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Ultra-wideband (UWB) localization methods have emerged as a cost-effective
and accurate solution for GNSS-denied environments. There is a significant
amount of previous research in terms of resilience of UWB ranging, with non-
line-of-sight and multipath detection methods. However, little attention has
been paid to resilience against disturbances in relative localization systems
involving multiple nodes. This paper presents an approach to detecting range
anomalies in UWB ranging measurements from the perspective of multi-robot
cooperative localization. We introduce an approach to exploiting redundancy for
relative localization in multi-robot systems, where the position of each node is
calculated using different subsets of available data. This enables us to effectively
identify nodes that present ranging anomalies and eliminate their effect within
the cooperative localization scheme. We analyze anomalies created by timing
errors in the ranging process, e.g., owing to malfunctioning hardware. However,
our method is generic and can be extended to other types of ranging anomalies.
Our approach results in a more resilient cooperative localization framework with
a negligible impact in terms of the computational workload.

KEYWORDS

multi-robot systems, ultra-wideband (UWB) localization, anomaly detection, multi-
robot localization, UWB positioning, relative localization

1 Introduction

In recent years, there has been a growing interest in the development of anomaly
detection in various applications, including fraud and fault detection in safety
systems (Yang et al., 2017), healthcare (Fernando et al., 2021), and autonomous robots
(Salimpour et al., 2022b). Anomaly detection, also known as foreign detection or outlier
detection, is the process of finding anomalous patterns in a given dataset. It can be
applied to different types of data, including numerical data, images, videos, audio, text,
or time series data (Bogdoll et al., 2022; Chatterjee and Ahmed, 2022). Many multi-robot
applications are also at risk of being affected by anomalous data or byzantine agents which
can disrupt the entire operation (Deng et al., 2021; Ferrer et al., 2021). The attack can
target visual sensors, communication sensors, and positioning and localization sensors
such as lidars, GNSS, or ultra-wideband (UWB). In our recent work, we presented a
decentralized method for anomalies and byzantine agent detection in multi-robot systems
using an external motion capture (MOCAP) system to determine the robot’s location
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(Salimpour et al., 2022a). In this paper, our objective is to use UWB
technology for multi-robot relative localization while being able to
detect byzantine robots that generate false or anomalous ranging
information.

Global Navigation Satellite Systems (GNSS), such as the Global
Positioning System (GPS), are widely employed for accurate global
positioning in outdoor environments. Non-etheless, GNSS cannot
reliably perform indoors and may be disrupted by attacks, or by
jamming signals at the receiver. Among the localization approaches
in GNSS-denied and indoor environments, UWB technology
has emerged as a robust solution for relative localization and
state estimation in multi-robot systems (Queralta et al., 2020).
A UWB-based system could replace expensive and complicated
MOCAP systems and achieve centimeter-level localization
accuracy for mobile robots. Fixed anchors and mobile tags
are the two types of nodes used in UWB localization, while
time of flight (ToF) and time difference of arrival (TDoA) are
two popular methods for ranging measurements (Morón et al.,
2022).

In this paper, a multi-robot cooperative positioning system
employs UWB nodes in each robot to achieve robust relative
localization in GNSS-denied environments through information
sharing. For UWB ranging, we rely on time of flight (ToF)
measurements between all pairs of nodes. Trilateration or
multilateration algorithms can be used to determine the position
of the tags (Wang et al., 2021). In 2D localization, which relies on
at least two nodes to determine the tag’s position, the estimated
positions might slightly vary depending on the reference nodes
used. Using all available nodes, we propose a multiconfigurational
localization method to determine optimal positions and make them
resilient to fixed anchors. The core idea is to exploit redundancy in
terms of the ways in which the relative positions can be calculated.
This is possible because a higher number of ranges are measured
than theminimumneeded to ensure a unique solution in the relative
localization problem (except for translations, rotations and mirror
solutions).

Numerous research has been conducted in the UWB
relative localization systems in terms of obtaining robust and
reliable localization performance in swarms of robots. However,
wireless networking makes multi-robot systems vulnerable to
various types of attacks, so the UWB ranging mechanism is
not immune to ranging attacks, such as malicious interference,
sensor failure, timing error, or jamming, among others. In
multi-robot cooperative localization, it is crucial not only to
detect the anomalous pattern but also to identify and eliminate
byzantine robot that can tamper with their ToF measurement,
manipulating the distance measurement and creating false
ranging information for other nodes (Karapistoli and Economides,
2014).

Statistical-based approaches in related works, such as Kalman
filters (Ma et al., 2019), detect outliers and estimate normal values
in UWB ranges. However, in this study, the anomaly is a UWB
transceiver (robot) that may generate a normal but altered data
pattern. We propose a robust anomaly detection framework
based on the fusion of all possible position configurations
using different reference nodes. We developed our code based
on ROS 2 and verified the proposed approach in real-world
robot navigation. Our proposed method identifies unreliable

UWB node at each time stamp and eliminates them from the
cooperative localization pipeline within the multi-robot system.
In this contribution, we calculate the least square error of the
reference node’s corresponding configurations and the dispersion
of the remaining configurations after applying fixed-UWB range
matching.

The remainder of this document is organized as follows. In
Section II, we review related works for UWB relative localization
and anomaly detection in robotics. Section III describes our
methodology for cooperative localization and the detection of
abnormal UWB data and robots. Section IV describes the
experimental results. Finally, Section V summarizes the work and
outlines future directions.

2 Related work

2.1 Anomaly detection in robotics

Detection of anomalies in robotics, such as unusual data patterns
(He et al., 2018), abnormal behaviors, or abnormal sensors, can
broadly be divided into two areas: self-monitoring and group
monitoring. In self-monitoring approaches, each robot detects
anomalies independently. Meanwhile in group-detection approach,
multiple robots are involved in detectingmalicious data or byzantine
agents (Salimpour et al., 2022a). In both scenarios, knowledge-
based approaches typically learn the distribution of normal data
in order to make the model robust to abnormal data. In Olive
and Basora (2020), a simple autoencoder framework based on
reconstruction error was presented to detect anomalies in trajectory
data. Such approaches require sufficient samples for the training
data.

2.2 UWB-based localization in mobile
robots

UWB has been widely adopted in robotics and autonomous
field and its applications include global or relative localization
and wireless mesh sensor networks for situated communication
(Xianjia et al., 2021a). UWB can significantly benefit localization
in the robotics field, particularly in GNSS-denied environments
(Alarifi et al., 2016), seamlessly transition between indoor and
outdoor environments while keeping centimeter-level global or
relative position accuracy (Almansa et al., 2020). Most of the UWB
positioning solutions, both commercial and in academia, are based
on fixed anchors in known locations. Some studies are focusing
on utilizing various approaches to improve localization accuracy.
In Poulose and Han (2020), the authors applied Long Short-term
Memory (LSTM) to estimate the user position based on anchors and
achieved comparable accuracy to traditional approaches including
triangulation.More recently, relative localization has gained traction
within multi-robot collaborative localization problems as it enables
higher degrees of flexibility and infrastructure-free deployments
(Yu et al., 2023). With multiple UWB transceivers mounted in
each robot, relative positions among robots can be estimated
(Nguyen et al., 2018). This applies to various applications, including
autonomous docking (Nguyen et al., 2019), collaborative scene
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FIGURE 1
Illustration of the experimental arena and positions of the customized Turtlebot 4 robots utilized for this study, at a given time during the experiments.
Here we show in red the range measurements that are inaccurate, with nominal ranges in green.

FIGURE 2
Illustration of node positions calculated using the multilateration method. The blue points represent normal nodes, while the red node generates
anomalous ranges. The dotted red lines illustrate noisy UWB range measurements generated by the anomaly node. Subfigures (A) and (B) are
configurations generated using two different pairs of normal nodes as the reference basis, while in (C) one of the reference nodes is the anomaly.

reconstruction (Queralta et al., 2022), and others. By integrating
UWB with other sensors including visual odometry, and GNSS,
the robots can obtain more accurate and robust relative positions
(Qi et al., 2020; Xu et al., 2020; Xianjia et al., 2021b).

2.3 UWB anomaly detection

Outliers and malicious data are crucial factors that can
significantly affect the accuracy of UWB-based positioning
algorithms. To boost the accuracy and reliability of localization,

many researchers have proposed various solutions to detect and
address outlier data in both line-of-sight (LOS) and non-line-of-
sight (NLOS) conditions. For example, the authors in Dwek et al.
(2019) used an extended Kalman filter (EKF) for sensor fusion, and
outlier detection based on residual error on UWB ranges at each
time step. In Che et al. (2021), an anomaly detection approach
is presented for UWB indoor positioning based on Gaussian
Distribution and Generalized Gaussian Distribution algorithms.
This paper has used the variance of the estimated distance and
the power of the first path to classify NLoS environment. In
another study (Wang et al., 2021), authors proposed an anomaly
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FIGURE 3
Illustration of calculated positions using gradient descent method in (A) normal nodes, and (B) in the existence of anomaly.

FIGURE 4
Multilateration and gradient descent-based trajectory error for (A)
each individual node, and (B) the average error for normal dataset. The
error distribution is significantly larger in Node5 due to repeated NLOS
conditions during the experiments.

detection treatment using the derivatives of the mean function
of a UWB range time series to denoise and correct dropouts and
outliers.

In summary, most existing approaches look for out-of-
distribution data. Such statistical outlier detection methods are
not ideal for anomalous agent detection problems, as large numbers
of data need to be analyzed with a high computational load and
may not detect faults immediately. For example, individual range
distributions might be nominal to a LOS measurement but shifted
or biased. To approach this issue, we present instead an approach
wherewe exploit redundancy in rangingmeasurements and perform
a statistical outlier detection at the multi-robot system level rather
than individual measurement level.

3 Methodology

This section presents details of the multi-robot cooperative
localization approach we present for an infrastructure-free (or

anchor-free) anomaly-resilient relative localization. We also
compare the anomaly detection process with Multilateration
(MLAT) to the use of a Gradient Descent (GD) algorithm.
All these localization and anomaly detection processes run
in real-time in a laptop connected to the same network as
the robots. The laptop and robots run ROS 2 Galactic under
Ubuntu 20.04. The UWB distances are received by an external
passive UWB node directly connected to the laptop over
serial.

3.1 Hardware

In the experiments, we used eight TurtleBot4 Lite mobile robot
platforms built on top of the iRobot Create 3 base, denoted as
Ri, i∈{1,2,3,4,5,6,7,8}. Each of these robots was outfitted with a Qorvo
DWM1001 UWB transceiver that had custom firmware installed.
We developed and deployed custom firmware for the DWM1001
modules, enabling them to function as active nodes. To gather
ranging measurements, we programmed the UWB transceivers to
repeatedly measure the ToF between each pair of nodes. Within the
experimental arena, the robots move around while an OptiTrack
motion capture (MOCAP) system provides accurate ground truth
information to verify the estimated relative states of each robot. The
operating area is approximately 8 m wide, 9 m long, and 5 m high
(see Figure 1). Within this area, we positioned two static nodes,
R1 and R2, and six mobile robots, denoted as Ri, i∈{3,4,5,6,7,8}. The
purpose of the static nodes is to provide a common orientation
reference for comparing different relative localization approaches.
The maximum speed of the robots during experiments is
0.3 m/s.

3.2 UWB-based cooperative localization

In the remaining portions of this paper, we use the following
notation. N robots are considered, with their positions indicated by
pi, with i ∈ {1,… ,N}. Based on the time of flight of a message, ToF
localizationmeasures the distance between twonodes by exchanging
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FIGURE 5
Example of estimated positions, from a single set of measurements, using (A) MLAN, and (B) GD. The data includes anomalies. Each of the data points
represents the position calculated using a single pair of nodes for the origin and x-axis orientation. All the estimates are then rotated and shifted as
needed for comparison.

FIGURE 6
Estimated trajectories of a normal agent (node) using multilateration and gradient descent methods in the (A) absence, (B) presence of an anomalous
node, (C) after removing the anomalous layout by each method, and (D) after removing the anomaly and optimizing the positions by gradient descent.

messages between them and can be computed following Eq. 1:

ToF =
Tinit −Tres

2
(1)

where Tinit is the timemeasured between the instant when a ranging
request is initiated by a given node to another, and until the reply
from the latter is received at the former. Tres denotes the time it
takes the receiver to receive, process and return the message. The
return transmission time is, in practice, scheduled in time, ensuring
a more accurate value. With this information embedded in the
response message, we can determine the distance between the two
nodes. A comprehensive error analysis for such deployment with
mobile nodes is available in Torrico Morón et al. (2023). Despite the
higher accuracy of double-sided two-way ranging (Sidorenko et al.
2020), we implement only one-sided two-way ranging in thiswork to
increase the ranging frequency. The difference in clock frequencies
can induce higher error; however, our experimental data did not
show signs of large differences between the two.

During the experiments, the ranging frequency is 14 Hz for
each distance measured, for a total of 392 Hz considering all ranges.

With this frequency, we assume that the movement of the robots is
negligible in comparison to the time it takes to obtain all distances
across the system. At the maximum speed, robots can travel a
maximum of approximately 2 cm, for a maximum cumulative range
error of 4 cm.This is a limitation in terms of applicability to systems
where nodes move faster, in which case the ranging frequency
should be increased. A potential solution to this limitation is to
compensate the ranges if an estimate of each robot’s odometry is
available.

In our proposed cooperative localization method, each point’s
position pi is determined based on all possible base anchor pairs in
the system. Let pnm

[r] be the layout generated by each base anchor
pair n andm. Each target robot’s position in this layout is calculated
using the triangulation technique in which the first base anchor is
assumed to be located at the origin (0,0), and the second one, at a
known distance d along the x-axis (d(n,m),0).

xi =
d2(n,m) + d

2
(n,i) − d

2
(i,m)

2× d(n,m)
(2)
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Algorithm 1. Cooperative LocalizationMethod.

Algorithm 2. Anomaly DetectionMethod.

yi = ±(√d
2
(n,i) − xi

2) (3)

This method finds two possible intersection points. Having
accurately determined the position of each point by considering all
conceivable pairs of nodes, it follows that any intersection point on
either side could potentially be the correct point. Consequently, an
additional point is required to ascertain the correct side. According
to Eq. 3, the distance between the first target point (robot) and the
next points is taken into account to eliminate one of the intersection
points based on the distance error. The generated layouts are later
transferred based on the two fixed nodes for a common orientation
reference. Figure 2 shows three different layouts generated by
various pair base nodes. It is worth noting that nodes are assumed
to be moving, without stationary assumptions for the localization
problem. For multilateration-based localization, an analysis on the
errors is provided in our previous work (Torrico Morón et al., 2023).
This error is not directly comparable to Decawave’s localization
system error, since it is based on anchor nodes in fixed and known
locations, and therefore only a subset of the positions (those of
moving nodes, or tags) are calculated. Our solution, instead, is
infrastructure-free. We refer the reader to the existing literature for
assessing the type of localization errors in such fixed-infrastructure
systems (Queralta et al., 2020).

Once all layouts are generated, the robots’ final positions can
be defined as shown in Algorithm 1. During the initial stage of the

matching function, an average configuration, identified as p[r] in the
algorithm, is derived from the available list of configurations. This
average configuration subsequently serves as a reference to compute
the minimum least square error (LSE) for each linearly transformed
configuration, thereby optimizing them. As the objective is to detect
the anomaly, we linearly shift the layout in three dimensions x, y, and
θ, to align all configurations. Following the transformation within
a prescribed range of x, y, and θ, the final configurations, defined
as p[r] in the algorithm, are determined as those with the minimum
LSEwhen compared to the initial average configuration. In adopting
this approach, the configurations advance towards optimization and
gain resilience against errors arising from the ranging inaccuracies
of the base nodes. The final positions are subsequently estimated by
averaging the ultimately optimized configurations.

3.3 Identification of anomaly nodes

During the cooperative localization step, the final layouts
and their LSE were computed. In order to identify anomalous
nodes, each individual node’s error is determined based on the
N– 1 configurations in which it has been involved. Whenever
the error of an anchor exceeds a certain threshold, all related
configurations to that anchor are removed. Figure 2C illustrates
how a configuration is developed using an anomaly as a base
node. Detecting anomalies becomes challenging when two nodes
contribute to an erroneous configuration, leading to potential
instances of both incorrectly identified anomalies (false positives)
and accurately identified anomalies (true positives). To tackle
this issue, the standard deviation of each anchor’s position is
calculated after removing configurations associated with each
potential anomaly. This considers the possibility that either base
node of each configuration could be the anomaly.

The standard deviation of the positions of each anchor is
measured after removing the related configurations of each potential
anomaly:

sd =
N

∑
i=1

√∑
m
j=1
(pj

i − μ)

m
, m =

n× (n− 2)
2

(4)

Where N is the number of UWB nodes. Then the obtained sd is
compared to the original layouts to assess the effect of each potential
anomaly. At this point, it is also apparent that anomalies have the
highest dispersion. The anomaly detection process is summarized
in Algorithm 2.

3.4 Gradient descent optimization

Gradient descent as an optimization algorithm has been used
to reduce the loss function in various models. The goal of
gradient descent in UWB localization is to position the nodes
by minimizing the distance error (Ridolfi et al., 2021). The basic
idea behind gradient descent is to iteratively update the positions
by taking a step in the opposite direction of the gradient. By
iterating this process, gradient descent gradually converges to
final positions that minimize the error function. Gradient descent
requires initial parameter values to start the optimization process.
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FIGURE 7
Multilateration and gradient descent-based trajectory error for (A) each individual node, and (B) the average error in the presence of an anomaly. The
errors increase in a mostly linear relation with respect to the anomaly-free data, for both LOS and NLOS (Node 5) measurements.

For the convergence speed and stability of the algorithm, the initial
reference system for the optimization process has been calculated
using the UWB collaborative localization method described in
subsection B. After the anchors are initialized, their positions are
modified by minimizing the loss function. The loss function is
defined as the difference between points pi and pj reported UWB
distance d(i,j), and their estimated 2D distance (5):

Loss =
N

∑
i,j=1
(d(i,j) − ‖p

i − pj‖)2 (5)

Figure 3 illustrates how each point coordinates with other nodes
to be located at an optimal position based on the loss function.
In our experiment, we specified the learning rate for the gradient
descent algorithm to be 0.01, and we performed 100 iterations as
part of the optimization process. In Figure 3B, it is shown that
with the gradient descent method, anomalies impact also other
nodes’ positions regardless of the base nodes, as the global error is
minimized, with anomalies generating a non-convex cost function.

4 Experimental results

In this section, we focus on the results of experiments carried
out to validate the functionality of the proposed methods. First,
we evaluate the viability of the proposed cooperative localization
framework on normal UWB ranges in comparison to the optimized
positions using the gradient descent algorithm. Then, we assess the
behavior of these methods in the presence of anomalies.

4.1 Cooperative localization with nominal
ranging

The findings of this study regarding the trajectory error of
the multilateration method based on the anchor-free cooperative

framework for normal data for different agents are presented
in Figure 4. Specifically, the performance of the multilateration
method was evaluated and compared with the gradient descent
optimization technique. Through the implementation of gradient
descent, the position of each anchor was optimized, which
resulted in a slight reduction in the total error as compared
to the multilateration method. Nevertheless, it is essential to
highlight that the computational time needed for the gradient
descent optimization technique exceeds that of the multilateration
method, given that the average convergence time in gradient
descent is approximately 0.07 s. Therefore, while the gradient
descent optimization technique may offer a slight improvement in
positioning accuracy, it may not be the most practical approach in
scenarios where computational efficiency is a critical consideration.
As an example, Figure 6A provides the trajectory results of both
methods for the normal dataset. During the data acquisition,
we wanted to study whether the anomaly would be detected
independently of having LOS or NLOS ranging conditions.
Therefore, the trajectories of the nodes are generated in a way
such that Node 5 range measurements suffer of NLOS conditions
significantly more than others.

4.2 Anomaly detection

Themultilaterationmethod proposed in this study utilizes linear
transformations and shifts for all configurations. As a result, the
estimated distances between nodes remain fixed at each timestamp,
enabling the use of dispersion-based anomaly detection techniques
to detect any irregular layouts or nodes. Figure 5 presents a clear
visualization of the node distribution at a specific timestamp. It is
evident from subfigure (a) that the anomalous nodewas transmitting
erroneous UWB ranges to all nodes, resulting in a wide distribution
of positions.

In the context of detecting anomalies, gradient descent
minimizes the distance error between the predicted values and the
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FIGURE 8
Confusion matrices for the (A) GD, and (B) MLAN anomaly detection methods studied in this paper. The optimization done in the gradient descent
method hinders the detection of anomalies owing to a lower global relative positioning error.

FIGURE 9
Comparison of F1 Scores for MLAT and GD algorithms across different
numbers of simulated nodes.

actual values of each node. As a result, the positions of each node
from different configurations have converged in a way that leads to
similar distributions for all nodes, including the anomaly node.This
means that, at each timestamp, the anomaly node may not stand
out as being significantly different from the other nodes, as shown
in subfigure (b). Figures 6A, B illustrate the calculated trajectory of
a normal node in the absence of an anomaly and disturbed by an
anomaly, respectively, using both the proposed multilateration and

gradient descent techniques. In Subfigure (c), anomaly detection
and elimination results are shown using both methods, while
subfigure (d) shows slightly different results when multilateration
anomaly detection is followed by gradient descent optimization for
positioning.

Figure 7 also displays the trajectory error of all agents for both
methods. Notably, in the case of anomalies, the gradient descent
algorithm yields a higher error at each node and also results in a
larger total error.

In the confusion matrix, in Figure 8, we evaluated the
performance of both methods with and without the anomaly. As
previously discussed, both techniques perform similarly, with a
balance between speed and accuracy when dealing with normal
data, marked as None in the matrix. However, when it comes
to detecting anomalies, multilateration provides better accuracy,
and the false negative rate of the gradient descent technique is
high, indicating that the model is missing a significant number of
anomalies.

4.3 Large-scale simulation results

In order to assess the efficacy of our proposed method within
a larger environment and extended UWB ranges, we conducted
simulations due to the unavailability of real-world settings covering,
for example, 100 m × 100 m. We have developed a Python-based
simulation environment where UWB ranges are simulated based
on real-world noise measurements, leveraging our previous work
in Torrico Morón et al. (2023). We varied configurations with up
to 100 nodes. The simulated temporal errors inducing anomalies
were increased proportionally with the distances between the
corresponding nodes. Following the evaluation of real-world
results using a confusion matrix in Figure 8, the accuracy of
the model for simulated data was compared using the F1 score
across diverse configurations. The comparison is illustrated in
Figure 9 for node quantities ranging from 8 to 100, including
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FIGURE 10
Simulated ground truth and anomaly-free trajectory, alongside the
anomalous nodes.

one anomaly node per every 8 nodes. Consistent accuracy is
observed when additional nodes are introduced, resulting in
minimal changes in the model’s accuracy. The graph depicts the
model’s sustained accuracy in terms of F1 score, encompassing
true positive, false positive detection, and true negative
detection.

We also compared the results obtained from gradient
descent and multilateration algorithms. Similar to the real-
world results, multilateration significantly outperforms gradient
descent algorithms for anomaly detection. As part of our analysis,
we also compared the two algorithms from a computational
perspective, and the findings clearly highlight the superiority
of multilateration in detecting anomalies with a considerably
higher frequency compared to gradient descent(9). Figure 10
visually presents an example of the outcomes of anomalous
node detection, marked in red, alongside pathways of normal
nodes following anomaly elimination through the multilateration
algorithm.

By augmenting the number of nodes and concurrently adjusting
the size of UWB ranges, we examined the impact of anomaly-
generated errors on the model’s accuracy. We explored the influence
of different anomaly range errors, stemming from temporal errors.
Figure 11 illustrates the correlation between the anomaly’s range
error and the model’s accuracy, measured in terms of F1 scores.
To obtain comprehensive results, we conducted this analysis
across various node quantities. As depicted in the figure, as
the anomalous range diminishes, the detection becomes more
challenging.

5 Conclusion and future work

This paper proposes a novel approach to detecting anomalies
in UWB ranging in mobile robots by exploiting redundant
localization data. Specifically, throughout the paper, we have studied

FIGURE 11
Model accuracy across various anomalous range errors for different
node configurations.

the problem of identifying anomalous nodes in a multi-robot
system. The anomalies can be caused by byzantine agents, due to
either malicious behavior or hardware or timing problems. Both
multilateration and optimization-based methods are typical in the
literature in terms of relative localization estimation. Despite the
higher accuracy of optimization methods, we show in this study
how leveraging redundancy allows for multilateration methods to
be more robust in identifying anomalies. Our approach consists
in calculating relative positions with different subsets of ranging
data, with results that can then be compared to each other. In
comparison, a gradient descent method analyzed in the paper
that minimizes global error masks the anomalies instead. Once
the anomalous nodes are detected, however, optimization-based
methods can be used to increase the accuracy of the relative
localization. Overall, our experiments with multiple real robots
show that the proposed method works and clearly outperforms
anomaly detection based on a gradient descent method for relative
localization.

In future work, we will study different types of anomalies.
We are particularly interested in analyzing the performance
of this method for NLOS ranging detection, specially
when only a subset of ranges from a given node present
anomalies.
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