was calculated using finite element method (FEM) simulation. We
utilized the simulation framework developed in previous work
(Yoshimoto et al., 2020), and the hyperparameter λ2J = 1000 was
used for the reconstruction.

The spatial resolution and positional error were calculated from
the potential input distribution reconstructed using the potential
data of electrodes collected across all grounding conditions.
Regarding spatial resolution, we used the half width at half
maximum (HWHM), which is defined as the maximum distance
between the center of the reconstructed potential input distribution
and the contour line of 50% of the maximum value of the potential.
Position error (PE) is defined as the distance between the contact
point position and the center of the reconstructed potential input
distribution. We evaluated the HWHM and PE for 1,600 (40 × 40)
points while moving the contact point position horizontally and
vertically by 5 mm, and computed the spatial distributions andmean
values of the performances.

The evaluation was repeated while optimizing the electrode
positions. The detection area of the sensor has 9 or 49 regions
surrounded by four electrodes. The average of the HWHM in each
region at each step is calculated and used to update the area in the
next step as the spread width in (Eq. 12). Based on our experimental
observations, the optimization loops were repeated three times and
five times for 4× 4 and 8× 8 conditions respectively.

2.3.2 Experimental setup and procedure

We made two boards for the detection part and a board for
the measuring circuit part. The detection part of the sensor had
a detection area of 200 mm × 200 mm, and 64 (8× 8) electrodes
5 mm in diameter were placed in the area. The electrodes on one
board were equally spaced, and the electrode arrangement on the
other board was the one to which the optimization calculations
were applied. We used four time optimization procedures based on
average value of HWHM. We used a polyethylene sheet containing
carbon particles (10 kΩ/sq) as the probing layer. Anisotropic
conductive tape (3M™ Electrically Conductive Adhesive Transfer
Tape 9,703) was used to electrically connect the conductive sheet to
the electrodes on the board. The conductive tape had low contact
resistance (<0.3 Ω) and high insulation resistance (3.4× 1014 Ω/sq.),
allowing it to conduct toward its thickness and insulate toward
its plane. The sensor lacked a drive layer, and in the experiment,
a conductive object connected to a DC power source directly
contacted the probing layer. Therefore, the current flowed from the
contacting object to the grounded electrode through the conductive
sheet. This was to conduct the experiment without the effect of
the state of adhesion between the driving and probing layers. In
a practical tactile sensor, the two layers are isolated by a mesh of
insulating material. The equivalent condition is achieved when the
insulating layer is uniform, the driving layer is thin, and the driving
layer deforms locally under load.

Sixteen 4-channel analog switches (ADG1634, ANALOG
DEVICES) that control 64 channels each were used to ground an
arbitrary electrode in the measuring circuit board. The measuring
circuit board was connected to the detection board, AD converter
(PXIe-6355, National Instruments), and DA converter (PXIe-6739,
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FIGURE 3
Simulation results of optimization for 4× 4 and 8× 8 electrode arrangements: (A) Positions of 4× 4 electrodes and HWHM distribution at each step of
the optimization process. (B) Positions of 8× 8 electrodes and HWHM distribution at each step. (C) The HWHM and the PE of 4× 4 arrangement at each
step. (D) The HWHM and the PE of 8× 8 arrangement at each step.

National Instruments). The analog switches received signals from
the DA converter and switch the ground conditions at a frequency
of 1 kHz. Concurrently, the electrodes on the detection part were
connected to the AD converter and their voltages were measured
at 4 kHz in the experiment. 4,032 voltage data (63 electrodes ×
64 conditions) were acquired every 64 ms. Offline calculations to

reconstruct the potential input distribution were performed after
the measurements using the obtained data.

Experiments were performed under two conditions: equally
spaced electrode arrangement (Equal) and optimized electrode
arrangement (Optimized). As shown in Figure 4A, the sensor was
fixed on a rubber sheet laid on the three-axis stage. A cylindrical
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FIGURE 4
Experimental setup and results. (A) Setup for the indentation experiment and fabricated sensor. (B) Experiment results of reconstructed potential input
distribution for each condition for three types of input. (C) Simulation results of reconstructed potential input distributions for four types of input.

indenter of 10 mm diameter was mounted on the stage, and a
circular conductive aluminum tape of 5 mm diameter connected
to a 5 V DC power source was attached to the tip of the indenter.
When the indenter contacts the sensor, a high-voltage input is given
to the contact point of the probing layer, as if a single contact input

is given to the driving layer of a tactile sensor. We manipulated the
stage to press the indenter against three points on the center, side,
and corner of the sensor with sufficient force to make them stick
together while recording the sensor’s voltage output on a computer.
In this state, we confirmed that the measured voltage was saturated
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when the indenter was pressed with a higher force. Finally, we
reconstructed the potentials from the measured data and calculated
their HWHM and PE. Additionally, simulations were performed for
the input conditions of wide area, L-shape, and two points of contact
for each electrode arrangement to verify that proper visualization is
possible.

3 Results

Figures 3A, B show the electrode arrangements and the spatial
distributions of HWHM at each step of the optimization for 4×
4 and 8× 8 electrode arrangements. The 16 and 49 blue areas
in the images are the electrodes. In equally spaced arrangements,
the HWHM is large in regions except for the four corners. Since
the proposed algorithm compensates for this deviation, the areas
of the regions in the center and sides are small, and the areas
in the corners are large in the optimized electrode arrangements.
Figures 3C, D showHWHMs and PEs at each optimization step for
4× 4 and 8× 8 electrode arrangements. In the 4× 4 arrangement,
three updates reduced the HWHM of the entire sensor by 4.21%,
from 32.4% to 31.1%, and that of the central region, which has
the worst performance among all regions, by 19.2%, from 38.8% to
31.4% (i.e., 0.81 times compared to equally spaced grid electrodes).
In 8× 8 arrangement, the average HWHM of the entire sensor
were minimal at the fourth timepoint of the optimization process,
decreasing by 3.95% from 17.3% to 16.6%, and the value of the worst
region was reduced by 6.63% from 18.0% to 16.8% (i.e., 0.93 times
compared to equally spaced grid electrodes). The improvement
of 4× 4 exceeds that of 8× 8 due to significant effect of the
boundary of the detection area and large performance bias in
an equally spaced arrangement when the number of electrodes
is small. Although the proposed algorithm was not intended to
affect the PE, the average PE in the entire sensor decreased by
9.93% for 4× 4 arrangement and decreased by 5.10% for 8× 8
arrangement.

Figure 4B shows the positions of the inputs and the
reconstructed potential input distribution for each condition in the
experiment.The results showed a nonuniformly skewed distribution
around the input and high-potential regions away from the input
point. This is due to wrinkles in the probing layer and differences in
the adhesion between the probing layer and the electrodes that are
caused by the fabrication process. HWHMs were calculated from
the reconstructed potential input distribution. The sensor performs
worst when the contact point is in the center. After optimization,
the HWHM in the center was reduced by 19.5% from 36.9% to
29.7%, and the value in the sides decreased by 14.1% from 28.7%
to 24.7%. On the other hand, the corner HWHM was limited to
a slight increase of 1.46% from 16.7% to 17.0%. Simulation and
experimental results confirm that the proposed algorithm improves
spatial resolution by equalizing local spatial resolution.

Figure 4C shows simulation results for various shapes of input
cases. They demonstrate that broad or L-shaped contacts can
be detected, and that two distant contacts can be discriminated.
Notably, the two-point contact example in the bottom figure
visualizes improved steep distributions because of the high electrode

density around the contact points in the optimized electrode
arrangement.

4 Discussion

The evaluation of the distribution of the spread widths of
the optimized electrode arrangement confirms that the proposed
algorithm achieves improvement and uniformity of spatial
resolution (HWHM). The values of HWHM are not significantly
different from the electrode interval, and theoretically the
performance should be similar to that of a tactile sensor with an
array of pressure detectors instead of electrodes. The advantage of
this method is that it can be applied to tactile sensors that have
arrayed detectors and a local performance bias. The application of
the proposed method to tomographic sensors based on resistive
coupling will enable more accurate sensing, and will realize a
versatile tactile sensing system.

Moreover, the proposed optimization algorithm can be used
for a tomographic sensor based on resistive coupling using a DC
inverted excitation and a tomographic sensor based on capacitance
coupling Li et al. (2021), i.e., an alternative current excitation.
Although we did not conducted an experiment using a general
tomographic sensor Tiwana et al. (2012), there is a possibility to
apply the proposed optimizationmethod to the general tomographic
sensor. However, the proposed method are limited because they
cannot be applied directly to a sensor with a non-square detection
area. In this experiment, the conductor is assumed to be thin
and square, and the grounding method and electrode arrangement
are designed for this type of sensor. Therefore, it is necessary to
design proper measurement approaches for other shapes, such as
circles or cylinders, or for sensors that can deform significantly.
However, this optimization method is applicable if the electrodes
can be placed on a curved surface in a grid pattern. Moreover,
this experiment evaluated the results for a single point input,
indicating that the response to multiple point contacts and wide
objects requires exploration. Although the reconstruction algorithm
can be extended to multiple contact points, the mutual effects of
contacts could be reduced by devising the grounding electrode
pattern. This can be considered by integrating a spatial resolution
metric usingmultiple contact conditions into the proposed objective
function.
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