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Optical colonoscopy is the gold standard procedure to detect colorectal cancer,
the fourth most common cancer in the United Kingdom. Up to 22%–28% of
polyps can be missed during the procedure that is associated with interval
cancer. A vision-based autonomous soft endorobot for colonoscopy can
drastically improve the accuracy of the procedure by inspecting the colon more
systematically with reduced discomfort. A three-dimensional understanding
of the environment is essential for robot navigation and can also improve
the adenoma detection rate. Monocular depth estimation with deep learning
methods has progressed substantially, but collecting ground-truth depth maps
remains a challenge as no 3D camera can be fitted to a standard colonoscope.
This work addresses this issue by using a self-supervised monocular depth
estimation model that directly learns depth from video sequences with view
synthesis. In addition, our model accommodates wide field-of-view cameras
typically used in colonoscopy and specific challenges such as deformable
surfaces, specular lighting, non-Lambertian surfaces, and high occlusion. We
performed qualitative analysis on a synthetic data set, a quantitative examination
of the colonoscopy training model, and real colonoscopy videos in near real-
time.
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1 Introduction

Colorectal cancer (CRC) causes approximately 900,000 deaths worldwide (Bray et al.,
2018) and around 16,800 deaths in theUnited Kingdom annually. A total of 42,900 new cases
were reported in the UK in 2018, making CRC the third most common cancer, accounting
for 11% of all new cancer cases. Optical colonoscopy is the gold standard procedure for CRC
screening. However, its quality is strongly dependent on the gastroenterologist’s skill level
(Baxter et al., 2009). Recent studies by le Clercq et al. (2014) have shown that around 60%
of CRC cases are related to missed lesion detection from a previous colonoscopy procedure.
Chromoendoscopy can increase the visibility of a lesion by sparing and rinsing the colonwith
a topical dye that increases the colonic wall surface contrast (Durr et al., 2014). However,
this procedure requires twice as much time (Pohl et al., 2011), making it undesirable when
compared to optical colonoscopy.

The recent introduction of computer-assisted technologies using artificial intelligence
for colonoscopy has demonstrated promising results in polyp detection (Lee et al., 2020),
size classification (Itoh et al., 2018), and colon coverage (Freedman et al., 2020). The field of
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robotics has also shown interest in new technologies for colonoscopy
(Ciuti et al., 2020), capsules (Formosa et al., 2019), endorobots
(Manfredi (2021, 2022)), meshworm robots (Bernth et al., 2017),
soft robots (Manfredi et al., 2019), and autonomous robots
(Kang et al., 2021). A colonoscope is a long, flexible tubular
instrument, generally 12 mm in diameter with a single camera head,
lights, irrigation, and an instrument channel port. The miniature
camera and the lights allow visual inspection of the colon, and the
irrigation port equipment with water helps clean the colon from
residual stools. The instrument port enables the passage of surgical
tools to remove tissue or polyps for further examination.The size of
the colonoscope is restricted by the colon size; thus, the number of
sensors to be included, such as three-dimensional (3D) cameras or
other sensors, is limited. This has led researchers to investigate 3D
mapping from images from a monocular camera inside the colon
(Mahmood et al., 2018).

In recent years, monocular depth estimation has been studied
with supervised learning (Nadeem andKaufman, 2016), conditional
random fields (Mahmood and Durr, 2018), generative adversarial
networks (GANs) (Mahmood et al., 2018), conditional GANs
(Rau et al., 2019), and self-supervised learning (Hwang et al., 2021).
However, previous works had not considered that the colonoscope
camera yields highly distorted images as it uses high field-of-
view (FOV) cameras. Cheng et al. (2021) used synthetic data with
ground-truth depth to train the baseline supervised depth model
used in a self-supervised pipeline and used optical flow from a pre-
trained flow network for temporal structural consistency. However,
optical flow in a deformable environment like a colon is unreliable.
In Bae et al. (2020), the training pipeline follows multiple steps:
sparse depth from Structure from Motion (SfM), sparse depth
used to train a depth network, pixel-wise embedding, and multi-
view reconstruction, which makes it slower and unsuitable to run
alongside a robot.Themain contributions of the proposed work are:

1. Introduces self-supervisedmonocular depth estimationmethods
specifically designed for wide FOV colonoscopy cameras,
addressing the challenges posed by the distorted and wide-angle
nature of the images.

2. The proposed approach effectively handles low-texture surfaces
in view synthesis by incorporating a validity mask, which
successfully removes pixels affected by specular lighting, lens
artifacts, and regions with zero optical flow, ensuring accurate
depth estimation even in challenging areas of the colon.

2 Motivation

Colonoscopy cameras generally have a wide FOV that enables
faster diagnosis with complete coverage of the colon wall. The state-
of-the-art colonoscopy devices have a 140°−170° FOV camera. As
a result, these cameras suffer from high lens distortion, especially
radial, as shown in Figure 1, but have not yet been studied sufficiently
because most endoscopy depth estimation methods are trained on
low FOV images or synthetic images without distortion.

2.1 Low FOV cameras

Low FOV cameras have <120◦ horizontal FOV lenses as shown
in the UCL 2019 data set (Rau et al., 2019). The Brown–Conrady

camera model (Kannala and Brandt, 2006) considers these lenses
with both radial and tangential distortion. The UCL 2019 data
set (Rau et al., 2019) contains synthetic images generated with
the ideal pinhole camera approximation. Image distortion is
prevalent in real images caused by varying lens magnifications
along the increasing angular distance. Due to the imperfect
alignment of the lens or sensors, distortion may get decentered. The
Brown–Conrady (Kannala and Brandt, 2006) projection function
π(P, i): P (x,y,z) → p(u,v) is defined as

x′ = x
z

y′ =
y
z
,

x″ = x′(1+ k1r2 + k2r4 + k3r6) + 2p1x
′y′ + p2(r

2 + 2x′2),

y″ = y′(1+ k1r2 + k2r4 + k3r6) + p1(r
2 + 2y′2) + 2p2x

′y′,

u = x″ fx + cx v = y″ fy + cy, (1)

where P is a 3D camera point with coordinates (x, y, z), p is a
2D image point with coordinates (u, v), and r2 = x2 + y2. Camera
parameters i consist of radial distortion coefficients (k1, k2, k3),
tangential distortion coefficients (p1, p2) of the lens, focal lengths
( f x, f y), and principal points (cx, cy).

2.2 Wide FOV colonoscopy cameras

Omnidirectional camera model (Scaramuzza et al., 2006),
unified camera model (UCM) (Geyer and Daniilidis, 2000),
extended UCM (eUCM) (Khomutenko et al., 2015), or double
sphere (DS) camera model (Usenko et al., 2018) can map wide FOV
lenses. The omnidirectional camera model along with the pinhole
radial distortion (Fryer and Brown, 1986) and Brown–Conrady
(Kannala and Brandt, 2006) camera models falls in the high-order
polynomial distortion family. These models require solving the
root of a high-order polynomial during unprojection, which is
computationally expensive. On the other hand, UCM, eUCM, and
DS fall into a unified camera model family that is easy to compute
and has a closed-form unprojection function. For briefness, we only
describe theDS in this article, but this pipeline can be extended to all
unified camera models. DS is modeled with six camera parameters
i: f x, f y, cx, cy, α, and ξ.

In the study by Geyer and Daniilidis (2000), it was observed that
the UCM effectively represents systems with parabolic, hyperbolic,
elliptic, and planar mirrors. Furthermore, the UCM has been
successfully employed for cameras equipped with fisheye lenses
(Ying and Hu, 2004). However, it is important to acknowledge that
the UCM may not provide an ideal match for most fisheye lenses,
often necessitating the incorporation of an additional distortion
model. The UCM projects a 3D point onto the unit sphere and then
onto the image plane of the pinhole camera, which is shifted by ξ
from the center of the unit sphere. The eUCM can be considered
a generalization of the UCM, where the point is projected onto
an ellipsoid symmetric around the z-axis using the coefficient β.
Alternatively, the DS (Usenko et al., 2018) camera model is a more
suitable choice for cameras with fisheye lenses. It offers a closed-
form inverse and avoids computationally expensive trigonometric
operations. In DS, a 3D point is projected onto two unit spheres with
centers shifted by ξ.Then, the point is projected onto an image plane
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FIGURE 1
Illustration of wide FOV colonoscopy camera and its distortion: raw and rectified images, respectively, when the camera is placed inside the
colonoscopy training model (A) and (B), and in front of a calibration target (C) and (D). The yellow box in (B) and (D) crops out the black pixels after
undistortion, causing a loss of FOV.

using a pinhole shifted by α. It corrects the image distortion that
occurs when the camera’s image plane 1−α is not perfectly aligned
with the object plane. The projection function π(P, i): P(x, y, z) → p
(u, v) is given as follows:

π(P, i) = [[

[

fx
x

xαd2 + (1− α)(ξd1 + z)

fy
y

αd2 + (1− α)(ξd1 + z)

]]

]

+[

[

cx

cy
]

]
, (2)

where
d1 = √x2 + y2 + z2 d2 = √x2 + y2 + (ξd1 + z)2. (3)

The unprojection function π−1(p, i): p(u,v) → P (x,y,z) is given
as follows:

π−1(p, i) =
mzξ+√m2

z + (1− ξ2)r2

m2
z + r2

[[[[

[

mx

my

mz

]]]]

]

−
[[[[

[

0

0

ξ

]]]]

]

, (4)

where

mx =
u− cx
fx

my =
u− cy
fy

r2 =m2
x +m2

y.

mz =
1− α2r2

a√1− (1− (2α− 1)r2 + 1− α)
. (5)

3 Methods

In this work, we aim to estimate depth from a colonoscopy
image stream via view synthesis. View synthesis enables us to train

the depth estimation model in self-supervised mode. The depth
network takes one image at a time, source Is or target It image, and
predicts the corresponding per-pixel depthmaps. Target depthmaps
Dt from the depth network and T t→s from pose estimation enable
the reconstruction of the target image Iˆt from the source image
Is with geometric projection. The pose network predicts the rigid
transformation with six degrees of freedom. With a chosen camera
model, the unprojection function π−1 can map the target image
coordinate It(p) to 3D space, forming a 3D point cloud. An overview
of the training pipeline is shown in Figure 2.The projection function
π maps the 3D points to the target image coordinates. Section 2
describes the camera models for different lenses with varying lens
distortions. For camera models that have to find the root of a high-
order polynomial, a pre-calculated lookup table can be used for a
computationally efficient unprojection operation.

3.1 Generic image synthesis

Irrespective of the camera models shown in Eq 1 or Eq 2-4, the
generic image synthesis block can reconstruct the target image from
source images with projection π and unprojection π−1 functions,
as shown in Figure 3. A point cloud Pt can be generated from the
estimated depth Dt for the corresponding input image It as follows:

Pt = π−1(pt,Dt), (6)

where pt is the set of image coordinates and Pt is the 3D point cloud
corresponding to the target image It . The relative pose T t→s from the
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FIGURE 2
Self-supervised depth training pipeline: input images (Is, It) are adjacent frames sampled from a video sequence. The depth network predicts
independent per-pixel dense depth maps (Ds, Dt) from the source Is and target It images, respectively. The pose network takes the concatenated image
sequence (Is, It) as input and predicts the rotation R and translation t that define the transformation T between the source and target images. The warp
function takes the predicted depths and poses to warp the source image coordinates to the target or vice versa. The image synthesis projects the
source image Is to the target image It with the warped image coordinates. The synthesized images are compared with ground-truth images to
construct the loss. The image synthesis loss outliers are removed using the clip function. Image pixels affected by specular lighting and violation of the
Lambertian surface assumption are ignored in loss calculation with the valid mask. The depth consistency loss ensures that the depth is consistent in
the sequence. At inference, only the depth network will be used.

FIGURE 3
Generic image coordinate warp block: source Is and target It images are captured at time t − 1 and t. The depth Dt predicted by the depth network
along with the relative pose Tt→s from the source to target estimated by the pose network is used to synthesize the source image. The view
synthesizing block allows the usage of various camera models that can handle cameras with higher lens distortion. We have demonstrated this use
case on the UCL 2019 synthetic data set with a 90◦ horizontal FOV camera (no lens distortion) and on our colonoscopy training model data set with a
132◦ horizontal FOV camera (high radial lens distortion).

target to source image is estimated by the pose network.This relative
pose can be used to transform the target point cloud into the source
point cloud Ps = T t→sPt . With the projection model π, the 3D point
cloud Ps can bemapped to the source image coordinate ps as follows.
The target image can be synthesized by inverse warping the source
image coordinates and sampling (Godard et al., 2017) with ζ.

ps = π(Tt→sπ−1(pt,Dt)).

̂I ijt = ζ(I
i′j′
s ). (7)

The projected source image coordinate ps(i
′
, j
′
) will be used

to sample pixel values with the sampling function ζ to generate
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the target image ̂It. The differentiable spatial transformer network
(Jaderberg et al., 2015) is used to synthesize images with bilinear
interpolation.

3.2 Image reconstruction loss

The photometric loss Lv between the reference frame and
reconstructed frame acts as a self-supervised loss for the depth
network. Following the previous works of Zhou et al. (2017), we
used structural similarity (SSIM) (Wang et al., 2004) along with the
least absolute deviation (L1) for the photometric loss with weight η.
This leverages the ability of SSIM, denoted as S, to handle complex
illumination changes and add robustness to outliers as follows:

Lsv(It ̂It) =
1
|V|
∑
p∈V

η
1− S(It(p), ̂It(p))

2
+ (1− η)|It (p) − ̂It(p)|. (8)

Here, V denotes valid pixels and |V| denotes its cardinal. Masking
out pixels with V that violates non-zero optical flow and the
Lambertian surface assumption avoid the propagation of corrupted
gradients into the networks. The valid mask is computed as follows:

V =Mego · (|It(p) − ̂It(p)| < |It(p) − Is(p)|). (9)

Here, Mego is a binary mask that initially marks all mapped
pixels as valid. The pixels that appear to be static between the
source and target images caused by the absence of ego motion,
special lighting, lens artifacts, and low texture are then marked
invalid. Parts of the photometric loss that violate the assumptions
generate a great loss, yielding a large gradient that potentially
worsens the performance. Following the study of Zhou et al. (2018),
clipping the loss with θ, which is the p-th percentile of Lv,
removes the outlines as Lv(si) = min(si,θ), where si is the i-th cost
in Lv.

3.3 Depth consistency loss

Depth consistency loss Lc (Bian et al., 2021) ensures depth maps
Ds andDt estimated by the depth network with the source and target
images Is and It that adhere to the same 3D scene. Minimizing
this loss encourages depth consistency not only in the sequence but
also to the entire sequence with overlapping image batches. Depth
consistency loss can be defined as follows:

Lsc(Ds,Dt) =
1
|V|
∑
p∈V

DC s,

DC s =
|D̂t

s (p) − D̂s(p)|

D̂t
s (p) − D̂s(p)

, (10)

where D̂t
s is the projected depth ofDt with poseT t→s that corresponds

to the depth at image Is, but comparing D̂t
s with Ds cannot be

done as the projection does not lie in the grid of Ds. Thus, D̂t
s

is generated using differentiable bilinear interpolation on Ds and
compared with D̂t. The inverse of DC will act as an occlusion
mask Mo that can mask out occluded pixels from the source to
the target view, mainly around the haustral folds of the colon.

The image reconstruction loss Ls is reweighted with Mo mask as
follows:

Ls
′

v =
1
|V|
∑
p∈V

Ms
0 ∙ L

s
v.

Ms
0 = 1−DC

s. (11)

3.4 Edge-guided smoothness loss

The depth maps are regularized with edge-guided smoothness
loss as the homogeneous and low-texture regions do not induce
information loss in image reconstruction. The smoothness loss is
adapted fromWang et al. (2018) as follows:

Lse(It,Dt)∑p∈I
e−▽It(p)▽D′(p), (12)

where ▽ denotes the first-order gradient and D′t =
(1/Dt)/mean(1/Dt) is the normalized inverse depth. To avoid the
optimizer getting trapped in the local minima (Zhou et al., 2017;
Godard et al., 2019), the depth estimation and loss are computed
at multiple scales. The total loss is averaged over scales (s = 4) and
image batches as follows:

L = 1
4

4

∑
s=1

σ1L
s′
v + σ2Lsc + σ3Lse. (13)

4 Experiments

In this work, all models are trained in the UCL 2019 synthetic
(Rau et al., 2019) and colonoscopy training model data sets and
evaluated on a variety of synthetic (Rau et al., 2019; Azagra et al.,
2022) and real (Azagra et al., 2022; Ma et al., 2021) colonoscopy
data.

4.1 Implementation details

The depth network is inspired by Godard et al. (2019), with
ResNet18 (He et al., 2016) as the encoder and multiscale decoder
that predicts the depth at four different scales. The pose network
shares the same encoder architecture as the depth network, followed
by four 2D convolution layers. The models are built using PyTorch
(Paszke et al., 2017) with the Adam optimizer (Kingma and Ba,
2014) to minimize the training error. The models are trained with
Nvidia A6000 with batch size 25 for 20 epochs at an initial learning
rate of 0.0001 and halves after 15 epochs.The depth network sigmoid
output d is scaled as D = 1/(d · 1/(dmax − dmin) + 1/dmin), where
dmin = 0.1 and dmax = 20.0 units corresponding to 0.1–20 cm.
The network input image size of the UCL 2019 synthetic image
(Rau et al., 2019) is 256 × 256 (height × width) and that of the CTM
is 512 × 768. These hyperparameters are set empirically as follows:
η = 0.85, σ1 = 1.0, σ2 = 0.5, and σ3 = 0.001. We perform horizontal
flipping with 50% of the images in the UCL 2019 data set but not
in the CTM data set because of the off-centered principal point of
the wide-angle camera. We perform random brightness, contrast,
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saturation, and hue jitter within ±0.2, ±0.2, ±0.2, and ±0.1 range,
respectively. For stability, the first epoch of the training is a warm-
up run with minimum reprojection loss (Godard et al., 2019) when
trained on the CTM, whereas no warm-up is used for the UCL
2019 synthetic data set. The depth estimation model runs at 10 FPS
(frames per second) on the GPU at inference, making it suitable for
robotic control.

4.1.1 UCL 2019 synthetic data set
TheUCL synthetic data (Rau et al., 2019) are generated based on

human CT colonography with manual segmentation and meshing.
The unity engine is used to simulate the RGB images with a virtual
pinhole camera (90◦ FOV and two attached light sources) and their
corresponding depth maps with a maximum range of 20 cm. The
data set contains 15,776 RGB images and ground-truth depth maps,
which are split into the 8:1:1 train, validation, and test sets. The
data set is recorded as nine subsets with three lighting conditions
and one of three different materials. The light sources vary in spot
angle, range, color, and intensity, while the materials vary in color,
reflectiveness, and smoothness.

4.1.2 Colonoscopy training model data set
Our colon training model data set is recorded with an off-

the-shelf full HD camera (1920 × 1,080, 30 Hz, 132◦ HFOV, 65◦

VFOV, 158◦ DFOV, FID 45-20-70, white ring light around camera)
inside a plastic phantom used for training medical professionals.
The phantom mimics the 1:1 anatomy of the human colon, such as
the internal diameter, overall length, and haustral folds, simulating
images from an optical colonoscopy. The camera is attached to
a motorized shaft that is moved forward and backward while
recording videos. The data set contains around 10,000 images split
into an 8:2 train and validation set with varying internal and
external light settings and does not provide ground-truth depth
maps.

4.2 Quantitative study

The unique structural restriction of a real colon precludes the
collection of ground-truth depth with a true depth sensor. Thus,

quantitative depth evaluation can only be conducted on synthetic
data such as UCL 2019, even though the current synthetic data
generation is not realistic enough to mimic real colon surface
properties. The UCL synthetic data contains some texture, such as
blood veins and haustral folds. The proposed depth estimation is
assessed on the UCL 2019 test data set with evaluation metrics
by Eigen et al. (2014) and compared with the other state-of-the-
art methods like SfMLearner (Zhou et al., 2017), Monodepth1
(Godard et al., 2017), DDVO (Wang et al., 2018), Monodepth2
(Godard et al., 2019), HR Depth (Lyu et al., 2021), AF-SfMLearner
(Shao et al., 2021), and AF-SfMLearner2 (Shao et al., 2022) in
Table 1.

4.3 Qualitative analysis

Quantitative depth evaluation of real colonoscopy data like
EndoMapper (Azagra et al., 2022) or LDPolypVideo (Ma et al.,
2021) is challenging. Much of the real characteristics of the colon,
like reflectance of the surface and light diffusion of different tissue
types, are hard to mimic in a simulator. In addition, a real colon
is not rigid; the deformable property of the colon wall makes the
view synthesis even more problematic. It was observed that the
depth network was leaving holes in the depth maps when trained
on the low-textured CTMwith just image reconstruction loss. Low-
textured regions often occur in the real colon wall, and handling
these regions is critical for data-driven methods that rely on view
synthesis. The valid mask described in Section 3.2 works well for
removing pixels affected by specular lighting, lens artifacts, and
zero optical flow regions. The data collection of the CTM was
limited to the linear motion of the steady-speed motorized shaft
inside the phantom on which the wide-angle camera was fixed.
This limits the prediction of the depth network when introduced
to real colon images with sharp turns. The depth consistency loss
described in Section 3.3 helps the network to learn geometric
consistency and avoid depth map flickering between frames. The
depth network trained on the CTM learns to directly predict depth
from highly distorted images with the help of the generic image
synthesizer briefed in Section 3.1 that can handle a variety of camera
models.Themodel trained with a pinhole camera was tested against

TABLE 1 Quantitative study on proposed depthmodel on UCL 2019 synthetic data. Best values are in bold, and the second best values are underlined. Abs Rel,
Sq Rel, RMSE, and RMSE log are in mm, and δ < 1.251, δ < 1.252, and δ < 1.253 are in percentage.

Model Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.251 ↑ δ < 1.252 ↑ δ < 1.253 ↑

SfMLearner (Zhou et al., 2017) 0.451 0.711 1.768 0.537 0.366 0.618 0.785

Monodepth1 (Godard et al., 2017) 0.444 0.752 1.755 0.531 0.371 0.625 0.790

DDVO (Wang et al., 2018) 0.452 0.772 1.768 0.538 0.366 0.618 0.785

Monodepth2 (Godard et al., 2019) 0.446 0.756 1.757 0.532 0.360 0.624 0.789

HR Depth (Lyu et al., 2021) 0.448 0.762 1.762 0.534 0.369 0.621 0.788

AF-SfMLearner (Shao et al., 2021) 0.387 0.618 1.648 0.480 0.420 0.686 0.831

AF-SfMLearner2 (Shao et al., 2022) 0.352 0.545 1.581 0.448 0.445 0.712 0.852

Our 0.141 0.115 0.669 0.179 0.828 0.959 0.985
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FIGURE 4
Qualitative analysis on synthetic data sets like UCL 2019 synthetic and EndoMapper synthetic data sets, CTM data set, and real colonoscopy images like
LDPolypVideo and EndoMapper data set (top to bottom) (Azagra et al., 2022; Ma et al., 2021).

TABLE 2 Ablation study on UCL 2019 synthetic data. View, Valid, Consistency, and Clip represent image view synthesis, valid mask, depth consistency, and loss
clipping, respectively. Best values are in bold and second best values are underlined. Abs Rel, Sq Rel, RMSE, and RMSE log are inmm, and δ < 1.251, δ < 1.252, and δ
< 1.253 are in percentage.

View Valid Consistency Clip Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.251 ↑ δ < 1.252 ↑ δ < 1.253 ↑

✓ ✗ ✗ ✗ 0.195 0.184 0.843 0.236 0.748 0.909 0.961

✓ ✓ ✗ ✗ 0.180 0.150 0.734 0.216 0.774 0.928 0.968

✓ ✗ ✗ ✓ 0.157 0.139 0.703 0.195 0.803 0.945 0.981

✓ ✓ ✗ ✓ 0.141 0.115 0.669 0.179 0.828 0.959 0.985

✓ ✗ ✓ ✗ 0.179 0.144 0.725 0.215 0.779 0.929 0.970

✓ ✓ ✓ ✗ 0.171 0.139 0.729 0.209 0.791 0.933 0.971

✓ ✓ ✓ ✓ 0.176 0.140 0.699 0.211 0.788 0.931 0.970

an unseen EndoMapper synthetic data set (Azagra et al., 2022).
The model trained on the wide-angle camera was tested against
real colonoscopy data sets like EndoMapper (Azagra et al., 2022)
and LDPolypVideo (Ma et al., 2021). It is to be noted that the
model trained on a wide-angle camera performed better in real

colonoscopy data sets that used wide FOV cameras than the model
trained on synthetic data, as shown in Figure 4. The model trained
on rectified or perfect pinhole camera images, as in UCL 2019, is
suboptimal to the target colonoscopy camera, which is distorted and
wide angled. If trained on raw images like in the CTM, the network
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learns distortion as part of the transfer function, and it is only weakly
encoded and thus expected to be more robust.

4.4 Ablation study

Table 2 demonstrates the impact of each loss when trained with
UCL synthetic data. The depth evaluation reflects the benefit of the
validmask in Section 3.2, which ignores pixels that do not contribute
to the photometric loss. It is also found that clipping off high
photometric loss improves model performance. Even though depth
consistency in Section 3.3 leads to consistent depth in the sequence,
it did not improve quantitative results but helped qualitatively on the
CTM data set.

5 Conclusion

This work presents a self-supervised depth estimationmodel for
wide-angle colonoscopy cameras. To the best of our knowledge, this
is the first time data from a wide-angle colonoscopy camera is used
to estimate depth from a video sequence.Most of the previous works
had assumed a pinhole model for the colonoscopy camera, but real
colonoscopy cameras have a wide FOV lens. Our network predicts
depth directly on highly distorted raw images typical for such real
cameras. The pipeline also focuses on handling texture regions in
the images that generate low photometric loss and geometrically
consistent depth estimation in the sequence. Our methods fill a
gap in modeling wide FOV cameras and low-texture regions in
colonoscopy imaging. We also achieved near-real-time prediction
with the depth estimation models that allow us to operate alongside
a colonoscopy robot.

A limitation of our work is that the UCL 2019 synthetic
data set does not fully capture the complex surface properties
and characteristics of real colon tissue. The absence of ground-
truth depth maps for the CTM data set further limits the ability
to quantitatively assess performance on this data set. Further
exploration and evaluation of diverse and realistic data sets can
enhance the generalizability and reliability of the proposed depth
estimation method.
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