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Soft pneumatic artificial muscles are increasingly popular in the field of soft
robotics due to their light-weight, complex motions, and safe interfacing with
humans. In this paper, we present a Vacuum-Powered Artificial Muscle (VPAM)
with an adjustable operating length that offers adaptability throughout its use,
particularly in settings with variable workspaces. To achieve the adjustable
operating length, we designed the VPAM with a modular structure consisting
of cells that can be clipped in a collapsed state and unclipped as desired.
We then conducted a case study in infant physical therapy to demonstrate
the capabilities of our actuator. We developed a dynamic model of the device
and a model-informed open-loop control system, and validated their accuracy
in a simulated patient setup. Our results showed that the VPAM maintains its
performance as it grows. This is crucial in applications such as infant physical
therapy where the device must adapt to the growth of the patient during a 6-
month treatment regime without actuator replacement. The ability to adjust the
length of the VPAM on demand offers a significant advantage over traditional
fixed-length actuators, making it a promising solution for soft robotics. This
actuator has potential for various applications that can leverage on demand
expansion and shrinking, including exoskeletons, wearable devices, medical
robots, and exploration robots.
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1 Introduction

Exoskeletons and wearable devices for physiotherapeutic applications of many
varieties are well described in literature, though most currently available exoskeletons
for lower-limb physical therapy consist of rigid materials and rigid actuation schemes
such as DC motors, gear boxes (Sancho-Pérez et al., 2016; Wu et al., 2016; Narayan
and Kumar Dwivedy, 2021), cable transmission mechanisms (Asbeck et al., 2015;
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Ding et al., 2018; Di Natali et al., 2020; Wang et al., 2022), and
bar mechanisms (Chaparro-Rico et al., 2015). These types of
exoskeletons and mechanisms provide high forces, repeatable
assistance and good structural support, but have drawbacks in
patient comfort and safety due to heavy, rigid components that
pose risks for pinching and other forms of mechanical injury. To
overcome these risks, exoskeletons with fully soft structures have
been described (Polygerinos et al., 2015; Sridar et al., 2017; Nguyen
and Zhang, 2020).

Within the sub-field of wearable devices for physical
rehabilitation of infants, soft or conformable materials present
an alternative to rigid exoskeletons (Goldfield et al., 2012). Such
devices can be passive (Sargent et al., 2015; Lobo et al., 2016;),
which limits their use to supports or resistance bands, while
others use soft actuation (Goldfield et al., 2012; Park et al., 2014;
Subramanyam et al., 2015; Kokkoni et al., 2020). The use of soft
robotic systems for physiotherapy exoskeletons in infants is
desirable, as they reduce the risk of injury, are lightweight and
inexpensive, and conform well to the body of the wearer. Despite
the variety of soft platforms for infant rehabilitation, none address
the key issue of rapid patient growth, requiring new devices to be
designed as patients grow. This work attempts to address this key
limitation in soft exoskeletons for infant physiotherapy by presenting
a length-adjustable soft robotic actuator that easily adjusts to grow
with patients.

The key components of a soft robotic exoskeleton are soft or
flexible actuators, also called artificial muscles (AMs). There is a
variety of AMs in the literature, with one of the most popular
forms being Pneumatic Artificial Muscles (PAMs), which consist
of a bladder that is pressurized pneumatically, leading to various
types ofmotion.Themost commonmotion produced by an artificial
muscle is contraction with ratios of 35% and 60% for elastomeric
soft actuators and membrane-based soft actuators respectively
(Chou and Hannaford, 1996; Niiyama et al., 2014; Rus and Tolley,
2015; Hawkes et al., 2016; Drotman et al., 2019; Yang et al., 2019;
Zhu et al., 2019). Other examples of AMs produce bending
motion using asymmetric configurations (Galloway et al., 2013;
Mosadegh et al., 2014; Khin et al., 2017; Sridar et al., 2017) and
twistingmotion throughhelical fiber reinforcement (Galloway et al.,
2013; Khin et al., 2017).

In comparison to PAMs that are actuated with positive
pressure, Vacuum Pneumatic Artificial Muscles (VPAMs) use
negative pressure. Some attractive features of VPAMs are the ability
to work in space-limited scenarios, high force to weight ratio,
and high speed. VPAMs are also safer than positive pressure
PAMs as wearable actuators, as their negative pressure means
they do not explode upon failure. VPAMs perform a variety of
motions such as bending (Li et al., 2017; Usevitch et al., 2018) and
twisting (Jiao et al., 2019; Jiao et al., 2021). Linear contraction can
be generated using design features including buckling elastomeric
structures (Yang et al., 2016; Yang et al., 2017), foldable structures
(Zhang et al., 2021), equidistant rings (Felt et al., 2018; Lee and
Rodrigue, 2018; Usevitch et al., 2018; Li et al., 2019), internal
origami skeleton (Li et al., 2017; Mendoza et al., 2021), springs
(Kulasekera et al., 2020; Kulasekera et al., 2021) and deployable
structures (Yu et al., 2021).

In general, there are twomain configurations inVPAMs: Bellows
Vacuum actuators (BVAs) and Fluid-driven Origami Artificial
Muscles (FOAMs). BVAs offer high forces (≈70 N) and high
contraction ratios (≈90%) using an inextensible but flexible skin
with a tubular shape with internal rings spaced evenly (Felt et al.,
2018; Lee and Rodrigue, 2018). Their performance is hindered
as compression of the membrane is unpredictable, and leads to
non-uniform contraction and high hysteresis. FOAMs offer large
contraction ratios up to 90% by encapsulating a zigzag skeleton
in a skin (Li et al., 2017). Replacing the skeleton for a spring or
a deployable structure leads to contraction ratios under 40% and
80%, respectively (Kulasekera et al., 2020; Yu et al., 2021).Our group
previously reported a low-profileVPAMbased onBVAs and FOAMs
that was designed for rehabilitation of infants less than 3 months of
age and produced a maximum force of 26 N (Mendoza et al., 2021).

Although significant progress has been achieved in AMs, there
remains a scientific challenge to develop AMs capable of adapting to
a patient’s body in a wearable setting, particularly in growing infants.
For our particular technological design challenge, we chose to focus
on infantswithmotor paralysis in the lower limbs, in conditions such
as cerebral palsy and myelomeningocele. For lower-limb paralysis
in infants, a key form of physiotherapy is Range of Motion (ROM)
exercises, which consist of the active bending of the joints in their
full range of motion (usually by a caretaker or health professional)
to ensure a preservation of joint mobility as the child’s limbs
develop (Seattle Children’s, 2018). In the case of myelomeningocele,
infants suffer from paralysis, and for the first 6 months of life
ROM exercises are the primary form of physiotherapy, after which
other forms of physiotherapy are introduced (Tappit-Emas, 2008).
In this work, we focus on the ROM exercise of the knee joint,
which is performed in the prone position and requires a large
range of motion, as well as a smooth motion trajectory for patient
safety (Seattle Children’s, 2018). With these parameters in mind, we
chose the BVA due to its high contraction ratio as a VPAM. In
comparison to rigid mechanisms and conventional PAMs, the BVA
offers a variety of safety benefits, as it cannot exceed its maximum
contraction, remains equally deformable throughout its actuation
states, and as previously mentioned, does not suffer the explosion
risk that positive-pressure actuators do. On top of greater safety,
the light and soft materials used, allow for a portable assembly
that is more comfortable for the wearer than the existing rigid
approaches. Finally, the modularized form factor of the BVA lends
itself to our adjustable length design, as will be explained in later
sections.

In this work, we report a single BVA capable of adjustable
functional lengths and present a case study of its application for
ROM knee joint exercises for 0-to-6 month-old infants. We first
describe the design in further detail and characterize the actuator
at various length states. Additionally, we present a dynamic model
and an open-loop control approach developed to predict a suitable
actuator pressure input to achieve a target knee motion. Finally, we
validate the model through a set of experiments on a model leg. We
find that the clipping BVA functionality allows the same actuator to
be used on a growing simulated patient, and that ourmodel is able to
predict the desired leg motion in an open-loop fashion, accounting
for the change in BVA length.
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FIGURE 1
Working principle for the BVA presented in this work, including (A) Assembly view of the actuator with labelled components, and (B) A concept drawing
of how the same actuator can be used on a growing patient by unclipping cells over time. A fabric sleeve would be placed around the actuator (See
Supplementary Material).

2 Materials and methods

2.1 Working principle and design
requirements

The BVA presented here is a low-profile soft artificial muscle
composed by evenly spaced cells with a rectangular cross-sectional
area. Our BVA consists of five components: a flexible membrane or
skin, internal rings, external rings, and anchoring clips (Figure 1A).
Standard BVA designs often include solely internal rings, evenly-
spaced to create a chain of contractile cells which can be tuned
based on cell spacing (Felt et al., 2018; Gollob et al., 2021). The key
unique features of our design are its functional external rings and
clips, which allow this design to be length-adjustable, by clipping or
unclipping actuator cells (Figure 1B).The internal rings still provide
necessary support for the skin, but the external rings envelop the
internal rings from outside the skin (See Supplementary Material
for fabrication details). The clipping concept works by sliding the
clips in grooves placed on the external rings, thus attaching two
neighboring rings and in essence deactivating the clipped cell. More
cells can be clipped at once with a clip that spans the length of
multiple rings.

The clipping mechanism allows a BVA to adjust its contractile
length. A BVA can have clipped cells to work in a scenario
with limited space and unclip cells to lengthen and produce a
higher absolute contraction. This feature can offer an advantage
over fixed-length soft robots in terms of reusability. In our

case study, we demonstrate this with an active length range
of 30 mm–40 mm (2–3 unclipped cells) on a growing patient
model (Figure 1B; Supplementary Video S1), though this concept
can be extended to BVAs of arbitrary length and cross-sectional
area.

For our case study of infants with myelomeningocele from
0 to 6 months of age, we worked with clinicians to define
the requirements for the knee exercise such as the time for
leg flexion-relaxation, the ROM, and a desired trajectory (see
Supplementary Table S4; Supplementary Material). A key detail,
which led us to select a sinusoidal trajectory was the desire
for smooth and continuous motion, without sharp acceleration.
Considering this information, we designed the BVA with a
rectangular cross-sectional area for its low profile and greater
rotational stability.The required actuator length for each month was
calculated based on biometric data on infant limb dimensions (Sun
and Jensen, 1994), as well as a theoretical range ofmotion and output
force magnitude requirements, informed by an existing generalized
model of bellows actuators (Gollob et al., 2021).

As for the design of the interface with the patient, we consulted
with our clinical collaborators again to define the anchoring
locations for the actuator across the knee joint, anchoring near
the end of the calf and the base of the thigh, near hips (see
Supplementary Table S4; Supplementary Material). This was also
informed by the lever arm concept and our quasi-static model,
would allow the contractile actuator to produce low forces (<8 N) for
the exercise (see Supplementary Section S1.4), increasing overall
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FIGURE 2
Schematic of the workflow for running the Back-Solver model, including the FCP (the hysteretic FCP shape and the final fitted FCP using the lower part
of the hysteretic curve), and the target trajectory as the input formats of the model, as well as the open-loop pressure input as the output formats of
the model. Fact, xact, and Pact stand for actuator force, contraction, and pressure respectively.

assembly safety. The Supplementary Video S1 shows a mock-up
version of this design for visualization purposes. We note that
despite this lower force, there may still be loads off of the flexion-
extension axis of the knee joint, which would present a risk of injury
for the patient and would be addressed in future versions of the
design, likely throughmore robust anchor design and support added
to the knee joint to prevent off-axis bending.

2.2 Model-based open-loop control of
actuator

2.2.1 Dynamic model of the leg
As a prelude to the Back-Solver model in the next section,

a dynamic leg model was developed. It represents the lower leg
bending at the knee and is composed of a pinned rotatingmass and a
rotational damping element to as a lumped loss factor. A contractile
actuator is attached across the knee joint, with anchoring locations
along where the calf and thigh would be, as explained above. The
actuator outputs a nonlinear tensile force calculated from its current
length and pressure, based on an empirically-derived function,
and that force is converted to a torque trigonometrically. After
formulation, the dynamic model was validated through dynamic
experiments to ensure it accurately represented the system for our
purposes (see Supplementary Section S1.6).

The greatest challenge for model accuracy is the proper
characterization of the actuator’s output force, as it is known
from previous work that force is non-linear with regards to
actuator contraction, while being linearly proportional to pressure
(Felt et al., 2018; Gollob et al., 2021). This nonlinear relationship
between output force and actuator displacement is referred to
as the Force-Contraction Profile (FCP). Though previous work
has also demonstrated a method for predicting the nonlinear

FCP of an actuator from its geometry (Gollob et al., 2021), our
application proved incompatible with actuator modelling given the
variability in actuator construction, small inaccuracies in actuator
measurements, and the overall sensitivity of the system to errors
in force output (given its open-loop operation). Rather, the output
force-contraction for the actuator was derived empirically.

This process, further detailed in the Experimental Methods
Section (2.3.4) and depicted in Figure 2, involves extracting an
implicit actuator output force curve given the measured leg motion
in an experimental setup of the knee-flexion exercise.This empirical
approach to FCP derivation has a few benefits for on-site use in
a clinical setting over a model-based or other direct measurement
approaches. Firstly, it requires no additional equipment from the
user other than the sensors that would already be present in the
system (IMUand pressure sensor), unlike a force-basedmethod that
would require a mechanical testing setup. Secondly, this method is
specific to the assembly, and so can absorb some of the discrepancy
between the model’s assumptions and the reality about system
parameters. Finally, the actuator’s performance may change over
time, and this approach can be quickly repeated to update themodel.

2.2.2 The back-solver system model
In a physiotherapy setting, it is desirable to control the angular

ranges and frequencies of joint motion. Further, smooth motion
lends itself to patient safety. Toward this end, we created a Back-
Solver model. While the dynamic model uses an input pressure
curve to predict a leg trajectory, the Back-Solver uses dynamic
equations to convert a desired leg trajectory into a requisite pressure
input.This open-loop pressure input approach reduces the technical
and equipment requirements for the platform in an end-user
operated context, while ensuring safe and accurate leg motion.
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First, the desired trajectory (θ) is numerically derived twice to
find the angular velocity (ω) and angular acceleration (α) over time.
For each time point, the net torque in the system (Tnet) is calculated
using the angular acceleration (Eq. 1), the damping torque (Tdamp)
using the angular acceleration (Eq. 2), and the torque due to the force
of gravity (Tgravity) using the leg angle (Eq. 3).Themoment of inertia
(I) is calculated by treating the leg as a point mass at the foot and one
at the lower leg’s center of gravity, while the damping coefficient (c) is
generated empirically by adjusting the dynamicmodel step response
to match that of calibration step-input experiments. In Eq. 3, g is the
acceleration due to gravity,m f andml are the masses of the foot and
lower leg respectively, lll is the length of the lower leg and fll is center
of mass location for the lower leg as a percentage of segment length
taken from the knee joint (∼43%, see Supplementary Material).
The requisite actuator torque (Tact) is then solved based on Eq. 4
and finally compared to a Torque-Theta profile (TTP), a mapping
of the actuator’s FCP from a force-length to a torque-angle space
(see Supplementary Information). The Tact at each time point is
converted into a pressure (Pact) by dividing by the TTP value, based
on the linear relationship between force output and pressure (Eq. 5).

Tnet = I α (1)

Tdamp = c ω (2)

Tgravity = −g (lllm f + (lll fll)ml) cos ⁡⁡(θ)⁡ (3)

Tact = Tnet − (Tdamp +Tgravity) (4)

Pact(t) =
Tact

TTP(θ(t))
(5)

Figure 2 depicts the workflow of this approach, combining the
FCP from the quasi-static characterization process with a target
angular trajectory to solve for a pressure input curve for the
regulator.

2.3 Experimental methods

2.3.1 Quasi-static testing using various clippings
configurations

To characterize the BVA and evaluate the effect of the clipping
mechanism on its output force and contraction, we performed
a force-contraction experiment using a custom-made tensile test
setup. An eight-cell BVA was built with a cross-section of 30 ×
15 mm, with a distance of 15 mm between rings. The BVA was
attached by thread to a load cell (SEN-14729, SparkFun Electronics)
on one end and a pulley controlled by a stepper motor in the other
end. To obtain the FCP, we loaded the actuator with a 5N pretension
force using the stepper motor and load cell feedback, then applied
a constant −20 kPa using a vacuum pressure regulator (IRV10A-
C06LZN, SMC Pneumatics Inc.). The actuator was allowed to
contract at a rate of 100 mm/min, controlled by the stepper motor,
and the output force over time was recorded. The experiment was
repeated in four configurations (zero, one, three, and five clipped
cells) and three times for each configuration (n = 3).

2.3.2 Proxy infant leg platform
A testing platform was designed as a proxy for a baby leg,

as seen in Figure 3B and Supplementary Figure S4, so that the
BVA could be tested in a variety of configurations corresponding
to various infant ages [(Sun and Jensen, 1994; Wells et al., 2002),
see Supplementary Table S2]. The leg proxy consists of two rigid
sections connected by a pinned joint, representing the thigh and
lower leg, as well as weights with adjustable positions to allow the
mass and center of gravity of the leg to be changed depending
on the simulated age of the infant (See Supplementary Table S3).
Anchor points allow the actuator to be attached to the proxy leg,
close to the hip and ankle locations. The anchors can be adjusted to
allow different anchoring positions, different simulated leg lengths,
and different infant legs. A prismatic joint was used to simplify the
knee joint, despite its off-axis degrees of freedom, because flexion-
extension was the focus of the study. Previous work has similarly
simplified biological joints (Russo et al., 2021), though asmentioned
in Section 2.1, future work will involve ensuring off-axis loads are
safely constrained. Please refer to Supplementary Material formore
details on the proxy leg design.

2.3.3 Simulated leg growth experiment
To validate the actuator’s growing capacity for our specific

case study, we tested the proxy leg with a sinusoidal pressure
input curve. A single BVA performed the knee flexion-extension
exercise in the infant model leg at 0, 3 and 6 months of age,
defined in Supplementary Table S2. One cell was clipped for the
0-month configuration, while no cells were clipped for the 3 and
6 months scenarios.The setup was composed of a one stage vacuum
pump (RS-2) that applies negative pressure to a vacuum chamber
and an electronic vacuum pressure regulator (ITV0090-3MS, SMC
Pneumatics Inc.). The pressure of the AM is set through the
electronic regulator, and a vacuum pressure sensor (MPXV4115V)
was connected in series to measure pressure near the BVA. In the
infant leg model, the BVA is mounted through Kevlar thread as it
is shown in Supplementary Figure S4. Finally, the input pressure
curve is transmitted through a DAC (MCP4725) to the pressure
regulator and the leg angle is recorded by video. The angle data
was extracted in a video processing software (Tracker, Open Source
Physics). For each month configuration, the knee flexion-extension
exercise was repeated ten times (n = 10).

2.3.4 Quasi-static actuator characterization for
dynamic model

This section describes the experimental approach used to
empirically derive the actuator’s FCP, to be used in the Dynamic
Model described in Section 2.2.1. First, the actuator in the leg
assembly was given a slow sinusoidal input pressure with a period
of 60 s, allowing a full range of angular motion (in our case,
10–70deg, 0–9.5 kPa). The regulator output pressure and leg angle
were measured over time, leg angle measured using an Inertial
Measurement Unit (Adafruit BNO055). Secondly, the dynamic
model used the angle data to solve for both the actuator length
(based on geometry) and actuator force (based on required torque)
over time. The force-time curve was then scaled by the input
pressure curve using the linear scaling relationship between output
force and actuator pressure (Gollob et al., 2021). Using these scaled
force-time and contraction-time curves, the model can solve for
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FIGURE 3
(A) A comparison of the force-contraction profiles for various clipping
configurations at a constant pressure with a length-based scaling. (B)
Schematic of the BVA on the infant leg model in the prone position
indicating the actuator anchor positions (d1 and d2) as well as the
forces involved in knee flexion-extension (weight of the foot W f ,
weight of the leg Wl and the actuator force Fact). The output leg angle
is measured from an initially flexed position. (C) Results of the growth
validation experiment. For 0, 3 and 6 months, the leg configuration
and actuator anchor positions were adjusted to match the
anthropomorphic data for infants of that age, and the corresponding
actuator clipping was used. A step input of the same negative pressure
was applied for the 0, 3 and 6 months configurations and the leg angle
θ was measured.

the force-contraction curve for the actuator—multiple cycles of
this quasi-static experiment were performed to create a consistent
representation of the actuator FCP.

Hysteresis affected the trajectory.The final step is to fit a curve to
this data to create a force-contraction curve that the dynamic model
can reference. Because the model does not capture hysteresis and

because the most significant target is the maximum angle reached,
we fit the model FCP to the contraction section of the hysteresis
curve, as this is the force that dictates the stopping point of the
contraction before lowering the leg.The experimental FCP data with
hysteresis and the fit FCP curve can be seen in Figure 2.

2.3.5 Experimental testing for back-solver
experimental validation

To validate the back-solver’s ability to produce an open-loop
pressure input curve, the proxy leg model was set to patient
parameters for a 3-month old infant, and a variety of desired
sinusoidal knee angle trajectories were tested, with BVA pressure
inputs solved from the back-solver. A pneumatic system with
controllable pressure was set up, with a digital vacuum regulator
(ITV 2091-21N2BS5, SMC Pneumatics Inc.) able to produce input
pressure curves as commanded by an Arduino Mega, which also
read the sensor outputs from a pressure sensor (MPXV4115V) and
an orientation sensor (Adafruit BNO055). The regulator input was
connected to a constant pressure source comprised on a manual
pressure regulator (IRV10A-C06LZN, SMC Pneumatics Inc.) set to
−50 kPa, which was connected to a vacuum chamber set to a lower
pressure via a vacuum pump (RS-2, HBS).

3 Results

3.1 Quasi-static test using various clippings
configurations

We conducted a quasi-static test to compare the force-
contraction profile of the BVA using the clipping mechanism.
Figure 3A shows a comparison of the BVA output force-contraction
profile for varying clipped states, three trials each at an input
pressure of −20 kPa. Contraction is calculated as the contracted
distance over the full contractile length of the actuator. As we
would expect from a VPAM, we observe a non-linear trend, with
a larger output force earlier in the contraction. The maximum
output force on the unclipped BVA was 25.6 ± 1.2 N. A non-
significant difference appeared in the maximum output force of
the unclipped VPAM and each of the clipped configurations.
Discrepancies between an unclipped VPAM and a clipped VPAM
are likely due to slight differences in the arrangement of the rings
in the fabrication, and the crumpled and compressed skin in
the clipped cell (see Supplementary Material). Most importantly,
various clipping configurations didn’t affect the output FCP of the
BVA.

3.2 Simulated leg growth experiment

Figure 3C shows the results of our simulated leg growth
experiment, where the leg proxy geometry andmasses were adjusted
to simulate infant growth. The model represents an infant’s leg,
from below the hip, in the prone (face-down) configuration used by
physicians for passive knee ROM exercises (Passo, 1974).

We defined a benchmark value of 54° for our BVAwhen actuated
in the infant leg model, based on the ROM of the knee for a kicking
motion of healthy infants at 3 months of age (Sargent et al., 2015).
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FIGURE 4
Experimental validation of the Back-Solver model applied to an unclipped actuator, given a variety of target sinusoidal angular trajectories: (A) a baseline
trajectory with a 6 s period, (B) a 4 s period trajectory of the same magnitude, and (C, D) two 6 s period trajectories with different target angle values.

The BVA produced a knee angle of 60.66° ± 0.6° at 0 months
of age, 65.40° ± 0.6° at 3 months of age, and 62.54° ± 0.6° at
6 months of age. Experimental measurements on the infant leg
model surpassed our target range of motion by ∼13%. Differences
between experimental results in each month are likely due to slight
discrepancies in BVA assembly (e.g., ringmisalignment) and sealing
process issues (see Supplementary Material). The membrane can
affect the output contractile length as it can become folded between
two rings in pattern that allows easier contraction.The output angle
in the experimental results is proportional to contraction of the BVA.
Therefore, as expected, when one cell was clipped the maximum
knee angle decreased due to the reduction in the total contractile
length of the BVA. Our experimental values of ROM for therapy
exercises fall within reported values (Mendoza et al., 2021).

In addition to the angular range of flexion, the speed of the
ROM exercise is relevant. The peak angular velocity obtained from
our experiments was greater than 55 °.s−1 for knee flexion. These
results indicate that the BVA can produce the knee flexion-extension
exercises in less than the required time of 3 s (according to clinical
collaborators), and the operation window scan be tuned to ensure
the patient’s safety.

3.3 Back-solver experimental validation

To assess the performance of our model as an approach to
open-loop control of the leg, we derived pressure inputs curves for
different sinusoidal target trajectories and compared how closely the
experimental trajectory matched the target, as seen in Figure 4.

This open-loop input can closely follow the shape and angular
magnitudes for different sinusoidal targets, ensuring a smooth
flexion and extension motion that is a key safety design parameter
for our physiotherapy platform. The experiment tends to over-
predict the minimum angle of the trajectory, a result that can be
explained well by the actuator’s hysteresis mentioned before. Given
that our model does not capture the increase in actuator force
output after contraction, it over-estimates the required pressure in
the lowering of the leg. We believe that the result of this over-
estimation is the experimental minimum angle being above the
target minimum. Another possible source of discrepancy between
the target and experimental trajectory is the divergence of the
pressure regulator from following the prescribed target pressure
curve due to the regulator’s internal control scheme, as was observed
in experimental measurements (Supplementary Figure S8).

Finally, we demonstrated the ability of the same model to
predict pressure inputs when the actuator is clipped. We use the
same FCP derived from the quasi-static unclipped experiment,
while normalizing the x-axis by the new length of the actuator,
as the scaled FCP for a bellows actuator is not affected by the
number of cells (as seen in the results from Figure 3A). With
this scaled FCP, the same process is used as for the unclipped
modelling.

Figure 5 shows the performance of the model-generated
pressure curve, calculated for an unclipped actuator and an actuator
with two clipped cells out of eight. As with the unclipped case,
the open-loop curve can closely approximate the target shape and
maximum angles, thought the lower-angle is over-shot. This effect
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FIGURE 5
Experimental validation of Back-Solver model applied to a clipped actuator, comparing the performance between (A) an unclipped actuator and (B, C)
two different target trajectories for an actuator with two clipped cells.

is exacerbated when the minimum angle value is increased, and we
hypothesize this is due to the greater discrepancy in the hysteretic
profile in the middle range of the actuator’s contraction (as opposed
to the extremes of full contraction and extension), as is achieved
when a larger lower-angle is used.

Through this, we show that the Back-Solver model is able to
generate an open-loop curve for the systemwith angularmagnitudes
and shapes similar to the desired target trajectory, but that there
are some discrepancies, particularly in the over-shooting of the
minimum angle, most probably due to actuator hysteresis. For
a closer matching between target and experimental trajectories,
further work is needed to model the hysteretic behavior of the
actuator and develop a closed-loop nonlinear controller that can
produce a more controlled pressure output.

4 Discussion

In this paper we presented a concept for a BVA with a modular
layout that enables the adjustment of the actuator’s contractile
length through the clipping and releasing of cells, so that it can
adapt to a variable working space and target range of motion.
The FCP of the actuator was characterized at various clipped
states, demonstrating that the clipping of cells does not affect the
shape of the output FCP, while allowing for a tuned contractile
length. A case study was presented, inspired by physical therapy
in infants with myelomeningocele, who require regular range-of-
motion exercises of their paralyzed lower limbs during their early
development. We simulated the growing infant leg through a leg
proxy setup, and demonstrated the applicability of the BVA as a
wearable actuator for growing patients, with one actuator adapting
to changing contraction lengths and output force requirements over
6 months of a patient’s development. We present a dynamic model
that generates model-based open-loop pressure control curves to
move the system in a desired angle-time trajectory, with good
agreement in terms of shape and target angles. In our case study, this
control wouldmean successful exercise range ofmotion and smooth
motions for the patient, but further demonstrates the generalizable
predictability of this actuator formodelling in other applications.We
demonstrated that our BVA can perform successfully in our specific
case study in terms of range of motion and cycle time for the therapy
exercise, across different months.

There are some weaknesses in our current BVA design and
systems approach. On the actuator side, the skin material is
vulnerable to failure over multiple cycles, leading to an insufficient
life cycle. The clipping mechanism is currently a manual procedure,
which, though sufficient for a medical device application such
as this, could be made autonomous in the future for greater
applications in robotics and autonomous systems. For more
accurate control of leg motion, it is important to develop and
incorporate closed-loop control of the system, which might include
a model-based control approach that can better overcome the
nonlinearities in the force output of the BVA. A closed-loop
control would also be essential for patient safety in a wearable
application.

With improvements, the application space for our length-
adjustable BVA is vast. Looking beyond physical therapy
applications, the BVA can be used as a prismatic joint in graspers
of manipulators, as well as exploration robots that could adapt
to shifting workspace or actuation requirements. The clipping or
deactivating of sections could repair leaks in damaged actuators, or
even adapt actuator geometry based on repeated usage requirements
analogous to how biological muscles remodel with repeated
use.
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