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Impact analysis of cooperative
perception on the performance
of automated driving in
unsignalized roundabouts
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Lintong Jiang and Mehrdad Dianati

Warwick Manufacturing Group (WMG) at The University of Warwick, Coventry, United Kingdom

This paper reports the implementation and results of a simulation-based
analysis of the impact of cloud/edge-enabled cooperative perception on the
performance of automated driving in unsignalized roundabouts. This is achieved
by comparing the performance of automated driving assisted by cooperative
perception to that of a baseline system, where the automated vehicle relies
only on its onboard sensing and perception for motion planning and control.
The paper first provides the descriptions of the implemented simulation model,
which integrates the SUMO road traffic generator and CARLA simulator. This
includes descriptions of both the baseline and cooperative perception-assisted
automated driving systems. We then define a set of relevant key performance
indicators for traffic efficiency, safety, and ride comfort, as well as simulation
scenarios to collect relevant data for our analysis. This is followed by the
description of simulation scenarios, presentation of the results, and discussions
of the insights learned from the results.
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1 Introduction

Automated driving systems (ADSs) are expected to transform the transport of goods
and people in terms of the safety of road users, the comfort of the operators and passengers,
the efficiency of transport systems in terms of their carbon footprint, and the affordable
accessibility of mobility services for the public1. To reap such benefits, solid evidence shall
be provided to ensure that ADSs outperform human-driven vehicles to gain consumers’
trust in automated driving technologies (Boualam et al., 2022). This requires that ADSs can
faithfully perceive the environment and the intentions of other road users, carry out accurate
localization and mapping, plan safe motions, and execute robust control of the vehicle.

Despite recent progress in sensing capabilities, 3D object detection, and tracking, the
ADS based on sole reliance on onboard sensing and perception has well-known limitations
(Arnold et al., 2022). An alternative promising approach is to enhance onboard sensing

1 https://www.gov.uk/government/news/self-driving-revolution-to-boost-economy-and-improve-
road-safety
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through sensor data collected from multiple spatially diverse
viewpoints, also known as cooperative perception. A powerful
variant of cooperative perception is to deploy roadside
infrastructures near junctions with object detection and edge
computing capabilities that can collect information (raw sensor
data or semantic perception information) from various sources,
fuse them together, and broadcast the combined information over
vehicle-to-everything (V2X) communication technologies to the
surrounding vehicles. Therefore, connected and automated vehicles
(CAVs) can combine their local understanding of the environment
with the information received over the air from the infrastructure
for improved decision-making and control.

Jandial et al. (2020) introduced an intelligent roadside unit
(RSU) that processed sensor data from infrastructure cameras and
lidars. RSUs were deployed at several target locations to support
CAVs and were found to be particularly efficient at roundabouts
and S-shaped roads, where the onboard perception is inadequate
due to restricted field of vision and obstructions. Vijay et al. (2021)
proposed a novel method for determining the optimal positioning
of roadside sensors to maximize their coverage. They used a sensor
model based on ray casting for correctly estimating the line-of-
sight coverage, which leads to optimal sensor placement even
under worst-case scenarios such as multiple 3D obstructions. If
an adequate number of suitable sensor locations is identified, the
proposed framework can prove extremely useful for infrastructure
sensing. Motivated by the promises of cooperative perception, this
study focuses on the comprehensive analysis of its impacts on
automated driving in unsignalized roundabouts, as it has been found
that unsignalized roundabouts result in shorter travel times and
fewer accidents than traditional intersections with traffic lights or
stop-signal control (Retting et al., 2001).

1.1 State-of-the-art review

Considering the roundabout as a shared space, conflicts between
vehicles must be resolved. There are two main approaches to tackle
the challenges between CAVs involved in a conflict.The vehicles can
handover their control to a road traffic manager, which an entity
that manages the flow of traffic (Zhao et al., 2018; Danesh et al.,
2021; Martin-Gasulla and Elefteriadou, 2021; Wu and Zhu, 2021),
or the vehicles can directly communicate among each other and
negotiate the right of way (Debada and Gillet, 2018; Hang et al.,
2021). The former approaches are known as centralized and can
be further subdivided into reservation-based and trajectory-based
optimization methods, with the latter gaining momentum due
to recent advances in edge computing (Yu et al., 2019). The key
assumption in centralized control is that all CAVsmust comply with
the trajectories calculated by the road traffic manager.

Wu and Zhu (2021) compared signalized intersections with
signal-free roundabouts in pure CAV environments with central
coordination and highlighted that for low-to-medium road traffic
densities, the average waiting time at the entrance of roundabouts
is less. Danesh et al. (2021) designed a system where the road traffic
manager controls the arrival time for CAVs at the entrance of the
roundabout to ensure sufficiently large gaps for safety and optimizes
their trajectories within the roundabout to maximize passenger
comfort. Furthermore, several priority resolution strategies were

simulated in Martin-Gasulla and Elefteriadou (2021), with the best
strategy increasing the roundabout capacity by 73{%} as compared to
human driving at the cost of computational complexity in the road
traffic manager strategy. Model predictive control (MPC) has also
been used for traffic flow coordination of autonomous vehicles (Cao
and Zoldy, 2021). The goal of MPC is to optimize the predictions
of future states of the vehicles by iteratively processing inputs over a
limited time horizon. A road traffic manager design for controlling
the vehicle’s trajectory through a roundabout was presented in
Cao and Zoldy (2021), where the performance of the MPC-based
controller was evaluated with respect to the target speed.

In decentralized approaches, it is difficult to develop a generic
method that allows CAVs with their own set of dynamics, sensors,
communication devices, and characteristics to work together
effectively. Negotiations between vehicles can use either the
noncooperative game theory, such as the Stackelberg games in
Hang et al. (2021), or cooperative game theory, such as forming
coalitions in Hang et al. (2021) and the prisoner’s dilemma
in Banjanovic-Mehmedovic et al. (2016). In the game theory
framework, different vehicles are essentially independent players
who can adapt their payoffs to reflect personalized driving behaviors,
e.g., a conservative driver cares more about safety than driving
efficiency (Hang et al., 2021). If the CAVs exchange only their
current states, e.g., location and speed, every vehicle must also
predict the trajectory of other vehicles to identify feasible merging
gaps (Debada and Gillet, 2018). The study in Hang et al. (2022)
showed that CAVs the ability to mimic cautious, average, and
aggressive driving styles. It was shown that including sophisticated
motion prediction of other vehicles in the decision-making process
improved safety. Finally, the study in Wang et al. (2022) suggested
a framework for the interaction-aware evaluation of the CAV’s
safety while entering a roundabout.The study employed social value
orientation and level-k game theory to characterize the interactive
behaviors.

It is also worth noting that the transitional phase from manually
driven to autonomous vehicles has been forecasted to take several
decades, and mixed-traffic scenarios, where conventional vehicles
are also present, will be inevitable (Bansal and Kockelman, 2017).
In the mixed-traffic phase, conventional vehicles are likely to induce
a negative effect on travel time for CAVs because human drivers
tend to slow down near the entrance of roundabouts, unnecessarily
sometimes, resulting in the formation of queues (Zhao et al., 2018).
Wemay therefore need a high penetration ofCAVsbeforewitnessing
noticeable gains in travel times and road traffic throughput of
roundabouts.

1.2 Contributions

Instead of considering the roundabout as a system, we examine,
in this paper, a single CAV, hereafter referred to as the EGO vehicle,
which travels across a single-lane roundabout with four arms. All
other vehicles are manually driven; hence, a low penetration of
CAVs, which will be typical in the next few years, is essentially
modeled. A key component in our system architecture is a fixed
RSU equipped with a processing unit and wireless connectivity,
which enhances the situation awareness of the EGO vehicle, but it
does not influence its decision-making ability. Furthermore, it is
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reasonable to expect that in the coming years, several vehicles will
carry communication units to assist human drivers. In this paper, we
assume that all vehicles near a roundabout can communicate their
intended paths to the RSU over a V2X air interface. The RSU can
combine the information received over the air from the surrounding
vehicles and create a single collective perception message (CPM)
that is periodically broadcast using V2X. As a result, the EGO
vehicle can finally combine its local perception with the additional
information provided by the RSU for improved decision-making.
The main contributions of this article are summarized as follows.

• We define a set of key performance indicators (KPIs) for traffic
efficiency, safety, and ride comfort that are relevant for driving
across urban unsignalized roundabouts.
• We build a co-simulation environment integrating SUMO and

CARLA, where the former is used to generate random urban
road traffic and the latter is used to implementmotion planning
algorithms.
• The key takeaway of the simulation experiments conducted

in this article is that an EGO vehicle leveraging cooperative
perception can traverse the roundabout quicker than an EGO
vehicle that relies only on its onboard sensors to perform
that. At the same time, cooperative perception helps improve
the comfort of passengers during the maneuver without
compromising safety.
• Even though this study focuses on roundabouts, we believe that

the adopted methodology for quantifying the benefits of RSUs
will be of interest to road authorities for the traffic management
of CAVs near any other complex junction.

The tradeoff between comfort and travel time for an autonomous
vehicle has been recently investigated in Zheng et al. (2021) with the
goal of avoiding overly conservative maneuvers while driving across
a roundabout. The motion planning module selects the trajectory
thatminimizes the weighted sumof travel time and discomfort, with

the latter expressed by the integral of squared horizontal acceleration
during the maneuver. Unfortunately, the constraints imposed by
other traffic objects on the autonomous vehicle are not taken into
account in the evaluation of the tradeoff in Zheng et al. (2021), as
we will do in this paper.

1.3 Overview of the contents of the paper

The rest of this paper is organized as follows. The high-level
system model architecture is presented in Section 2. Section 3
and Section 4 present the details of the simulated motion
planning algorithm using only onboard perception and cooperative
perception, respectively. The KPIs for driving efficiency, passenger
comfort, and safety are explained in Section 5. The co-simulation
environment between CARLA and SUMO is discussed in Section 6.
Finally, Section 7 assesses the benefits of cooperative perception,
and Section 8 concludes this study.

2 System model and high-level system
architecture

We consider an EGO vehicle mounted with perception sensors,
such as cameras and lidars, and an onboard communication unit
(OBU) that implements a V2X radio air interface. The EGO vehicle
approaches the roundabout from the north entrance, see Figure 1,
but due to occlusions, the onboard sensors can miss vehicles
approaching the roundabout from another direction. To assist the
EGO vehicle in traversing the roundabout efficiently and safely, an
RSU empowered with a processing unit and V2X communication
technology can be deployed near the junction. The RSU receives
maneuver coordination messages (MCMs) (ETSI, 2022-10) from
surroundingCAVsover ITS-G5, combines the received information,
and packs it in the form of CPMs thatare broadcast every 100 ms

FIGURE 1
Google Maps view of the roundabout connecting the Gibbet Hill Road with the Lord Bhattacharyya Way at the University of Warwick overlaying the
location of the RSU and the high-level system architecture. Example routes for the EGO vehicle and two traffic objects are also illustrated.
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(ETSI, Release 2, 2019-12). The OBU on the EGO vehicle decodes
the message broadcast and leverages the additional information for
improved decision-making and motion planning.

In this paper, we conduct a simulation study to gauge the
impact of edge computing and V2X communication on the driving
performance of the EGO vehicle. Specifically, we compare the
driving performance between the following two systems: in the
former system, the EGO vehicle solely relies on onboard sensing,
and in the latter system, the EGO vehicle’s perception is enhanced
with additional information provided by the infrastructure. This
comparison would be of interest to road authorities to decide
whether it is cost-effective to install an RSU near the roundabout.

3 Baseline system: onboard alone
perception

In this section, we describe the system where the EGO vehicle
relies only on onboard sensing for decision-making and motion
planning without being connected to the infrastructure. It is
assumed that the onboard sensor’s field of view is a cone with a
range of 50 m and an azimuth of 90o degrees; see the blue-shaded
area in Figure 2.The selected sensor range value is quite conservative
considering the range of modern lidar and camera sensors; hence,
it is natural to assume that the object detection performance is
ideal, meaning that the EGO vehicle can detect other road users
in an error-free manner within the field of view of its sensors. The
output of the onboard perception module is continuously sent into
the motion planning module of the EGO vehicle, which is hereafter
referred to as the baseline driving algorithm.

3.1 Baseline driving algorithm

The baseline algorithm replicates the decision-making process
using only onboard perception. Decision-making starts at the north
entrance, where the EGO vehicle has to decide when to enter the
roundabout. The red-shaded area, partially overlapping with the

FIGURE 2
Field of vision (blue-shaded area) and area of concern (red-shaded
area) for the baseline algorithm. The EGO vehicle, the merge point,
and the entrance at the north leg are also illustrated.

blue-shaded area in Figure 2, is the area of concern during decision-
making.This is the typical area that a humandriver checks to the side
at the entrance. The urban roundabout depicted in Figure 1 has an
approximate radius equal to 15 m, which means that for the selected
sensor azimuth and range values, the EGO vehicle, once it arrives at
the entrance, can detect all objects within the upper quadrant of the
roundabout, including the area of concern.

As the EGO vehicle approaches the entrance, it must slow down
and assess whether it is safe to proceed by checking the area of
concern. To do that, its target speed is first set at a low value,
e.g., VT = 2.2 m/s (or 5 mph). If there are vehicles within the area
of concern, the target speed is reset at VT = 0, which means that
the EGO vehicle has to stop and wait at the entrance until the
area of concern becomes completely clear. If the red-shaded area
is clear to begin with, a new higher target speed is set, and the
EGO vehicle enters the roundabout.The described decision-making
process is conservative because there is not always a need to stop
when merging into the ring, even if vehicles are in the area of
concern. Even if these vehicles do not exit to the north, the EGO
vehicle may go ahead, provided that the gap is large enough and
the relative speed is low. Nevertheless, the baseline algorithm forces
the EGO vehicle to stop when another vehicle is within the red-
shaded area because it is natural to expect that CAVs should adopt
cautious behavior planning in the presence of manually driven
vehicles. For the same reason, the EGO vehicle does not rely on
detecting the blinkers of other vehicles in the area of concern. In
addition, the size of the selected roundabout in Figure 1 is small,
with a radius of approximately 15 m, and has a single lane, which
further justifies the adoption of conservative decision-making for
the baseline algorithm.

The baseline algorithm modulates the EGO vehicle’s speed by
setting the target speed VT and controlling its instantaneous speed
using a PID controller. Note that a PID controller is readily available
in CARLA, but some adjustments had to be made. Specifically, to
determine the target speed, the baseline algorithm uses the speed
limit vmax, the speed of the leading vehicle vl (if any), and the
road curvature. The algorithm first calculates the time-to-collision
(TTC) to the leading vehicle, and if this is less than 3 seconds, it
sets the target speed equal to the speed of the leading vehicle, i.e.,
VT(t) = vl(t), where t is the current time step. Otherwise, the target
speed is set equal to the speed limit VT(t) = vmax. As the driver
response time ranges from 0.7–1.5 s, depending on the scenario and
driver, it is safe to assume a safety factor of 2 using the upper bound
of this range, i.e., 1.5 s (Drozdziel et al., 2020). This explains the
selection of the cut-off threshold for TTC in setting the target speed
of the EGO vehicle. While the TTC threshold should depend on the
driving speed and, in general, on the driving scenario/environment,
we have used just a single value (TTC = 3 s) because the only
scenario simulated in this paper is an urban roundaboutwith a speed
limit of 13.4 m/s (or 30 mph).

Finally, the target speed has to be adjusted using the road
curvature for the purpose of ride comfort. The more curved a
road is, a larger steering angle will be forced, which will increase
the lateral acceleration assuming a constant speed throughout the
curve. This might not be feasible for both driver/passenger comfort
and steering characteristics. To maintain a comfortable level of
lateral acceleration, the speed of the EGO vehicle around corners
is lowered. Given the initial target speed of the EGO vehicle, VTinit

,
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FIGURE 3
Block diagram for the baseline algorithm. All decision-making steps are repeated every 50 ms.

and the input steering angle, θ, the adjusted target speed VT can be
expressed as

VT = VTmin
+ θ
θmax

σ fVTinit
, (1)

where VTmin
is the minimum target speed of the EGO vehicle

(without a stopping decision), σf is a factor to tweak the sensitivity
of the speed adjustment, and θmax is the maximum input steering
angle.

Before continuing with the description of the system leveraging
cooperative perception, we summarize the decision-making steps of
the baseline algorithm in a block diagram in Figure 3.

4 Cooperative perception-assisted
system

In this section, we describe the system where the EGO vehicle
leverages cooperative perception for motion planning. Targeting a
futuremobility scenario, it is assumed that all vehicles are connected
(but not yet automated) and share their intended pathswith the RSU.
Even though the maneuver coordination message (MCM) is in the
early stages of standardization, vehicles will likely exchange their
intentions with other vehicles or the infrastructure near complex
junctions (ETSI, 2022-10). Since the roundabout considered in this
paper only has a single lane, it is sufficient that each vehicle indicates

to the RSU which exit it will take. The RSU collects the MCMs
transmitted by all vehicles and combines them into a single message,
which contains the instantaneous locations, speeds, and intended
paths of all vehicles. The message is broadcast every 100 ms,
similar to the CPM. All communication between traffic objects,
the EGO vehicle, and the RSU is assumed to be ideal, meaning
that the received information is error- and delay-free, and there
is no noise or loss during transmission and reception. In practice,
the communication unit of the RSU must have good line-of-sight
connectivity to all arms of the roundabout, e.g., being mounted on a
pole at the center of the roundabout island. Evaluating the effects of
imperfect V2X communication on cooperative perception requires
future work, but this will not alter the performance evaluation
methodology.TheEGOvehicle exploits the information provided by
the RSU for enhanced motion planning, which is hereafter referred
to as the enhanced driving algorithm.

4.1 Cooperative perception-assisted
automated driving algorithm

The EGO vehicle processes the information received by the
RSU and anticipates whether other vehicles in and around the
roundabout are hazards. A hazard, in this case, is a vehicle that has
a path intersecting with the desired path of the EGO vehicle; see the
amber-shaded area in Figure 4, while also reaching that area when
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FIGURE 4
Enhanced algorithm field of vision (blue-shaded area) and area of concern (red- and amber-shaded areas). The red, green, and blue arrowed lines
depict the intended paths of the similarly colored vehicles, respectively. The blue vehicle is a hazard if it is predicted to be within the amber-shaded
area simultaneously with the EGO vehicle.

FIGURE 5
Block diagram for the cooperative perception-assisted automated driving algorithm. All decision-making steps are repeated every 50 ms. As compared
to the baseline driving algorithm described in Figure 3, only the ‘enhanced algorithm’ block with the dashed-red outline has been added, which is
detailed on the right-hand side and is executed every 100 ms.

the EGO vehicle is also there. To identify whether a vehicle with an
intersecting path is actually a hazard, the enhanced algorithmapplies
a rudimentary prediction model assuming that the traffic object
maintains its velocity at the time of calculation. High-definition
maps, using, for instance, curvilinear coordinates as in Masi (2021),
can be used to calculate the traveled distance of other vehicles and,
therefore, determinewhether a vehicle is a hazard to the EGOvehicle
or not. Upon detecting a hazard,the EGO vehicle tries to disalign

itself from a potential collision. For safety reasons, it is assumed
that the EGO vehicle can only decelerate as it approaches the north
entrance of the roundabout. If the enhanced algorithm is unable to
disalign itself from a potential collision, the EGO vehicle decelerates
to stop, and the red-shaded area comes into play, functioning
exactly like in the baseline algorithm. The decision-making steps
of the enhanced automated driving algorithm are illustrated in
Figure 5.
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As compared to the baseline driving algorithm, a potential
time save could be the case when there is a traffic object within
the red-shaded area given in Figure 4, but its path does not
intersect with that of the EGO vehicle. In this case, the baseline
algorithm would have kept the EGO vehicle static till the red
area becomes clear, while the enhanced algorithm triggers the
EGO vehicle to enter the roundabout, as the traffic object is not
a hazard despite being within the red-shaded area. For safety
purposes, it is assumed that the baseline driving algorithm does
not rely on detecting the blinkers of vehicles within the red-shaded
area.

5 Key performance indicators

To fully assess the effectiveness of the simulated systems,
several key performance indicators (KPIs) are used, such as driving
efficiency, ride quality, and safety.

5.1 Driving efficiency metrics for the EGO
vehicle

Driving efficiency focuses on how quickly the EGO vehicle can
finish itsmaneuver and all factors that affect it.This can, for instance,
be captured by the journey completion time and the stationary
waiting time at the entrance of the roundabout.

5.1.1 Journey completion time
The journey completion time is the required time for the

EGO vehicle to drive through the designated route and finish at a
specific point at the exit of the roundabout, while satisfying specific
constraints on ride quality and safety.

5.1.2 Stationary waiting time
A secondary metric that is related to the journey completion

time is the stationary waiting time at the entrance of the
roundabout. This measures the time the EGO vehicle remains
stationary before entering the roundabout while waiting for other
traffic objects to clear. It is expected that infrastructure-based
sensing improves the EGO vehicle’s perception and awareness
of its surroundings. This, in turn, can reduce the stationary
waiting time and enhance driving efficiency. For instance, the EGO
vehicle can become aware of traffic objects and their intended
trajectories in advance. Provided that the desired trajectory of the
EGO vehicle does not intersect with the intended trajectories of
other traffic objects, the EGO vehicle can immediately enter the
roundabout. On the contrary, without the infrastructure, the EGO
vehicle must slow down and cautiously check for other traffic
objects in its vicinity. Therefore, the infrastructure can potentially
enhance traffic efficiency without compromising on safety and ride
quality.

5.2 Ride quality metrics for the EGO vehicle

The most widely used ride quality measures are the
instantaneous acceleration a(t) and jerk k(t) = da

dt
at a specific

point in time t. The literature indicates that an absolute jerk
of less than 1 m/s3 and an absolute acceleration of less than
2 m/s2 are associated with comfortable driving (Bae et al., 2019).
The time granularity to calculate instantaneous KPIs would be
equal to the time granularity of the simulator, which is 50 ms in
our case. In addition, we use a two-dimensional model for the
roundabout; hence, the momentary (or instantaneous) acceleration
and jerk will be calculated only at the horizontal plane. Ride
comfort can also be assessed using a sliding window averaging
the acceleration over intervals of 5 s, but due to the lack of space,
the associated results are not presented. Finally, it shall be noted
that motion sickness is usually evaluated in the order of minutes;
hence, KPIs associated with it are not relevant for the subject
maneuver.

5.3 Safety metrics

Most existing approaches evaluating road traffic safety tend
to lean toward metrics calculating vehicle proximity and speed.
Hence, the safety metrics that best match our simulation scenario
are the time-to-collision (TTC) and the post-encroachment time
(PET) between the EGO vehicle and other traffic objects. The PET
resembles the time headway between vehicles but is more tailored
to the roundabout scenario, as we will shortly explain (Cooper,
1984).

5.3.1 Time-to-collision
The TTC is mainly used to assess safety in adaptive cruise

control systems. It is equal to the time the EGO vehicle has before
colliding with another vehicle under the assumption that both
vehicles maintain their trajectories at the moment of calculation. In
its simplest form, the TTC assumes that the vehicles involved in the
conflict maintain constant speeds equal to those at the moment of
calculation.

TTC =
hd

v f − vl
, subject to: v f > vl, (2)

where vf is the speed of the following vehicle, vl is the speed of the
leading vehicle, and hd is their headway distance at the moment of
calculation.

This metric is valid only if the EGO vehicle has an instantaneous
speed higher/lower than that of its leading/following vehicle at the
moment of calculation, as this is the only situation where a collision
is imminent. More advanced TTC evaluation algorithms may also
involve the instantaneous accelerations.

5.3.2 Post-encroachment time
To measure safety, the PET focuses on the overlap in the

trajectories of the vehicles involved in the conflict. The PET is the
time elapsed between the point where the leading vehicle leaves
the intersection area, see the red-colored area in Figure 6, and the
following vehicle enters that area.

In Figure 6, the green and yellow vehicles are the following and
leading vehicles, respectively. The arrows depict their direction of
travel. At t = t1, the leading vehicle has just left the red-shaded area,
and at t = t2, the following vehicle is just about to enter that area.
Therefore, the PET is equal to PET = t2 − t1.
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FIGURE 6
Post-encroachment time for T-junction (left) and roundabout (right) crossings.

6 Simulation model

In this section, we present our simulation setup starting from the
creation of themap of the area and continuingwith the control of the
EGO vehicle in CARLA2 and the generation of random road traffic
in SUMO. The EGO vehicle used in CARLA is the Tesla model 33,
which corresponds to a regular-size sedan vehicle type. The normal
highway code for driving across roundabouts has been implemented
in CARLA and SUMO, e.g., vehicles entering the roundabout will
yield to vehicles already in the roundabout.

6.1 Map creation

In order to generate the map of the area, we have to either create
a map from scratch or obtain road data from OpenStreetMap and
convert it into a format that can be used by CARLA and SUMO.
The former option has been selected as there are compatibility issues
between CARLA and SUMO when trying to implement a right-
hand drive convention in the imported map. As a result, a left-hand
drive format has been adopted, and the simulations are carried out
in an ideal circular roundabout with identical approaches in terms
of length and merge angle. To create the map, RoadRunner is used,
which is a tool that can create road networks or import and editmaps
from OpenStreetMap. In our case, the generated map spans a total
area of 250× 250 m2. The roads leading up to the roundabout have
two lanes and are in all four cardinal directions. The roundabout
has a single lane and a radius of 15 m, similar to the roundabout in
Figure 1.The four arms have a length of 100 m each,with a perimeter
road connecting the end points of each approach in a square with
rounded corners, see Figure 7. Note that the perimeter road is not
used in the simulations as it only serves to avoid any bugs within the
simulation software.

The created map in RoadRunner is exported in filmbox
(.fbx) and OpenDRIVE (.xodr) formats for use with CARLA and

2 https://carla.org/2020/09/25/release-0.9.10/

3 https://carla.readthedocs.io/en/latest/bp_library/

SUMO, respectively. The fbx map can be easily integrated into
CARLA/Unreal by using the plugins that have been developed
alongside CARLA specifically for this task. The resultant map can
then be saved as a CARLA project file for later use. To integrate
the map created in RoadRunner with SUMO, the .xodr file has to
be converted into a .net.xml file. Conveniently, the developers of
CARLA have also designed a tool to automate this process and allow
for smooth integration.

6.2 EGO vehicle control in CARLA

Once the map is ready, the EGO vehicle can be added to
the simulation environment. This is performed in CARLA as the
vehicles spawned in SUMOcannot be finely controlled to implement
advanced motion planning algorithms. The EGO vehicle starts
from the north of the map, approaches the roundabout, and then
drives through and exits to the south, where the journey endpoint
is situated. The EGO vehicle is spawned as a normal vehicle in
CARLA, but with its autopilot turned off. It moves by defining
GPS coordinates along its trajectory every 50 ms. These coordinates
are also referred to as waypoints, and they are spaced out by
how much the motion planning algorithm decides to move the
EGO vehicle every 50 ms. Apparently, the speed and acceleration
of the EGO vehicle can be determined by the distance separation
between successive waypoints. For example, waypoints positioned
further away than from the previouswaypoints emulate acceleration,
whereas equidistant waypoints indicate a constant velocity. The
waypoints can be customized on the fly, allowing the driving
algorithm to dynamically react to other traffic objects.

6.3 Traffic object control in SUMO

In SUMO, it is straightforward to spawn a continuous stream
of vehicles at one point with random destinations to different parts
of the map. For each vehicle, the destination is (randomly) selected
at the moment the vehicle is generated, thereby ruling out the
possibility to drive around the ring several times. The characteristics

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1164950
https://carla.org/2020/09/25/release-0.9.10/
https://carla.readthedocs.io/en/latest/bp_library/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zainudin et al. 10.3389/frobt.2023.1164950

FIGURE 7
Map created in RoadRunner (left) and map converted for use in CARLA (right).

of road traffic can be determined by modifying stream parameters
such as the generation probability of vehicles that determines how
likely it is to spawn a vehicle from a specific location every 1 s.
The lower the probability, the less likely a vehicle will spawn. Since
1 s is too short an interval to eliminate the chance of overlapping
vehicles, SUMO uses a parameter called ‘minGap’, gmin, which is
the minimum gap (in meters) between successive vehicles when
spawning them into the environment. Note that the ‘minGap’ is
measured from the rear of the leading vehicle to the bumper of its
follower. In our simulations, we have set gmin = 0.4 m, which might
appear to be small; however, ‘minGap’ is used in another function to
calculate the minimum headway distance at the time of spawning hd
(Krajzewicz et al., 2012):

hd = gmin + hτvspawn, (3)

where vspawn is the spawning speed of the vehicle and hτ is the
minimum desired time headway between successive vehicles. In our
simulations, we have set vspawn = 6.7 m/s (15 mph) and hτ = 1 s,
yielding that hd ≈ 7 m is the minimum headway distance between
successive vehicles at spawning.

The default control algorithm in SUMO consists of the routing
algorithm and the car-following model. The routing model is an
algorithm that selects a random or fixed path whenever a traffic
object reaches at an intersection with two or more exits. In our
case, all traffic objects have an equally random chance of exiting
from one of the possible three exits at the roundabout, discounting
the direction the traffic object is coming from. This will result in
a uniform distribution of traffic objects exiting at each possible
exit.

The default SUMOdriving algorithm is the Krauss car-following
model (Krauss, 1998). The Krauss model finds a safe longitudinal
speed4, vsafe to avoid mutual crashes, taking into consideration
several parameters such as the current speed of the vehicle, v(t),
the leading vehicle speed, vl(t), the distance headway to the leading
vehicle, the driver’s reaction timeTr, and themaximumdeceleration

4 As SUMO always assumes that vehicles will stick to each lane,
respectively, an explicit lateral control model is not relevant here.

γmax allowed on a vehicle. Mathematically, one can write that at time
t,

vsafe (t) = vl (t) +(
vl (t) − v (t)

2γmax
+Tr)

−1
(g (t) + gdes (t)) , (4)

where g and gdes are the current and desired gaps, respectively, to the
leading vehicle.

In some cases, vsafe(t) may be computed to be higher than
the speed limit vmax or the achievable speed at the next time step
bounded by the maximum acceleration. Therefore, the minimum
of these values must be selected as the target speed of the vehicle
(Song et al., 2015),

vtarget (t) =min{vsafe (t) ,vmax,v (t) + γmaxδt} , (5)

where (v(t) + γmaxδt) is the speed at the next time step, i.e., δt = 50 ms
in our simulations, bounded by themaximum acceleration γmax that
has been set equal to γnax = 2 m/s2.

The speed limit can be manually set in SUMO for the traffic
objects or in CARLA for the EGO vehicle. A speed limit of
vmax = 13.4 m/s (or 30 mph) has been selected as this is the national
speed limit in built-up areas in the U.K.5. Finally, it should be noted
that the Krauss model is also used by the traffic objects generated
in SUMO to react to the EGO vehicle controlled by CARLA. In this
case, information must be exchanged through the CARLA–SUMO
co-simulation bridge (a script is provided by CARLA developers)
that allows data conversion and communication between the two
simulation environments.

6.4 SUMO and CARLA integration

The main components of the co-simulation environment are the
map and the Python scripts which run the specific functions via
the Python API of CARLA. To run the co-simulation, the maps
used between CARLA and SUMO must be in sync and generated

5 U.K. Government, “National Speed Limits, United Kingdom”, https://
www.gov.uk/speed-limits
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FIGURE 8
Co-simulation environment between CARLA and SUMO.

from the same original map. The latter is created in RoadRunner
and can be shared between the two simulators using different file
formats, as detailed in Section 6.1. To run the Python scripts that
execute the functions and control the road traffic environment, the
Python API built with CARLA is used. In this API, there are scripts
that allow seamless bridging between CARLA and SUMO. Since our
simulations assume that the positions and intended paths of traffic
objects (generated at SUMO) become available to the EGO vehicle
(generated in CARLA), the bridge had to be slightly modified to also
relay such information.

Figure 8 shows an example of information exchange. The 3D
map and control of the EGO vehicle are performed on the CARLA
side, whereas the 2D microscopic map and the traffic object
control are performed on the SUMO side. The bridge seamlessly
relays information between the two at a specified frequency
synchronously 6. In this way, all data remain in sync with the time
steps, and no data are lost or dropped.

6.5 Data collection workflow

Each simulation run starts with the EGO vehicle at 100 m
from the north entrance of the roundabout and finishes once
the EGO vehicle exits at the south approach. For each journey,
the instantaneous positions, speeds, and accelerations of the EGO
vehicle and of all traffic objects are stored in discrete time steps
of 50 ms in .csv format. This allows for the simulation data to
be analyzed and easily replayed. After all data are extracted, the

6 CARLA Simulation time-step and synchrony, https://
carla.readthedocs.io/en/latest/adv_synchrony_timestep/

trajectories of the EGO vehicle are first imported into MATLAB to
calculate the driving efficiency and ride quality KPIs. To extract the
safety KPIs, a program called Surrogate Safety Assessment Model
(SSAM) is used to automatically process the simulated trajectory
files and calculate the TTC andPETbetween the EGOvehicle and all
traffic objects. The SSAM tool analyzes the trajectories of all vehicles
within a simulation and extracts potential and/or actual collisions as
conflicts using thresholds on the TTC and PET that can be adjusted

FIGURE 9
Travel time box plot for the EGO vehicle using the baseline and the
enhanced algorithms. Higher spawning probabilities of traffic objects
are associated with increasing road traffic densities.
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by the user. In our case, the interaction between the EGOvehicle and
a traffic object is classified as a potential conflict if their PETbecomes
less than 5 s or their TTC becomes less than 3 s at any point during
their travel.

7 Evaluating the impact of collective
perception

In this section, simulations are carried out to measure the
effect of the additional information provided by the RSU through
V2X communication on the driving efficiency, passenger comfort,
and safety of an EGO vehicle traveling across an unsignalized
urban roundabout. The baseline and the enhanced algorithms for
motion planning presented in Section 3 and Section 4 are evaluated
and compared against the KPIs for driving efficiency, ride quality,
and safety determined in Section 5. A nominal flow rate of 8–16
vehicles/minute has been measured at roundabouts in central
Europe (Ambros et al., 2016), which is used as a benchmark for
parameterizing road traffic in our simulations. We consider only
symmetric traffic by assigning the same spawning probability for
vehicles in SUMO at each arm of the roundabout. Future work
is required to measure the traffic densities at the four arms using
infrastructure sensors (deployed in the junction but not included in
the description of Section 2) and study the asymmetric traffic case.

7.1 Simulation scenario setup

To model urban environments with different road traffic
conditions, we vary the spawning probability of vehicles in SUMO.
A new vehicle is generated every second at the west, east, and south
arms of the roundabout with probability {3,6,9,12,15,20} % and
at 100 m distance from the corresponding entrance. A spawning
probability of 3{%} is associatedwith a flow rate of 0.03× 3× 60 = 5.4
vehicles/minute, where the factor ×3 indicates symmetric traffic

at the three approaches of the roundabout. Note that a spawning
probability of 20% may correspond to a flow rate slightly less than
36 vehicles/minute because of the headway constraints between
successive vehicles discussed in Eq. 3. Initially, we do not generate
any traffic object at the north arm to avoid the EGO vehicle from
being caught up or slowed down by traffic in front of it while
approaching the roundabout, as some of the collected KPIs would be
affected and dictated by the road traffic in front instead of the EGO
vehicle and the infrastructure. Nevertheless, the KPIs will also be
evaluated with random traffic spawned at all arms of the roundabout
later in this section. For each spawning probability, 1,000 journeys
for the EGO vehicle are simulated.

7.2 Results and discussion

The simulation results depicted in Figure 9 and Figure 10
confirm that cooperative perception can significantly improve the
driving efficiency of the EGO vehicle both in terms of journey
completion time andwaiting time at the entrance of the roundabout.
The EGO vehicle becomes aware of the intended trajectories of other
vehicles, and because of that, it is less likely to come to a complete
stop at the entrance. At the highest simulated flow rate, the EGO
vehicle stopswith probabilities of 70{%}using the baseline algorithm
and only 35{%} using the enhanced algorithm. Cooperative
perception also enhances the journey comfort, especially near the
entrance, as can be seen in the acceleration plots in Figure 11. Over
there, the baseline algorithm abruptly decelerates the EGO vehicle
even at moderate traffic densities, e.g., for a spawning probability
equal to 6{%}, before accelerating again. With the enhanced
algorithm, the acceleration profile becomes much smoother near
the entrance, and thus the journey is more comfortable. Since the
driving efficiency and comfort improve, it is expected that the EGO
vehicle will either experience smaller margins than other vehicles
or make riskier maneuvers. Hence, as an educated guess, the safety

FIGURE 10
Empirical cumulative distribution function (CDF) of stationary waiting time for the EGO vehicle at the north entrance of the roundabout for the baseline
(left) and the enhanced (right) algorithm. The clock to measure the waiting time starts ticking when the velocity of the EGO vehicle is less than 0.45 m/s
(or 1 mph). Higher spawning probabilities of road traffic in the legend are associated with increasing road traffic densities.
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FIGURE 11
Color-coded instantaneous acceleration of the EGO vehicle along its route for different spawning probabilities {3,6,9,12,15,20}% using the baseline
(left) and the enhanced (right) algorithms. The acceleration for every point along the route is calculated as the average over 1,000 journeys. Higher
spawning probabilities of road traffic in SUMO are associated with increasing road traffic densities. Since an ideal circular roundabout is used in our
simulations, as discussed in Section 6.1, we could not illustrate the acceleration profile of the EGO vehicle on the top of Google Maps depicted in
Figure 1.

FIGURE 12
Box plots for the time-to-collision (left) and the post-encroachment time (right) with the baseline and the enhanced algorithms. Higher spawning
probabilities of traffic objects are associated with increasing road traffic densities in SUMO. Recall that the maximum PET and TTC for identifying
potential conflicts in SSAM are set equal to 5 s and 3 s, respectively.

proximity metrics are expected to be slightly worse or similar
when comparing the enhanced to the baseline algorithm. It can be
observed in Figure 12 that the TTC and PET for the two algorithms
are not statistically different. This can be seen by noticing that the
shaded notched areas of the box plots for the same traffic flow rate
significantly overlap. Therefore, it is safe to deduce that despite the
driving efficiency and ride quality gains, there are no adverse effects
on the TTC and PET in this specific case.

We conclude this section by comparing the two algorithms
when random road traffic is generatedalso at the north

arm of the roundabout. The performance evaluation is
summarized in Figure 13 for three different traffic flow rates. For
spawning probability 9{%}, which corresponds to approximately
0.09× 4× 60 = 21.6 vehicles/min, the baseline algorithm stops the
EGO vehicle at the entrance with a probability of 40{%}, while
the enhanced algorithm does that only for 20{%} of the simulated
journeys.The enhanced algorithm also improves passenger comfort,
inducing less deceleration and acceleration at the entrance of the
roundabout. Finally, the TTC and the PET for the two algorithms
remain approximately the same for the same flow rate.
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FIGURE 13
Performance of the baseline and enhanced algorithms in terms of waiting time (top-left), ride quality (top-right), time-to-collision (bottom-left), and
post-encroachment time (bottom-right) for spawning probabilities of road traffic {3,6,9}% at all approaches of the roundabout, i.e., road traffic also
generated in the northbound/EGO vehicle’s lane.

8 Conclusion and future work

In order to realize the vision of level 4 autonomy, future
vehicles must be able to acquire a faithful representation of
the surrounding environment and road traffic. Solely relying on
onboard perception to achieve that, such as human drivers rely
on their decision-making to drive from point A to point B, will
not be always sufficient. In this paper, we have considered such a
case where an EGO vehicle approaches an unsignalized roundabout
and cannot perceive vehicles approaching the roundabout from the
other three entrances due to occlusions. In this scenario, we have
acquired simulation evidence that a roadside infrastructure with
edge computing capabilities and wireless connectivity, broadcasting
the intended trajectories of road users, can significantly reduce the
waiting time at the entrance of the roundabout for a connected EGO
vehicle. Even though a rudimentary motion prediction module is
adopted, the EGO vehicle can successfully avoid hazards. In the
absence of hazards, the EGO vehicle does not stop at the entrance
but continues its journey, saving time and enhancing ride quality,
as it avoids unnecessary decelerations and jerky maneuvers near the

entrance, without compromising safety. In the future, it is important
to consolidate the outcomes of our study by modeling imperfect
object detection and V2X communication, non-zero processing
delays, andmixed-traffic conditions, where only some of the vehicles
can share their intentions with the roadside unit. Furthermore,
it is desirable to replace the PID controller of the EGO vehicle
with a sophisticated car-following model because a PID controller
cannot manage all traffic flow situations. As the penetration rate of
connected and automated vehicles (CAVs) will increase, centralized
coordination or distributed cooperative solutions among CAVs
can also assist in decision-making, opening further directions
for future work. We believe that the promising results obtained
in this article can spark more research on CAVs navigating
complex junctions such as A-roads, T-intersections, and motorway
merges.
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