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Inertial Measurement Units are present in several applications in aerospace,
unmanned vehicle navigation, legged robots, and human motion tracking
systems, due to their ability to estimate a body’s acceleration, orientation and
angular rate. In contrast to rovers and drones, legged locomotion involves
repeated impacts between the feet and the ground, and rapid locomotion (e.g.,
running) involves alternating stance and flight phases, resulting in substantial
oscillations in vertical acceleration. The aim of this research is to investigate the
effects of periodic low-acceleration impacts (4 g, 8 g and 16 g), which imitate
the vertical motion of a running robot, on the attitude estimation of multiple
Micro-Electromechanical Systems IMUs. The results reveal the presence of a
significant drift in the attitude estimation of the sensors, which can provide
important information during the design process of a robot (sensor selection), or
during the control phase (e.g., the system will know that after a series of impacts
the attitude estimations will be inaccurate).
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1 Introduction

As legged robots move from the laboratory into our daily lives, there is an expectation
that their motor skills will improve. In particular, they should be able to walk, run, jump,
and so on, at speeds comparable to those of humans and animals (Semini et al., 2011;
Hutter et al., 2016; Semini et al., 2017; Katz et al., 2019). This places significant demands on
their actuators, controls and mechanical parts, but also on their sensors.

Micro-Electromechanical Systems (MEMS), such as Inertial Measurement Units (IMU),
are embedded in almost all mobile robots thanks to the variety of measured signals they
provide. They contain on-board processing systems called Attitude and Heading Reference
Systems (AHRS)which combine the output of several sensors, such as a 3-axis accelerometer,
a 3-axis magnetometer, and a 3-axis gyroscope to estimate a system’s attitude, using a variety
of algorithms, the details of which are usually proprietary. One particular computed output
is the robot’s orientation, which must be accurate up to a certain degree for the robot to
operateas expected. Inaccurate estimation of orientation can cause a robot to veer off course
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or lose its balance and fall. In this paper, we refer to these systems
generically as IMU because it is in this way that the larger audience
usually calls them.

This paper investigates the effect on a selection of IMUs
of substantial oscillations in vertical acceleration caused by the
alternation between flight phase and stance phase during fast legged
locomotion. It does this using a “bounce test” apparatus, as described
in Section 3. We call these oscillations “low-acceleration impacts”
in order to distinguish them from the much higher accelerations
experienced during accidental collisions and falls. The motivation
for this research is the lack of claims, both in the manufacturers’
literature and the research literature, that these devices have been
designed and tested for use under these conditions.

Specifically, the experiments reported in this paper investigate
the following items.

1) Drift in the IMU’s orientation estimates during approximately
vertical bouncing motion;

2) The timescale on which this drift occurs; and
3) The time it takes the IMU to recover after bouncing ceases.

The results show significant drift in all three IMUs tested,
including drift that exceeds the maximum error stated in the
datasheet.

Even though several legged robots have already demonstrated
motions involving substantial repetitive vertical accelerations
Raibert (1986); Katz et al. (2019); Yim et al. (2020), the effects of
these motions on IMUs have not been properly investigated. To
achieve consistent and reliable behaviours, legged robots must be
aware of their electronics’ limitations.This issue can be addressed at
the design stage by choosing an IMU that is accurate enough under
the expected operating conditions, or it can be addressed at the
control stage by adapting the robot’s motion planning and control to
make allowance for the IMU’s limitations. Either way, the first step is
to identify and measure those limitations. Inadequately addressing
these limitations could lead to the emergence of uncontrollable
robots. For instance, in Allione et al. (2022), a balancing machine
relies on an IMU to estimate orientation and maintain balance.
However, if the sensor exhibits inconsistent behaviour, it could lead
to unrecoverable states.

The rest of the article is organized as follows. Firstly, a
background in IMU drift estimation is presented. Then, the
experimental setup is described together with the experimental
process. Afterwards, the results are presented and discussed,
followed by the conclusions and the acknowledgements.

2 Background

The accuracy of MEMS sensors for state estimation during
dynamic behaviours has been previously studied but under different
working conditions to those considered in this work.

Position estimation using IMUs has been addressed by
Zihajehzadeh et al. (2015), where the authors propose a cascaded
Kalman filter with a fusion of GPS and IMU data for trajectory
tracking. In humanoid applications, high-quality measurement
of the floating base orientation can be achieved with an IMU,
but achieving high-precision positioning with low drift remains
a significant challenge. Kuindersma et al. (2015) describe different

optimization strategies and a state estimation algorithm to execute
walking over non-flat terrains with the Atlas1 humanoid. The
authors used an IMU mounted on the pelvis to obtain its pose
and twist. To reduce the drift of the robot measurements, they
used an inertial and kinematic estimator, which was proven to be
unsuitable for accuratewalking over distances of tens ofmeters.They
finally added a LIDAR (Laser Imaging, Detection, And Ranging) to
achieve the task. Instead, Liang et al. (2018) analyze the effects of
IMU drift on a walking person by using an IMU to estimate the
vertical motion of the foot. However, the experiment is relatively
short since the subject takes only a few steps. Abdulrahim et al.
(2010) use a MEMS IMU to estimate the position of a walking
person in an indoor environment where no GPS signal can be used.
It calculates the body’s location while moving, but the precision
required is not the same as the one required by most robot-control
algorithms.

On the topic of orientation estimation, in Safaeifar and Nahvi
(2015), the authors attempt to reduce the effect of drift in orientation
tracking for a virtual reality head-mounted display. The sensor is
mounted directly on the headset, and it experiences continuous
motion but with very low accelerations. Li et al. (2014) present a
three-dimensional model of a quadruped robot with six degrees
of freedom at the torso and five degrees of freedom at each
leg executing a 3D trotting gait. The IMU (mounted on the
robot’s torso) experiences a severe drift on the yaw signal during
these experiments. The authors believe that this drift was caused
by the magnetic field excited by the motor in the treadmill.
Zihajehzadeh et al. (2014) propose a cascaded two-step Kalman
filter to compensate for external ferromagnetic disturbance or large
impulsive acceleration (such as a single jump) or medium-long
acceleration (roller-blade outdoors). Tan et al. (2021) avoid the
usage of magnetometers to estimate the foot progression angle by
means of IMU data. However, the experiments are limited to only
a few steps and only to people walking. The effects of continuous
low amplitude accelerations (e.g., a person walking) on orientation
estimation have been addressed by Cardarelli et al. (2020). In this
work, the authors collect accelerometer and gyroscope raw data
of people walking on a treadmill, and then they process those
data offline by means of a custom filter to compensate for drift
and estimate the correct orientation. Such a strategy is often not
feasible for embedded systems, which typically lack memory and
computational power andmust rely on the orientation data provided
directly by the sensors.

IMUs have gained significant popularity in the field of wearable
devices. Yang et al. (2018) combine an air-pressure and IMU sensor
to recognise human activities, while Qi and Aliverti (2020) use
a chest-worn band equipped with a breathing sensor and tri-
axis accelerometer to measure respiratory parameters and identify
human activities. A comprehensive literature review conducted
by Arlotti et al. (2022) focuses on IMU-based wearable devices in
sports medicine. The review concludes that the current limitations
of IMU drift and challenging calibrations are limiting the transition
of these devices from research laboratories to the commercial
market.

1 https://www.bostondynamics.com/atlas, accessed April 2023.
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FIGURE 1
Experimental setup.

3 Experimental setup

The experiment investigates the effects of prolonged, continuous
vertical bouncing motion on the accuracy of orientation estimation
on a selection of MEMS IMUs.The apparatus is shown in Figures 1,
2, and consists of a long rod with a rotary actuator at one end and the
IMUs at the other. Strictly speaking, this means that the IMUs travel
along a circular arc. However, the radius of the circle is large enough
for it to be a reasonable approximation to vertical motion. This
section is divided into three subsections describing the actuation
system, the specimen and the experiment itself.

3.1 Actuation system

The actuation system consists of aMagnet Schultz2 Proportional
Rotary Solenoid Type GDR075X20A61-S1 powered by a Pololu3 G2
High-Power Motor Driver. This solenoid produces pure rotational
motion and offers controllable bidirectional torque, making it easier
to measure the rotation angle and control it compared to most of
the other so-called rotary solenoids, which produce helical motion
and do not allow controllable bidirectional torque. The solenoid
directly actuates one end of a 1 m carbon fiber tube of 20 mm
external diameter and 0.5 mm wall thickness. On the other end of
the tube, opposite to the solenoid, the tested specimen is placed.The
angular position of the tube is measured with an AksIM-24 absolute
position encoder, sampled at 500 Hz by the National Instrument
Single Board sbRIO-9637 FPG5, which also generates control signals
for the Pololu driver. The sampling frequency has been chosen to
match the one used to sample both theVN100 and the 3DM-GX5-15
IMUs. The spring shown in Figure 2 is physically realized by means
of rubber bands.

2 https://www.magnet-schultz.com/en/rotary-solenoids/proportional-rotary-
solenoids-type-g-dr/, accessed April 2023.

3 https://www.pololu.com/product/2995, accessed April 2023.

4 https://www.rls.si/eng/, accessed April 2023.

5 https://www.ni.com/it-it/support/model.sbrio-9637.html, accessed April
2023.

FIGURE 2
Qualitative representation of the experimental setup. The spring is
made with rubber bands.

3.2 Specimen

The specimen consists of three independent IMUs provided by
three different vendors; each IMU has a different communication
interface. They are mounted on a custom-made 3D-printed support
to allow them to have the y-axis aligned with the rotation axis of the
solenoid (see Figure 3).

3.2.1 VN100
TheVectornav VN1006 is the IMU that can measure the highest

linear acceleration (up to 16 g). It is sampled at 500 Hz, which is
the maximum orientation estimate update rate configurable for the
device, by the sbRIO-9637 board using the SPI communication
protocol. The IMU chip is mounted on a custom-made PCB, and
is intended to be used in a highly athletic monopedal robot called
Skippy (Allione et al., 2021; Gkikakis, 2021), which is designed to
perform repetitive vertical hops, among other behaviours.

6 https://www.vectornav.com/products, accessed April 2023.
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FIGURE 3
Top view of the IMUs mounted at the end of the carbon fiber rod and their reference system. The perspective distortion in this photo makes the
BNO055 and 3DM-GX5-15 appear to be at an angle, when in reality they are aligned.

3.2.2 3DM-GX5-15
The Lord MicroStrain 3DM-GX5-157 can measure linear

accelerations up to 8 g. It communicates through a USB interface
with the software SensorConnect8 provided by the vendor.The IMU
is configured to stream data at 500 Hz continuously and it is directly
connected to the host PC using a USB cable. The 3DM-GX5-15 is
the only tested IMU that is not equipped with a magnetometer.

3.2.3 BNO055
The Bosch BNO0559 is assembled on a DFRobot breakout10.

Although the DFRobot breakout is discontinued, the BNO055
chip can be found in other breakouts with identical characteristics
provided by other vendors, such as Adafruit11. It is the cheapest
among the tested IMUs (it can be bought for just a few tens of euros).
The BNO055 provides orientation data only when configured in
‘fusionmode’; such a configuration provides a 4 g linear acceleration
range and an output data rate of 100 Hz. The BNO055 does not
have any non-volatile memory to store the calibration data, hence
every time it is powered on it has to be calibrated. The gyroscope is
calibrated by holding the IMU still for some seconds, and moving
manually the rod up and down proved to be sufficient to calibrate
the accelerometer.Themagnetometer, instead, requires a 3D change
in the orientation of the device to get calibrated. Such movements
are not compatible with our setup and as a consequence the IMU is

7 https://www.microstrain.com/inertial-sensors/3dm-gx5-15, accessed April
2023.

8 https://www.microstrain.com/software/sensorconnect, accessed April 2023.

9 https://www.bosch-sensortec.com/products/smart-sensors/bno055/,
accessed April 2023.

10 https://www.dfrobot.com/product-1793.html, accessed April 2023.

11 https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor,
accessed April 2023.

never fully calibrated. An Arduino UNO board12 samples the device
at 100 Hz by using the I2C communication protocol. This selection
is used to compare professional and expensive acquisition systems
with a hobbyist and cheap one.

3.3 Experiment description

The experiment consists of continuously bouncing the tube
against the rubber bands, which act as a spring and push the rod
back up.The solenoid’s torque (which is small compared to the forces
exerted by gravity and the rubber bands) is actuated with a constant
voltage in the same direction as the rod’s motion, and it is activated
only when the rod’s angle, measured by the encoder, is within a
specified range (Figure 4). The lower bound of this range is when
the rod is about to touch the rubber bands, and the upper bound
depends on the desired maximum acceleration at the bounce: the
higher the bounce, the higher the acceleration. The system is tuned
to have the bounce apex always above the upper threshold of the
applied torque range.The strategy of applying a constant torque over
a constant (angular) stroke implies a constant energy injection per
bounce, so that the apparatuswill converge and settle to a steady state
in which the bounce height is such that energy losses match energy
inputs. The idea is to have a smooth transition between the stance
and flight phases, which are the two components of the continuous
bouncing behaviour of a hopping robot.

The experiment starts by turning on the apparatus, then a
sufficient amount of time is allowed to let all the sensors power
on correctly. At this point, the rod is manually moved up and
down until the BNO055 is calibrated. The following phase starts
by logging the sensors with the rod at rest position for about

12 https://store.arduino.cc/products/arduino-uno-rev3, accessed April 2023.
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FIGURE 4
Motor control signal with respect to the angular position of the tube
during the continuous bouncing of the 4 g experiment. The torque is
applied only in the direction of motion and when the tube is above the
rubber bands and below the bounce apex. The zero line represents
the rest position of the rod.

1 minute. The data from all the IMUs are recorded. Then, the rod
is manually pushed downwards against the rubber bands to start the
bouncing motion (Figures 6A, 7A, 8A) which continues for about
3 minutes. Finally, the solenoid is switched off, so that the bouncing
ceases, and the system continues logging the sensors for another
minute with the rod remaining still at its rest position (Figures 6B,
7B, 8B). The data collected from the IMUs are the compensated
linear accelerations, the compensated angular velocities and the
quaternions. The measured quaternions are then converted offline
into Euler angles allowing the rotation around the y-axis of the
IMUs to be compared with the angular position of the tube. The
aim of the experiment is to discover the magnitude of drift in the
absolute orientation of the IMUs while continuously bouncing, the
time it takes for this drift to emerge, and the time required to recover
afterwards.

The experiment consists of three parts with increasing linear
acceleration values. For each acceleration value, the investigation is
performed three times. Each IMU is tested at an acceleration that is
close to, but strictly below, its accelerometer’s saturation limit, and
the collected data is checked at the end of the experiment to make
sure that the accelerometer never saturated. Any trial in which the
accelerometer reached its saturation limit is rejected and replaced
with a new one.

Since the three IMUs have the z-axis vertical, the experiments
are classified based on the maximum acceleration on the z-axis
(4, 8 and 16 g). 4 and 8 g accelerations are comparable to those
experienced by the human ankle during running at the moment
when the foot touches the ground (Table I of Koga et al. (2020);
Figure 7 of Bhattacharya et al. (1980)).

Table 1 reports the accuracy for each IMU and for which
experiments they have been tested. The different bouncing
acceleration values are obtained by changing the rubber bands’
distance from the axis of rotation of the tube or increasing the
actuated range of motion of the solenoid, or varying the number of
rubber bands.

TABLE 1 IMUs accuracy. Angles are expressed both in degrees [deg ] (left)
and radians [rad] (right). The last column reports the experiments in which
each IMUwas tested. Short dashes denote data that are not provided by the
manufacturer.

IMU Roll/Pitch Yaw Experiments

BNO055 — — — — 4 g

3DM-GX5-15 0.25 0.0044 — — 4, 8 g

VN100 1.00 0.0175 2.0 0.0350 4, 8, 16 g

4 Data acquisition system

Each IMU has a different communication interface, and
therefore it requires its own independent data acquisition system; the
three processes are synchronized with a dedicated software interface
running on the host PC.

A different delay in the received data from each IMU is
observed due to multiple interfaces and acquisition systems. As a
consequence, all the recorded data are synchronized offline once the
experiment is completed before analyzing the results.

4.1 National instrument sbRIO-9637

The National Instrument sbRIO-9637 board has analog and
digital inputs/outputs, a dual-core CPU and a programmable FPGA.
The board is configured based on a Supervisory Control and
Data Acquisition (SCADA) architecture, where the FPGA oversees
performing the SPI communication and controlling the solenoid.
The sbRIO-9637 is used to sample the position encoder and the
VN100 using two different SPI channels, both of themat 500 Hz.The
board’s CPU uses these measurements to control the solenoid and
sends them to the host using network streams. Finally, the host runs
a Human-Machine-Interface (HMI) to monitor online the acquired
data.

4.2 Arduino UNO

TheArduino UNO board is the acquisition system for the Bosch
BNO055. The board communicates with the IMU with an I2C
interface; it samples the data at 100 Hz and then it sends them to
the PC through a serial interface.

4.3 Host computer

The data acquisition system for the Lord MicroStrain 3DM-
GX5-15 is the software SensorConnect provided by the vendor. The
sensor is sampled at 500 Hz.

The three independent data acquisition systems are activated
simultaneously by a LabVIEW Virtual Instrument (VI). When the
start button is pressed in the host’s VI, the sbRIO-9637 FPGA starts
logging the VN100 and sets to high a digital output connected to
the Arduino Uno to start sampling. The signal returns to low when
the user interrupts the logging at the host’s VI. The host’s VI also
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provides the logging timestamp used in the SensorConnect software
to save the captured data of the appropriate time interval.

5 Results

The main objective of this work is to investigate how the
estimation of the absolute orientation is affected by continuous low-
intensity impacts, simulating the shocks that a running/hopping
robot may experience. The experimental apparatus is designed
to have the y-axis of the tested IMUs aligned with the rotation
axis of the solenoid, whose angle is directly measured with the
absolute position encoder. The physical imperfections of the system
mean that each IMU’s y-axis is not perfectly aligned with that
of the solenoid. To compensate for any possible misalignment,
the conversion of the quaternions into Euler angles is performed
in a coordinate system that is as close as possible to the IMU’s
internal coordinate system but has its y-axis accurately aligned
with that of the solenoid. The transform from internal to aligned
coordinate system is obtained separately for each IMU using its
motion data from the first few bounces. The measured angular
position of the encoder, θye , and the corresponding angle measured
by the IMUs, θyI , are referred as θy when mentioned together.
In order to have comparable measurements, the average of the
measured values with the rod in its rest position is defined to be
the reference orientation for all the IMUs and both the encoder
angle and the IMUorientation estimates aremeasured relative to this
orientation.

One of the outcomes of this experiment is the difference between
the angular position measured by the encoder and the angular
rotation about the y-axis estimated by the IMUs. This value, EPitch,
will be referred to as orientation error or simply error. During the
experiments, the rod presents a minor bending while it presses into
the rubber bands. This bending behaviour causes a slightly bigger
rotation at the IMUs compared with encoder measurement (see the
responses of the IMUs in Figures 6A, 7A, 8A). The error in the two
remaining rotation axes (referred to asERoll about the x-axis andEYaw
about the z-axis) is the difference between the average value of the
orientation during the initial rest period, and current orientations,
since the sensors are not expected to move about those axes during
the experiment. The continuous bouncing of the specimen causes a
periodic component (at around 1–2 Hz) inERoll,EPitch andEYaw.This
component has been removed from the error graphs by a 6th order
zero-phase low pass filter consisting of a Butterworth filter with a
cut-off frequency of 0.2 Hz.

The results of the three experiments are discussed in the
following paragraphs. The solid horizontal lines (where present)
indicate the accuracy of the IMU as stated in the datasheets provided
by the manufacturers. Each experiment is performed three times
because having three sets of data allows one to get an approximate
idea of how much of the measured signal is random and how much
is a repeatable effect caused (we assume) by the disturbing effect of
the bouncing motion on each IMU. Table 2 reports the maximum
and the average peak acceleration experienced by each IMU to show
that none of the IMUs saturated during the experiment.The average
linear velocities of the IMUs at landing during the 4, 8 and 16 g
experiments are 1.9, 3.5 and 5.8 m/s, respectively. These correspond

TABLE 2 Every experiment is performed three times. For each experiment
trial, the table reports the highest recorded value of the linear acceleration
on the z-axis (left column) and the average value of the peak acceleration on
each bounce (right column) on the z-axis. Themaximum linear acceleration is
reached when the specimen reaches the bottom of the bounce and is about
to be pushed back by the rubber bands. The saturation values for the three
IMUs aremeasured experimentally and are 155.84 for theVN100, 79.66 for
the 3DM-GX5-15 and 39.22 for the BNO055. All the acceleration values are
expressed in [m/s2].

Experiment

IMU First Trial Second Trial Third Trial

4 g

VN100 39.42 38.76 39.02 38.68 38.81 38.13

3DM-GX5-15 39.47 38.79 39.23 38.83 39.10 38.21

BNO055 38.37 37.88 38.24 37.65 37.98 37.27

8 g

VN100 76.64 73.83 75.54 74.07 76.56 75.41

3DM-GX5-15 77.71 75.96 76.78 74.87 77.11 75.86

BNO055 — — — — — —

16 g

VN100 153.84 153.80 153.86 153.80 153.85 152.95

3DM-GX5-15 — — — — — —

BNO055 — — — — — —

FIGURE 5
The picture explains the meanings of the different line styles used in
the error graphs for ERoll, EPitch and EYaw. The legends in those graphs
identify each IMU with a different color. The accuracy line, when
present, shows the datasheet figure for maximum error so that it can
easily be seen whether or not the actual error exceeds the datasheet
figure.

to drop heights of 0.18, 0.62 and 1.71 m, respectively. However, the
actual drop heights of the IMUs in the bounce tester are smaller
because the IMUs follow a circular arc and are accelerated by the
solenoid as well as gravity. These figures suggest that a legged robot
would not experience accelerations as high as 16 g during normal
locomotion.However, it should be understood that the rubber bands
give the rod a soft landing, and a stiffer landing would produce a
larger acceleration for a given velocity. Such accelerations can arise
if the robot is mechanically stiff and/or pounds the ground with
its feet. This type of motion causes acceleration spikes when the
(relatively hard) foot strikes the (hard) ground due to mechanical
shock propagating up the leg into the torso, but this effect is absent
in the bounce test experiments.

Figure 5 contains a general description of all the lines included
in the error graphs (Figures 6C–F–F, 7C–F–F, 8C–F–F). For each
experiment, the behaviour of the Roll, Pitch and Yaw angles is
analyzed separately.
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FIGURE 6
(A) IMU and encoder synchronized pitch measurements at the beginning of the 4 g experiment. (B) IMU and encoder synchronized pitch
measurements at the end of the 4 g experiment. (C) Filtered orientation error on x-axis during the 4 g experiment. See Figure 5 for line interpretation.
(D) Filtered orientation error on y-axis during the 4 g experiment. See Figure 5 for lines interpretation. (E) Filtered orientation error on z-axis during 4 g
experiment. See Figure 5 for lines interpretation. (F) Continuation of (E). The green vertical line indicates when the system is temporarily powered off.

5.1 Experiment 1: 4 g maximum linear
acceleration

In this experiment, the maximum value of linear acceleration
along the z-axis is approximately 4 g and is close to but strictly
below the saturation limit of the BNO055 (Table 2). All three IMUs
have been tested under the same conditions. Figure 6A clearly shows
how the three IMUs signals are all aligned with the encoder at the
beginning of the experiment. Figure 6B displays the drift that both
the VN100 and the BNO055 have accumulated during the motion,
with the latter being higher in magnitude than the former. The

3DM-GX5-15 instead proved to be consistent in the estimation of
the Pitch angle throughout the duration of the experiment.

5.1.1 Roll
Surprisingly, the BNO055 performs better than the VN100 in

the estimation of the Roll angle which shows some not-negligible
drift effects in the estimation of the orientation. It takes the VN100
around 80 s to exceed the datasheet error (i.e., go out of spec) after
the motion starts, and 20 s to return inside the interval once the
bouncing stops. The 3DM-GX5-15, proved to be robust to this kind
of motion.
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FIGURE 7
(A) IMU and encoder synchronized pitch measurements at the beginning of the 8 g experiment. (B) IMU and encoder synchronized pitch
measurements at the end of the 8 g experiment. (C) Filtered orientation error on x-axis during the 8 g experiment. See Figure 5 for lines interpretation.
(D) Filtered orientation error on y-axis during the 8 g experiment. See Figure 5 for lines interpretation. (E) iltered orientation error on z-axis during the
8 g experiment. See Figure 5 for lines interpretation. (F) Continuation of (E) The green vertical line indicates when the system is temporarily powered off.

5.1.2 Pitch
The VN100 shows a small drift in the measurement of the Pitch

angle only in one out of the three trials, with EPitch going slightly
outside the accuracy range. The BNO055 absolute orientation
estimation drifts significantly, making its values unreliable and
impossible to be used in these circumstances. Also in this case the
3DM-GX5-15 gives reliable results, never going out of spec.

5.1.3 Yaw
The VN100 measures accurately the Yaw angle. As a matter of

fact, the EYaw is never outside the accuracy interval. Both the 3DM-
GX5-15 and the BNO055 show a drift in the estimation of the Yaw

angle. It can be observed that in both cases, the EYaw increases during
the bouncing and it never returns to zero, even when the motion
ceases.This behaviourwe think is due to the fact that these two IMUs
cannot rely on the compensation of the magnetometer, the 3DM-
GX5-15 does not have it while the BNO055 cannot calibrate it.

5.1.4 Power cycle
All of the three IMUs have been powered off and on (power

cycle) after every trial to see the effects on the estimation of the Yaw
angle. The VN100 is still inside the accuracy range as expected. The
3DM-GX5-15 starts evaluating again the Yaw angle with an offset
different from the initial one due to the lack of magnetometer data.
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FIGURE 8
(A)IMU and encoder synchronized pitch measurements at the beginning of the 16 g experiment. (B) IMU and encoder synchronized pitch
measurements at the end of the 16 g experiment. (C) Filtered orientation error on x-axis during 16 g experiment. See Figure 5 for lines interpretation.
(D) Filtered orientation error on y-axis during 16 g experiment. See Figure 5 for lines interpretation. (E) Filtered orientation error on z-axis during 16 g
experiment. See Figure 5 for lines interpretation. (F) Continuation of (E). The green vertical line indicates when the system is temporarily powered off.

TheEYaw for this IMUnever returns to the initial value.TheBNO055,
instead, restarts from the initial value, showing an error almost null.

5.2 Experiment 2: 8 g maximum linear
acceleration

The following experiment has the intent of testing the VN100
together with the 3DM-GX5-15 with a linear acceleration as close
as possible to 8 g, which is the acceleration saturation limit of the
3DM-GX5-15 (Table 2). Also in this case, the two IMUs have the
y-axis aligned with the solenoid and the signals are synchronized,
see Figure 7A. Like in the previous experiment, the 3DM-GX5-15

proved to be a better estimator of θy than the VN100 which drifts
significantly during the motion, Figure 7B.

5.2.1 Roll and pitch
The VN100 shows evident drift in the estimation of both the

Roll and the Pitch angles. It takes approximately 40 s for the ERoll to
exceed the accuracy limit, and 55 s for the EPitch. Both these errors
return inside the accuracy interval around 25 s after the motion
ceases. In both cases the 3DM-GX5-15 shows a negligible error.

5.2.2 Yaw
Interesting results are shown in the estimation of the Yaw angle

where the VN100 shows a significant and persistent drift. EYaw
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crosses the accuracy threshold after 40 s and then persists also after
the bouncing stops, with a magnitude of around 20°. On the other
hand, the 3DM-GX5-15 shows a small drift in magnitude, but with
sign not constant through the trials (it is positive in one trial and
negative in the other two).

5.2.3 Power cycle
TheYaw error of the VN100 does not return inside the accuracy

interval after the bouncing stops. It requires a power cycle to make
EYaw return between the boundaries of such interval.Thepower cycle
forces the 3DM-GX5-15 to restart estimating the Yaw angle from a
value which is different both from the initial one and the one before
the power cycle.

5.3 Experiment 3: 16 g maximum linear
acceleration

The last experiment analyzes the behaviour of the VN100 near
its acceleration saturation limit at 16 g (Table 2). Figure 8A shows
that the IMU’s measurement is aligned with the encoder’s one at the
beginning of the motion, while Figure 8B clearly shows that the two
signals are not aligned anymore when the motion stops.

5.3.1 Roll and pitch
The drift on the Roll and Pitch angles is significant and not

negligible, but it does not affect the absolute estimation once the
bouncing finishes; both ERoll and EPitch return inside the accuracy
interval after 25 s.ERoll crosses the accuracy threshold after 20 s from
the start of the motion, while EPitch requires 70–130 s to reach the
limit, depending on the trial.

5.3.2 Yaw
On the other hand, the drift on the estimation of the Yaw angle is

significant, it exceeds the threshold after 20—40 s (depending on the
trial) and persists once the IMU returns to the initial rest position.
EYaw varies from 5 to 10°, depending on the trial.

5.3.3 Power cycle
Like in the 8 g experiment, a power cycle proved to be necessary

to bring the EYaw back inside the accuracy interval.

6 Discussion

The IMU that displayed the worst performance in the 4 g
experiment is the BNO055, which was the cheapest out of the three
IMUs. The drift in the estimation of the Yaw angle was more than
4° and the BNO055 was the only IMU that could not recover the
initial orientation after the bouncing motion had stopped. A simple
power cycle proved to be partially effective: it brings back EYaw to its
original value but it leaves the IMU not calibrated.

The 3DM-GX5-15 achieved the best performance in all the
conditions where it has been tested. It is the only evaluated IMU that
does not have a drift in estimating the Roll and Pitch angles both in
the 4 and 8 g experiments.The drift on the Yaw angle, instead, is due
to the absence of the magnetometer and cannot be compensated. In
this case a power cycle proved to be ineffective.

The VN100 is the only IMU tested in all three experiments.
It presents a drift in the estimation of the Roll angle in every
experiment, and in the 4 g experiment it behaves worse than
the BNO055. In all the experiments, both ERoll and EPitch return
inside the accuracy range once the motion stops. During the 4 g
experiment the IMU does not show any drift in the Yaw angle
estimation. Such behaviour is not present in the 8 g and 16 g
experiments, where a power cycle turned out to be necessary to bring
back the EYaw into the accuracy range.

7 Conclusion

This work is intended to give the reader a better understanding
of the behaviour of MEMS IMUs in an environment for which they
have not been specifically designed. The experiments reported in
this paper investigated the orientation estimation performance of
a selection of IMUs, subject to continuous low-intensity impacts,
which aim to reproduce impacts experienced during hopping or
running. According to the results, all three IMUs suffered a certain
amount of drift during the experiments.

The continuous bouncing of the specimen resembles themotion
of a bipedal or quadruped robot running. Therefore using these
MEMS IMUs as a balancing reference point may lead to unexpected
results, making it difficult to control the robot. The evident drift in
the absolute orientation estimation cannot be left out in the design
process of the control system, which has to be robust enough either
to withstand or to compensate for it.

The natural extension of this work would be both to test
more IMUs and to implement techniques to compensate for the
drifts on all the axes. Alternatively, having this knowledge, the
simplest thing to do would be for the robot to rest until the
drift gets eliminated, similar to humans that stop when they are
disoriented.
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