
TYPE Original Research
PUBLISHED 09 August 2023
DOI 10.3389/frobt.2023.1226028

OPEN ACCESS

EDITED BY

Shen Hin Lim,
University of Waikato, New Zealand

REVIEWED BY

Muhammad Khan,
Atılım University, Türkiye
Önder Tutsoy,
Adana Science and Technology
University, Türkiye

*CORRESPONDENCE

Mahsa Mohaghegh,
mahsa.mohaghegh@aut.ac.nz

RECEIVED 20 May 2023
ACCEPTED 14 July 2023
PUBLISHED 09 August 2023

CITATION

Mohaghegh M, Saeedinia S-A and
Roozbehi Z (2023), Optimal predictive
neuro-navigator design for mobile robot
navigation with moving obstacles.
Front. Robot. AI 10:1226028.
doi: 10.3389/frobt.2023.1226028

COPYRIGHT

© 2023 Mohaghegh, Saeedinia and
Roozbehi. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Optimal predictive
neuro-navigator design for
mobile robot navigation with
moving obstacles

Mahsa Mohaghegh1,2*, Samaneh-Alsadat Saeedinia3 and
Zahra Roozbehi1

1School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology
(AUT), Auckland, New Zealand, 2Faculty of Design and Creative Technologies, AUT, Auckland, New
Zealand, 3School of Electrical Engineering, University of Science and Technology (IUST), Tehran, Iran

Introduction: The challenge of navigating a Mobile robot in dynamic
environments has grasped significant attention in recent years. Despite the
available techniques, there is still a need for efficient and reliable approaches
that can address the challenges of real-time near optimal navigation and collision
avoidance.

Methods: This paper proposes a novel Log-concave Model Predictive Controller
(MPC) algorithm that addresses these challenges by utilizing a unique
formulation of cost functions and dynamic constraints, as well as a convergence
criterion based on Lyapunov stability theory. The proposed approach is mapped
onto a novel recurrent neural network (RNN) structure and compared with the
CVXOPT optimization tool. The key contribution of this study is the combination
of neural networks with model predictive controller to solve optimal control
problems locally near the robot, which offers several advantages, including
computational efficiency and the ability to handle nonlinear and complex
systems.

Results: The major findings of this study include the successful implementation
and evaluation of the proposed algorithm, which outperforms other methods
such as RRT, A-Star, and LQ-MPC in terms of reliability and speed. This approach
has the potential to facilitate real-time navigation of mobile robots in dynamic
environments and ensure a feasible solution for the proposed constrained-
optimization problem.

KEYWORDS

navigation, optimization, MPC, stability, neural network, dynamic environment

1 Introduction

Neural networks and Model Predictive Controller (MPC) are two powerful techniques
in robotics, especially in the path planning of mobile robots. Neural networks are
computational algorithms, mimicking human brain functions (Egmont-Petersen et al.,
2002), while MPC is a control technique that predicts the future behavior of a
system based on a mathematical model. Both approaches are popular methods for
planning the path of a mobile robot with the aim of optimizing the path and avoiding
obstacles. However, both of them have different strengths and weaknesses. One of

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1226028
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1226028&domain=pdf&date_stamp=2023-08-04
mailto:mahsa.mohaghegh@aut.ac.nz
mailto:mahsa.mohaghegh@aut.ac.nz
https://doi.org/10.3389/frobt.2023.1226028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1226028/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1226028/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1226028/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1226028/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

the highlighted capabilities of neural networks, in the field of
path planning, is their ability to determine the optimal path by
training on a set of data from previous successful paths and
generalizing its pattern to a new environment based on its input,
such as sensory data from the robot’s sensors. On the other hand,
MPC uses a mathematical model of the robot’s dynamics and
constraints, such as speed limits and obstacle avoidance, to predict
the optimal path. This matter improves the performance of MPCs
in comparison to neural networks in more complex dynamics
and constraints. Although, achieving this requires modeling and
accurate calculations (Yao et al., 2015).

Depending on the specific requirements, engineers may find
both neural networks and MPC to be highly useful. In fact, a
combination of these methods can provide robotics experts with
even greater capabilities to enhance the efficacy and reliability of
path planning (Karur et al., 2021; Askari et al., 2022).

In the realm of path planning for mobile robots, it is imperative
to not overlook the significance of model-free techniques, even
while capitalizing on model-based approaches such as MPCs.
Although model-free control methods, exemplified by Q-learning
and its derivatives, have been extensively studied in mobile robot
navigation (Du et al., 2022), their computational intensity may
render them unsuitable for systems with stringent constraints
or safety prerequisites. In contrast, MPC provides a systematic
framework for addressing constraints and objectives, making
it a versatile tool for navigating mobile robots in intricate
and dynamic environments (Xiao, 2022). Moreover, MPC can
be integrated with learning-based techniques, such as neural
networks, to enhance prediction model accuracy and attain
high-performance path tracking (Stano, 2022). Additionally,
incorporating exploration-exploitation-based adaptive principles
into policy-based and value-based methods constitutes an
additional strategy for model-free management (Song and
Scaramuzza, 2020). Nonetheless, these techniques can be
exceedingly computational and may necessitate vast amounts of
data for training.

The literature review reveals that most of the methods in recent
research have utilized neural networks to predict the environment
for robot navigation (Bency et al., 2019; Haider et al., 2022; Lee and
Yusuf, 2022; Kim et al., 2018; Wang et al., 2017; Quan et al., 2020).
However, in this study, we propose a novel approach that combines
neural networks with model predictive controller to solve optimal
control problems locally near the robotic system. Specifically, we
utilize neural networks as a function approximator to estimate the
system dynamics and cost function, which are then used by the
model predictive controller algorithm to solve the optimal control
problem.

In a recent study a learning-based nonlinear model predictive
controller (LB-NMPC) algorithm is presented to improve
vision-based mobile robot path-tracking in challenging outdoor
environments (Limon et al., 2017). This approach combines
learning-based techniques with MPC to enhance the accuracy of
the prediction model and achieve high-performance path tracking.
Saeedinia and Tale Masouleh (2022) proposed a new navigation
control scheme for a three-wheel omnidirectional robot that
takes into account the dynamic constraints to achieve stable and
efficient navigation, combining multi-modal MPC and Q-learning
to improve the accuracy of the prediction model and handle system

constraints in the control process. Additionally, there have been
recent breakthroughs in deep reinforcement learning-based MPC
controllers for mobile robots that have the capability of moving
omnidirectionally. These controllers utilize neural networks to
estimate the robot’s future state and generate optimal control
inputs using MPC. Experimental validation on real robots has
demonstrated improved performance compared to traditional MPC
controllers (Lee and Yusuf, 2022; Ramezani et al., 2023). As another
work, we can refer to a real-time neural MPC has been proposed for
quadrotors and agile robotic platforms, which makes use of neural
networks as dynamic model to optimize control inputs in real-time
(Salzmann et al., 2023).

While most of the existing literature focuses on using neural
networks to predict the environment, our work emphasizes utilizing
neural networks to solve optimal solutions locally near the robot.
This approach confers advantages such as increased accuracy and
efficacy in the navigation of robotic systems.

Other recent research has also been conducted regarding path
planning and navigation for mobile robots. For example, a study
proposed an improved deep reinforcement learning algorithm for
path planning in large-scale dynamic environments, considering
the avoidance of dynamic obstacles (Xie et al., 2021). Another
study explored the use of object detection using CNNs for model-
predictive control of omnidirectional mobile robots in logistic
environments (Achirei et al., 2023). These studies highlight the
ongoing research efforts in developing advanced techniques for
mobile robot navigation.

On the other hand, the process of identifying the most efficient
trajectory for a mobile robot is inherently characterized by non-
linearity and occasionally non-convexity, thereby restricting the
applicability of standard convex optimization tools in the context of
MPCs applications. In this regard, a MPC that is based on neural
networks (Neuro-MPC) can prove to be particularly advantageous
when navigating complex environments in which dynamic obstacles
cannot be readily modeled using convex optimization tools (Deits
and Tedrake, 2014).

Although the combined method mentioned above offers
numerous advantages, it is crucial not to overlook the importance
of system stability. This issue cannot be neglected and must be taken
into consideration. The stability of Neuro_MPC is a critical issue in
path planning because instability can lead to unexpected behavior of
the autonomous system,whichmay cause accidents or damage to the
environment (Yang et al., 2010; Cheng et al., 2019). Several methods
have been proposed to guarantee the stability of Neuro_MPC, such
as Lyapunov-based stability analysis and robust control techniques.
These methods ensure that the MPC controller generates control
actions that steer the system towards a safe and stable trajectory.
Thus, ensuring the stability of Neuro_MPC is essential to prevent
unexpected behavior and ensure the safety of both the autonomous
system and its environment.

In order to tackle the challenges at hand, we have developed
a novel heuristic log-concave MPC navigation problem that takes
into account dynamic and kinematic constraints, and guarantees
convergence based on Lyapunov stability theory. To solve this
problem, we have designed a new structure for a recurrent neural
network that is inspired by the NN constrained formulation
presented in (Villarrubia et al., 2018), and utilizes a screen searching
based approach.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 1
A general navigation system interactions.

Our exploration revolves around a three-wheeled
omnidirectional robot that uses a differential drive scheme to
control its motion. This distinctive robot architecture confers
greater dexterity and accuracy in traversing intricate environments,
particularly when confronted with mobile obstacles. Our work
employs the built-in tracking controller, which is based on the
controller devised by Peñaloza-Mejía et al. (2015). This controller
is a PID controller, effectively steers the robot’s locomotion
while accommodating velocity constraints. Nevertheless, in order
to ensure compatibility with the environment and surmount
limitations associated with mobile obstacles, we have implemented
MPC to govern the entire system, in conjunction with the integrated
tracking controller. In our research, we have employed MPC
to optimize the robot’s movement and positioning in real-time,
taking into account the existence of mobile obstacles within
the surroundings. We have furnished further explication on the
functionality of the MPC controller in the following sections.

This paper is organized into several sections to provide a
comprehensive overview of our approach. In Section 2, we introduce
the Materials and Methods, which includes a detailed description
of the navigation strategy, a new definition of the log-concave
navigation MPC problem, and proposing a novel Recurrent Neural
Network structure to solve the complex nonlinear problem. In
Section 3, we compare the results of our proposed navigation
strategy with those of well-known classical and reactive methods,
namely, RRT, A-star and LQ-MPCmethods. Finally, in Section 4, we
discuss the simulation results and draw conclusions.

2 Materials and methods

Thegeneral navigation system for robots involves various factors
such as the positions of the target and the robot, the environment’s
characteristics and arrangements, and the constraints and objectives.
(See Figure 1 for a visual representation of these interactions.).

When it comes to global path planning, having knowledge of the
environment and its characteristics is crucial in developing optimal
strategies. This is why the environment is monitored globally

in optimal approaches to reduce distance costs. However, local
information is sufficient in local navigation methods to reduce the
cost of time response for real-time implementation. Unfortunately,
this may not always consider distance costs appropriately, which is
why a trade-off between local and global advantages is necessary.

To address this issue, researchers have developed heuristic
algorithms that benefit both strategies. Our paper proposes a
combination of local predictive path planning methods with global
information about the environment. (See Figure 2 for the internal
structure of our proposed path planning system.).

The term “local information” refers to data collected around the
robot’s current position, while “global environment data” refers to
information about the robot’s overall environment. For predicting
the behavior of moving obstacles, both local and global information
are used. The local data predicts immediate behavior, while global
environment data predicts future behavior. This tactic reduces
risk, minimizes computational expenses, and presents a complete
comprehension of the system.

Our approach involves processing the received global image to
label obstacle positions as 1 and the rest as 0. We then estimate
the locations of dynamic obstacles in future time intervals to avoid
collisions usingmultiple EKF estimators.The constrained predictive
log-concave policy block is the center of rewarding the policy,
designed to maximize the award when the path is optimal and
minimize it in the presence of a high risk of collision.

We also designed an Recurrent Neural Network (RNN)
block to receive updated information on the position classified
data and evaluate the next state policy cost of the robot’s
neighborhood, considering a conservative collision avoidance
constraint compatible with finite state prediction steps. By
combining local and global information, our proposed path
planning systemoffers amore comprehensive and effective approach
to robot navigation.

In order to assess the effectiveness of our navigation strategy, we
utilized Python 3.10 to simulate three randomly moving obstacles,
as well as a real three-wheeled omnidirectional mobile robot (OMR)
dynamic model with a built-in tracking controller introduced by
(Peñaloza-Mejía et al., 2015). Our goal was to create a realistic

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 2
Internal structure of the proposed path planning system.

indoor environment and robot dynamic behavior simulation,
allowing us to thoroughly investigate the proposed navigator
performance. To achieve this, we utilized the robot dynamic model
and the Kalman Filter updating equations (Blanchard, 2007) as the
real robot dynamics indicator and the observer component of the
navigation system, respectively.

By and large, we used the EKF algorithm for obstacle tracking
and estimation. The EKF algorithm is used to estimate the position
and velocity of obstacles and the robot in the environment, which
are utilized as inputs to the MPC algorithm to generate control
actions for the robot. The EKF algorithm considered the position
and velocity of the obstacles and predicted their next position by
predicting one step ahead.

The MPC algorithm was responsible for generating control
actions that steer the robot towards the target while avoiding
collisions with obstacles. The MPC algorithm used the estimated
positions and velocities of obstacles obtained from the EKF
algorithmas inputs to generate control actions for the robot.The cost
function used in the MPC algorithm was designed to balance the
tradeoff between achieving the desired goal and avoiding obstacles
while minimizing energy consumption.

The RNN structure is designed as a local optimization solver
for the nonlinear MPC problem. Specifically, the RNN is used to
estimate the systemdynamics and cost function, which are then used
as inputs to theMPCalgorithm to solve the optimal control problem.
The RNN is trained to minimize the cost function in the Lagrangian
form by adjusting the input control to the system at each time step,
such that the constraints are satisfied and the state of the system
approaches the desired reference trajectory.

2.1 Environment simulation and data
collection

This section provides a comprehensive description of the
preprocessing and analysis of the sensor data utilized in our

simulation study. In consideration of the EKF converging process
and RNN learning and training time samples, we utilized 70
sampling epochs as the training dataset, using data recursively, and
the remaining epochs for testing.

The sensor data is simulated as flag data, which detects obstacles
from a distance of 0.4 m. If obstacles are located in front of the
sensor, the flag is set to 1, otherwise, it is set to 0.

To generate the input data for the learning algorithm, we
used a camera mounted on the ceiling of the room to detect the
position and color of obstacles in the environment. The position
of the robot and obstacles were labeled as global positions, and
the obstacles were represented as binary values, with 1 indicating
the presence of an obstacle and 0 indicating no obstacle at that
position. We also added normal random noise to the positions of
the robot and obstacles to simulate themeasuring noise in the sensor
data.

To analyze the sensor data, we first pre-processed the data to
remove noise and outliers and normalized the data to ensure that
the learning algorithm could effectively learn from the data. We
also used data augmentation techniques to increase the size of
the dataset and improve the generalization ability of the learning
algorithm.

Next, we used the Extended Kalman Filter (EKF) algorithm to
estimate the position and velocity of obstacles in the environment
and the robot. The EKF algorithm considered the position and
velocity of the obstacles and estimated their next position by
predicting one step ahead. Obstacles were designed with random
velocity and shape to simulate a realistic environment. If any
new obstacles were detected, a new EKF was started to estimate
its position. If the predicted location and sensor data were not
compatible, the sensor data was given priority, and the robot
changed its direction by 45° in each step while the sensor flag was set
to zero to show the lack of obstacles nearby. Finally, we used the pre-
processed sensor data as input to the learning algorithm and trained
the algorithm to predict the position and velocity of obstacles in the
environment.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

TABLE 1 The Real Robot Model Parameters, taken by (Peñaloza-Mejía et al.,
2015).

Parameters Units Quantities

m kg 11.83

r m 0.0625

L m 0.287

Iz kg·m2 0.0127

J kg·m2 5.82E-4

2.2 Mobile robot model

To simulate realistic dynamic behavior of a mobile robot, a
real three-wheeled OMR Dynamic model parameters and internal
tracking control law, given by (Peñaloza-Mejía et al., 2015) are
utilized. The dynamic model of OMR is described as follows:

M(q∙∙)q+C(q∙,q∙)q = B(q)τ (1)

The inertial matrix, the Coriolis and centrifugal force vector, and
the input matrix, defined as follows:

M(q) =
[[[[[[

[

m+ 3J
2r2

0 0

0 m+ 3J
2r2

0

0 0 Iz +
3JL2

r2

]]]]]]

]

C(q∙,q) =
[[[[[

[

0 3J
2r2
∙
φw 0

− 3J
2r2
∙
φw 0 0

0 0 0

]]]]]

]

(2)

B(q) =
[[[[

[

− 1
2r (sin(φw) −√3cos(φw))

1
r sin(φw) −

1
2r (sin(φw) +√3cos(φw))

1
2r (sin(φw) +√3cos(φw)) −

1
r cos(φw)

1
2r (sin(φw) −√3cos(φw))

L
r

L
r

L
r

]]]]

]

The parameters of the model are stated in Table 1, and the
tracking control law is described in (Peñaloza-Mejía et al., 2015).

2.3 Prediction of the future states

This paper employs m+1 Kalman filters concurrently to forecast
the future states of m obstacles, as well as the robot’s position
and velocity, based on the mean square error of the estimation.
The Kalman Filter Parameter estimation laws are derived from
(Blanchard, 2007), and the regressor for the obstacles is defined as
follows:

Xoi(k) = [xoi(k−1) voi(k−1)] (3)

The estimated future states of the robot are utilized to predict
the future screen of the environment. Moreover, to predict future
states of the robot, a Kalman filter is implemented to estimate
the parameters of an Auto-Regressive Exogenous Model, which is
considered as the dynamic constraint of the robot in the proposed
MPC navigator.

2.4 The log-convex navigation MPC
definition

This section addresses a common challenge in obstacle
avoidance, which involves dynamic and kinematic constraints
within a log-convex MPC framework. In order to tackle
this issue, we have identified several key rules that are
typically applied in navigation problems. These rules
have been translated into mathematical expressions that
can be incorporated into the MPC cost function and
constraints.

Rule one emphasizes the importance of taking the shortest
route possible, while rule two highlights the value of maintaining
a safe distance from obstacles. Rule three prioritizes the use of
sensor information over image processing for obstacle detection,
and rule four stresses the need for accurate tracing at all times.
Rule five reminds us to adhere to the maximum allowable speed,
and rule six emphasizes the importance of ensuring system
stability.

To incorporate these rules into our MPC framework,
we have developed a set of linear constraints and kernel
functions that allow us to evaluate their relative importance
on a scale of zero to one. Rules one to five are incorporated
into a constrained MPC structure, which is defined as
follows:

minε,ϑJ∞ =
∞

∑
n=k

(n+1)Δt

∫
nΔt

J(t)dt
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Jn

=
k+N

∑
n=k

Jn +
∞

∑
n=k+N+1

Jn =
k+N

∑
n=k

Jn + I((N+ 1)Δt)

(4-1)

S.t.

Ŷk+1 = γ̂T[

[

Yk

Uk

]

]
,

|Pk −Oik| > 2(2r)

{{{{
{{{{
{

Oik = [I3×3 03×3][Xoi(k+ 1) ⋯ Xoi(k+N)]6×N
Yp = [Ŷk+1 ⋯ Ŷk+N]6×N
Pk = [I3×3 03×3]Yp

|φ̂w(k)| ≥ Flag× (
π
4)

|[0⃗3×3 1⃗3×3]Yk6×1
| ≤ [

[

Vmax.cos(φw(k))
Vmax.sin(φw(k))

ωmax

]

]

(4-2)

where J(t) is defined as follows:

J(t) = 1− exp(−0.5(YkΔt −Y f)
TΛ−1(YkΔt −Y f))

+ exp((−0.5(YkΔt −Xoi)
TΛ−1(YkΔt −Xoi)))

+ 1− exp(−0.5(UkΔt
T)Λ−1(UkΔt)) (5)

where Y(t) = Y(kΔt) = Yk is discrete-time sampling. In which Λ−1

is defined based on the constraint of the robot dynamic and
environment limitations.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

Λ−1 =

[[[[[[[[[[[[[[[[[[

[

[[[[[[

[

1
dx

0 0

0 1
dy

0

0 0 1
dθ

]]]]]]

]

03×3

03×3

[[[[[[

[

1
Vmax

0 0

0 1
Vmax

0

0 0 1
ωmax

]]]]]]

]

]]]]]]]]]]]]]]]]]]

]

(6)

Where d indicates maximum possible movement in the
Environment toward the (x-y) axis. In addition, the maximum
possible rotation angle is shown by dθ. Vmax denotes the maximum
possible velocity for the robot, according to the environment and
robot dynamic. ωmax is the maximum possible angular velocity.
Yk = [q q̇]T indicates position and velocity vector of the robot
dynamic at time step k. Uk is the control law, i.e., the generated
path. γ̂T is the estimated model parameter by KF. φ̂w(k) is the
estimated robot angle and Ŷk+1 is the one-step-ahead prediction
of Yk. Flag is 1 if the built-in sensors detect obstacles around
the robot, otherwise, it is zero, to deal with uncertainties and
possible faults of environment predictions. This item is considered
to avoid the robot collision with obstacles, in the KF failure
situations.

The cost function used in this study is a key component of
the model predictive controller (MPC) algorithm that controls
the navigation of the robot. It is designed to balance the
tradeoff between achieving the desired goal (i.e., reaching the
target point) and avoiding obstacles while minimizing the energy
consumption of the robot. The position cost function is given
by the term 1− exp(−0.5(YkΔt −Y f)

TΛ−1(YkΔt −Y f)). This term
penalizes the distance between the robot’s current position YkΔt
and the target point Y f . The collision cost function is given
by exp((−0.5(YkΔt −Xoi)

TΛ−1(YkΔt −Xoi))), and the energy cost
function is given by 1− exp(−0.5(UkΔt

T)Λ−1(UkΔt)), here is the
command requests to the robot to change its position and
orientations. Constraints of the navigation problem, given in
Eq. 4-2 are break down to system dynamic constraint, local
and global collision avoidance, using sensor data, and kinematic
constraint.

This paper utilizes ARMAX model to estimate velocity and
position of the robot as follows:

Yk+1 = aYk + bUk + ek, ek = N(0,1)

E{Yk+1} = [

[

a

b
]

]
γ

T

[

[

Yk

Uk

]

]
φ

= γφ (7)

Where Yk denotes the position and velocity of the robot at kth
sample time, and ek is a disturbance with normal distribution. φ is
the input regressor, and the next states of the robot are calculated as
below:

C1:Ŷk+1 = γ(:,1)TYk + γ(:,2)TUk (8)

Considering constant control input in each sample time, we
define N-horizon prediction of states vector as follows:

Yp = [Yk+1 ⋯ Yk+N]6×N
Pk = [I3×3 03×3]Yp

(9)

Where Pk is the prediction of N next positions of the robot.
Suppose thatDoi= [xoi, void]

T denotes to the ith obstacle’s position
and velocity vector in the environment at the global coordination.
Obstacles’ states predications are calculated below:

Xoi(k+ 1) = [

[

I3×3 Δt× I3×3
03×3 I3×3

]

]
Xoi(k)

Oik = [I3×3 03×3][Xoi(k+ 1) ⋯ Xoi(k+N)]6×N

(10)

To show the constraint of the robot and obstacles collision
avoidance, we define the below criteria:

C2:|Pk −Oik| >Ω, Ω > 0 (11)

Where Ω is the conservative distance parameter, it should be
determined based on the maximum estimated velocity of the robot,
and obstacles to handling prediction’s uncertainties. Where Ω is
the conservative distance parameter, it should be determined based
on the maximum estimated velocity of the robot, and obstacles to
handling prediction’s uncertainties, here is considered 2(2r).

Due to possible prediction faults and uncertainties, the
importance of checking robot obstacle detection sensors increases,
so we consider a Flag to detect an obstacle. Flag = 1 indicates an
obstacle is nearby the robot, and Flag = 0 reveals the lack of obstacle
around the robot.

C3:|Y(3)| ≥ Flag×(π
4
) (12)

This inequality can also be considered as a fitness neighborhood
searching function, instead of intending it as another constraint of
the MPC problem. This substitution helps to preserve convexity of
the problem, when convex optimization solver is utilized.

Kinematic constraints should be regarded in the navigation
strategy. This study considers a mere velocity constraint.

C5:|[0 1]Y| ≤ [
Vmax.cos(θ)
Vmax.sin(θ)

ωmax

] (13)

2.5 Designing control law with stability
guarantee

This section provides an error feedback control law,
U(t) = F(Y(t) −Y f) which is able to ensure the stability of MPC
problem, (4). To this aim, consider the candidate Lyapunov function
as follows:

J∞ =
∞

∫
t

(

1− exp(−0.5(Y(t) −Y f)
TΛ−1(Y(t) −Y f))

+exp((−0.5(Y(t) −Xoi)
TΛ−1(Y(t) −Xoi)))

+1− exp(−0.5(Y(t) −Y f)
TFTΛ−1F(Y(t) −Y f))

)dt

(14)

F is discrete-time error-feedback gain In order to ensure stability
in a navigation system, it is necessary to determine the criterion for
stability guarantee.This can be achieved by calculating the derivative

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

of the defined Lyapunov function, which should be negative. By
simplifying the Lyapunov inequality constraint of stability, it is
possible to determine whether the navigation system is stable.

Stability in navigation is crucial for ensuring that a robot can
reach its intended destination without any collisions. To simplify the
stability criterion, a linear approximation of the cost function is used,
taking into account the limited arguments of the kernel functions,
which are restricted to values of 0 and 1. By following these steps, it
is possible to ensure that the navigation system is stable and reliable,
allowing for safe and efficient navigation.

∂J∞(t)
∂t
=H+HT

H = 0.5(Ẏ)T(−Λ−1(Xoi −Y f) + FTΛ−1F(Y−Y f))

∂J∞(t)
∂t
≤
∞

∫
t

(H(t) +HT(t))∂t

< 1− (−YTΛ−1(Xoi −Y f) + (YT)FTΛ−1F(Y−Y f))⏟⏟⏟
I(t)

< 0 (15)

I(t) = 1−[

[

−Y(t)

Y(t)
]

]

T

[

[

Λ−1 0

0 FTΛ−1F
]

]

[

[

Xoi −Y f

Y−Y f

]

]
< 0,

Λ−1 > 0, FTΛ−1F > 0

2.6 Recurrent neural network design to
seek the near optimal path

This section is assigned to map the newly defined optimization
problem into the searching-based recurrent Neural Network
structure. To this aim, consider a general Lagrangian constrained
optimization problem as follows (Ramezani et al., 2023):

L(x1,x2,⋯,xn,λ1,⋯,λm) = f(x1,x2,⋯,xn) +
m

∑
i=1

λiri

∂L
∂xi
= 0, i = 1,⋯,n

∂L
∂λj
= 0, j = 1,⋯,m (16)

A new and innovative RNN structure has been proposed to
find a near-optimal solution in possible movement directions. This
structure is made up of newly designed Gaussian spiking neurons
that construct the cost function criteria concept in their membrane
function. The synaptic neurons are defined in such a way that the
network can search for the best position.

The main idea behind this proposed structure is to solve the
Lagrangian problem by considering synaptic current as a term that
can indicate the weighted constraints. This synaptic current is then
inputted to the synaptic neurons.

Figure 3 demonstrates how the searching screen window is
selected based on the location of the robot and the prediction
horizon. Additionally, the figure indicates the constraints inputted
to the reservoir recurrent neural network beside the selected
window. The amount of four-sided shapes was based on the desired
forecast range, with a single quadrangle corresponding to a forecast
one step ahead, two quadrangles corresponding to a forecast two
steps ahead, and so on. This facilitated the capture of pertinent
data pertaining to the automaton’s immediate surroundings at

various prediction intervals, which was employed as input to
our RNN-based optimization methodology. The dimensions of
the display were determined in accordance with the number
of quadrangles required to capture the sought-after prediction
horizon.

After analyzing the low-risk position corresponding to the
minimum membrane potential, the activation function generates
the desired path according to the calculated feedback gain
corresponding to the low-risk possible location. In other words, the
minimum Vn indices indicate the path error feedback indices, and
consequently, the desired path is calculated.

The proposed network algorithm is defined in Eq. 17.
This new RNN structure has the potential to revolutionize
the way we approach movement directions and find optimal
solutions.

Vn =
xr+1
∑

i=xr−1

yr+1
∑

j=yr−1
sije
−(xr−i−1)

2−(yr−j−1)
2
+ (2sij − 1)e

−(xf−i)
2−(yf−j)

2

+ In

ρn =
m
∑
k=1

Wnkrk + θn

In = tanh(ρk)

r1 = Δxr −Vxmax.Δt

r2 = Δyr −Vymax
.Δt

r3 = xr − γφ[1]

r4 = yr − γφ[2]

r6 = tan−1(y/x) − Flag×
π
4

r7 = 1−(−YT

Z

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞Λ−1(Xoi −Y f)+(YT)
Φ

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞FTΛ−1F(Y−Y f))

(17)

where Sij is a Boolean value that represents the state of a grid cell in
the global screen.The screen is divided into a grid based on the scale
of the robot’s dimensions, treating the robot as a single point in the
encodedmatrix of the environment.The values of xr and yr represent
the robot’s position in the (x-y) coordinate system. The variable Vn
in the equation represents the cost of each state in the neighborhood
of the robot, as well as the cost of searching around it, considering
one-step movements and calculating the cost of the distance from
the target. Sij is used to increase or decrease the cost if an obstacle is
present or absent at that position. The first term of Vn searches for
low-risk positions around the robot, while the next term evaluates
the risk of one-step movements.

This searching structure is designed with the aim of reducing
map size dependency and consequently its computational cost. In
is the input synaptic current on the neuron n and Nv is the neuron
membrane function, which indicates the proposed cost function and
1 step prediction of moving environment screen. The combination
of the searching-based idea with the reservoir structure can reduce
sensitivity of the proposed navigator to uncertainties and improve
its robustness.

The input neurons and the size of proposed network can be
considered constant and relevant to the steps of prediction horizon.
Synaptic weights (W ij) are updated based on minimizing Vn, as
an indicator of the (i, j)th Lagrangian function of the proposed

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 3
Proposed neural navigator structure.

FIGURE 4
Path Tracking and Errors due to the robot’s dynamic and internal
controller performance introduced by (Peñaloza-Mejía et al., 2015).

algorithm.

∆Wnk = −η
∂Vn

∂Wnk
= −η(1− ρ2

n)rk

∆θn = −η(1− ρ2
n)

∆F = −μ
∂r7
∂Φ
= μΛ

1
2 (YYT −YYT

f)
1
2 (18)

The desired error feedback gain is calculated based on the
minimum-Vn neuron location. Consequently, the desired path is
calculated according to the following active function:

Yd =
{
{
{

Yrobot + F(Y f −Yrobot) |Y f −Yd| > 2Vmax*dt

Y f else
(19)

3 Simulation results

In order to assess the effectiveness of our proposed navigation
strategy, we conducted simulations using Python 3.10. We
simulated a real three-wheeled omnidirectional mobile robot
dynamic model, which included a built-in tracking controller as
introduced by (Peñaloza-Mejía et al., 2015). These simulations were
conducted in various dynamic and static environments. The field
of robotics necessitates intricate path planning that encompasses a
multitude of factors leading to indeterminate outcomes, including
sensor noise, modeling inaccuracies, extraneous interferences,
and environmental disturbances. These uncertainties can be
typified based on their origin, nature, conduct, and scope.
The study considers white noise with normal (0, 1) for the
sensors’ noise, prediction error between 0 and 2 times greater
than robot diameter, and random velocity in the obstacles’
movements.

We compared the performance of our newly designed log-
concave strategy, which utilizes a recurrent neural network, with
the results obtained from the CVXPY optimization library, as
well as the RRT, LQR, and A-star navigation methods. Through
these simulations, we aimed to answer the following questions and
evaluate the performance of our proposed strategy:

- How does our proposed strategy compare to existing navigation
methods?

- How does our strategy perform in dynamic and static
environments?

- What are the strengths andweaknesses of our proposed strategy?

The comparison was made to provide a benchmark for the
performance of the proposed algorithm in terms of computational
efficiency and path quality. While the approaches are fundamentally
different, both methods have the ability to search in the
neighborhood for feasible paths. A*/RRT use a search algorithm
to explore neighboring nodes to find a suitable path, while the
proposed RNN structure uses a searching screen window to identify
low-risk positions for path planning.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 5
Log-Concave MPC path planning in dynamic Environment1.

To evaluate the performance of each method, we conducted
a series of simulations in dynamic and static environments. We
compared the computational efficiency and path quality of the
proposed RNN structure with that of A*, RRT, LQR, and the
proposed log-concave MPC using CVXPY optimization library. The
metrics used to evaluate performance included the computation
time, path length, and collision avoidance ability.

3.1 Impact of dynamic constraints on path
planning efficiency

The dynamics of a robot can limit its ability to follow a planned
path precisely, as shown in Figure 3.

Figure 4 exemplifies the plausible path tracking predicaments
that mobile robot may face, encompassing inaccuracies and
aberrations. These predicaments may culminate in the fiasco of
collision evasion schemes, especially in fluctuating surroundings
where barriers approach the automaton. To ensure the safe and
efficacious operation of mobile automatons, it is crucial to ponder
over the impact of dynamic constraints on the efficiency of
path plotting. By apprehending the restrictions imposed by a
robot’s dynamics, we can formulate more sturdy and dependable
path plotting algorithms that take into account the possibility of

inaccuracies.This approach can decrease the probability of collisions
and other safety perils while augmenting the comprehensive
efficiency and performance of mobile robots.

3.2 Performance of the proposed
log-concave MPC in sample environments
with static and dynamic obstacles

To assess the effectiveness of the proposed navigation strategy,
we utilized the CVXOPT library to solve the constrained MPC
problem. Our evaluation included sample environments with both
static and dynamic obstacles, all within a 20 × 20 screen size.

Figure 5 provides a visual representation of the robot’s
movements and the obstacles encountered every 0.3 s. As
demonstrated in this figure, the robot successfully navigated to
its target destination without any collisions.

To further evaluate the efficiency of our proposed strategy,
we utilized Figure 6, which provides a global overview of
the environment. Through these evaluations, we were able to
demonstrate the effectiveness of our log-concave MPC approach
in navigating mobile robots through environments with both static
and dynamic obstacles.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 6
Log-Concave MPC path planning in dynamic Environment2.

3.3 Difference between the designed RNN
planner and the optimization of log-MPC
strategy

This section evaluates the performance of RNN searching
window and its efficiency in comparison to utilize CVXOPT
optimization tool in another example of environment.

CVXOPT is a convex optimization library that provides solvers
for a wide range of convex optimization problems, including
nonlinearMPC.The specific algorithmused byCVXOPT for solving
the nonlinear MPC problem depends on the formulation of the
problem and the specific options selected by the user. In general,
CVXOPT uses a primal-dual interior-point method for solving
convex optimization problems (Dahl and Andersen, 2022). This
method iteratively solves a sequence of linear systems and updates
the primal and dual variables until convergence. For nonlinearMPC

problems, CVXOPT can use either a direct or an indirect method to
solve the problem.

Figure 7 reveals how both proposed path planning methods
navigate the robot to destination, safely. This comparison has been
conducted in the same dynamic environment, in which three
dynamic environments start moving from the same initial points in
both a and b figures and the obstacle’s velocity are also considered
the same.

In Figure 7, the path passed by the obstacles is depicted by light
blue circles. The current positions of obstacles are depicted in red
circles. The robot passes through a green–square dash line, and the
star is the target destination. Upon scrutinizing both Figures 7A,
B, it becomes conspicuous that the simulation circumstances are
strikingly alike. The motion of obstacles and their velocity remains
consistent in both illustrations. However, a noticeable dissimilarity
arises when contemplating the obstructions illustrated in Figure 7B,

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 7
(A) Proposed RNN-Log-MPC navigation performance in a dynamic environment (B) Proposed Log-MPC navigation performance in a dynamic
environment, utilizing CVXOPT optimization tool. Unit is 0.4 m, corresponding to the robot dimension.

FIGURE 8
Comparison of Distance-time cost between Log-MPC and RNN-Log-MPC.

TABLE 2 RRT, A-star, LQ-MPC, and the ProposedMethod (RNN-Log-MPC) Comparison in, including 3moving obstacles and the same target point.

Methods Distance cost Time cost Collision with obstacle Concern

RNN-Log-MPC 15 0.14 No Dependency on accurate prediction

Log-MPC using CVXPY 15 0.16 No Infeasibility and dependency on accurate prediction

RRT 24 0.2 Yes No solution in some cases and failing in dynamic environment

A* 17 0.157 Yes Collision and high computational cost in real time applications

LQ-MPC (Werling et al., 2010) 15.8 0.153 Yes Cannot find solution in long distance target situations

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 9
(A) RNN-Log-MPC path planning method in a static environment (B) A* method performance in a static environment (the left figure).

TABLE 3 RNN parameters.

Items Quantity

ρn 0.1

η 0.7

μ 0.8

as they progressively shift further away from the intended target
locale in comparison to Figure 7A. Therefore, the robot in Figure 7B
is coerced to traverse for an extended duration in order to attain
the desired position. This incongruity can be credited to the inferior
pace of the robot in Figure 7B, which, in turn, is instigated by
the path planner dispensing a smaller displacement by CVXOPT.
In this situation, some generated paths of movements are in the

FIGURE 10
Proposed method and RRT Path Planning in a dynamic environment (fourth Example), (A) RRT Performance (B) Proposed Method Performance.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

FIGURE 11
Proposed method and RRT Path Planning in the same previous dynamic environment with different target. (A) RRT performance (B) The proposed
Method Performance.

range of 0.03 which cannot empower the robot efficiently, therefore,
the robot stays at its position for several sequential sample times.
In contrast, the initial training time of the RNN takes almost
0.05 (second) longer than the CVXOPT tool. Then, the robot is
continuously navigated to the target position without any long
time stopping in a particular position. Of course, we cannot
regard stopping in a particular position as a disadvantage for
a path planner, while in social environments, waiting for other
people to pass the way and then continuing the optimal path or
safe route is considered an advantage. On the other hand, this
feature is not recommended in automated vehicles on highways,
in air traffic, and other applications. In this case, RNN-Log-MPC

can be more efficient. Figure 8 indicates the time-distance cost
comparison.

3.4 Performances of the proposed
log-MPC and RNN-log-MPC strategies in
comparison of RRT, A-star and LQ-MPC
methods

Classic methods are not able to handle path planning
programming in dynamic environments efficiently. Therefore, RRT
and A-star as the classic methods are recommended to be utilized

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

in static environments. On the other hand, reactive and heuristic
methods are mostly utilized in dynamic environments. To evaluate
the performance of the proposed Log-MPC method, the following
Table 2 depicts the comparison of RNN-Log-MPC and A-star
performances in the given below static environment (Figure 9).

Figure 9 illustrates a static environment example in which RNN-
log-MPC method is compared with A* strategy. The proposed
strategy is considered with one prediction step as a global planner.
The costs are compared in Table 2. Table 2 provides a comparison
of both strategies in the same environment and with the same
processor, significant efficiency of the proposed method, especially
in the sense of time costs. In addition, the results illustrate that
RRT may fail in providing a free-collision path in a dynamic
environment, while the proposed method can navigate the robot
efficiently.

The parameters of simulated RNN is given in the Table 3:
Another sample environment includes two sinusoidal shape

movements of the obstacles and one random walker, with the target
position at the point (12, 15).The robot movement path is simulated
under the following conditions:

1. When the utilized path planning algorithm is RRT.
2. When the utilized path planning algorithm is the new proposed

Navigator.

The global screen of the environment, including the movement
path of the robot and obstacles are shown in Figure 10.

Figure 11 presents a more comprehensive comparison of our
proposedmethod andRRT in a simulated environmentwith varying
target positions. The figure showcases the success of our method
and the failure of RRT. The target is represented by a violet star
shape, while the robot is depicted as a green diamond. The obstacles
are shown as red circles, and the passed path is indicated by the
yellow line. The left side of both parts of Figure 10A demonstrates
the crucial scenes, while the right side shows the entire passed
trajectory.

It is evident that generating a path using RRT can be time-
consuming, especially if a unique solution is obtainable in this
structure. To better understand this issue, we have provided a table
below that compares our proposed method with RRT in terms of
distance versus time. The simulation screen size is 20*20 with a
scale of 0.45 m, and the arrangement of obstacles differs in at least
five similar simulation examples. The target position is located at
(Limon et al., 2017; Kim et al., 2018) in Figures 10, 11.

Our proposed method offers a more efficient and effective
solution for navigation in a simulated environment. With our
method, the robot can navigate through the obstacles and reach the
target in a shorter amount of time compared to RRT. This not only
saves time but also reduces the risk of errors and increases the overall
success rate of the navigation process.

Figures 10A, B demonstrates a comparison of the RRT
performance (10-a) with the suggested strategy (10-b). The results
show that the RRT failed in providing a safe path, and consequently
collides with the obstacle in a dynamic environment.

Figure 11 presents a more comprehensive comparison of our
proposedmethod andRRT in a simulated environmentwith varying
target positions. The figure showcases the success of our method
and the failure of RRT. The target is represented by a violet star
shape, while the robot is depicted as a green diamond. The obstacles

are shown as red circles, and the passed path is indicated by the
yellow line. The left side of both parts of Figure 10A demonstrates
the crucial scenes, while the right side shows the entire passed
trajectory.

It is evident that generating a path using RRT can be time-
consuming, especially if a unique solution is obtainable in this
structure. To better understand this issue, we have compared our
proposed method with RRT in terms of distance versus time in
Table 2. The simulation screen size is 20*20 with a scale of 0.45 m,
and the arrangement of obstacles differs in at least five similar
simulation examples. The target position is located at (Limon et al.,
2017; Kim et al., 2018) in Figures 10, 11.

Our proposed method offers a more efficient and effective
solution for navigation in a simulated environment. With our
method, the robot can navigate through the obstacles and reach the
target in a shorter amount of time compared to RRT. This not only
saves time but also reduces the risk of errors and increases the overall
success rate of the navigation process.

3.5 Potential challenges and future
directions

The proposed RNN-Log-MPC algorithm presents a notable
advantage by utilizing both sensor and camera data to diminish
the sensitivity of the navigation system to momentary data loss
or prediction error by EKF. Nonetheless, this does not eliminate
the exigency to tackle potential issues such as prediction errors,
sensor disconnection, and lack of accuracy in the command follower
controller. Therefore, a conservative approach to adjusting and
evaluating restrictions may be deemed necessary, which could
constrain optimization, particularly in unfamiliar environments
where speed changes occur, and there is a possibility of collision
risk.

Moreover, the precision of obstacle detection, which is processed
via a central server and communicated wirelessly to the robot’s
internal controller, can also influence the system’s performance.
Hence, it is crucial to scrutinize the algorithm in various
scenarios to identify potential errors and devise solutions to
rectify them. Constant monitoring of the system can also enhance
the accuracy of performance and reliability of the navigation
system.

4 Conclusion

This study proposes a groundbreaking navigation algorithm that
employs a log-concave strategy and a visual-based model predictive
controller (MPC) framework. The tactic is innately near-optimal
and restricted, and it is tackled by employing two optimization
resources, namely, a newly proposed network configuration and
the CVXOPT optimization library. The suggested recurrent neural
network (RNN) architecture adeptly resolves diverse constrained
navigation predicaments. The constraints, which include the
velocities of the robot and the nearby obstacles, are given careful
consideration to enhance the reliability of the navigation system.
Our simulations demonstrate promising results, but further research
is imperative to scrutinize the applicability of our methodology

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

in pragmatic settings or using tangible mechanisms such as
Gazebo or VREP to validate our approach and provide additional
insights.

This investigation furnishes a resolution to the optimal visual
navigation technique, where the structure size remains constant
in various environments with different numbers of obstacles, by
utilizing a window-based searching approach. Nonetheless, the
Extended Kalman Filter, which is utilized to localize objects, is a
highly favored stochastic method in this area, but it operates based
on the linearization method. Consequently, there is still a concern
about its failing events, which can trigger low-accurate predictions
of the environment.

To summarize, our proposed RNN-based optimization
methodology for circumventing obstacles showcases auspicious
outcomes and harbours the potentiality of being expanded
to more intricate scenarios and environments. For instance,
our methodology may be implemented in pragmatic situations
such as self-governing motoring, wherein the robot necessitates
traversing through a multifarious and dynamic milieu while
evading hindrances. Furthermore, our approach has the capacity
to amalgamate with alternative state estimation and prognostication
techniques to advance the performance and resilience of the system.
We are of the conviction that our study lays a robust groundwork
for ensuing research in the establishment of RNN-based techniques
for circumventing obstacles in autonomous robots.

Data availability statement

The simulation data used in this study are not publicly available
due to confidentiality reasons. However, the authors can provide
access to the data upon request and after appropriate agreements
are made. Please contact the corresponding author for more
information or inquiries regarding the data.

Author contributions

MM: Supervision, conceptualization, writing—review
and editing, funding acquisition. S-AS: Conceptualization,
methodology, writing—original draft investigation, and formal
analysis. ZR: Conceptualization and project administration. All
authors contributed to the article and approved the submitted
version.

Funding

This research is underwritten by the Auckland University
of Technology and is endowed through a summer project
scholarship.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Achirei, S.-D., Mocanu, R., Popovici, A.-T., and Dosoftei, C.-C. (2023). Model-
predictive control for omnidirectional mobile robots in logistic environments
based on object detection using CNNs. Sensors 23 (11), 4992. doi:10.3390/
s23114992

Askari, I., Badnava, B., Woodruff, T., Zeng, S., and Fang, H. (2022).
“Sampling-based nonlinear MPC of neural network dynamics with application
to autonomous vehicle motion planning,” in Proceedings of the 2022
American Control Conference (ACC), Atlanta, GA, USA, June 2022,
2084–2090.

Bency, M. J., Qureshi, A. H., and Yip, M. C. (2019). “Neural path planning: Fixed
time, near-optimal path generation via oracle imitation,” in Proceedings of the 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau,
China, November 2019, 3965–3972.

Blanchard, E. (2007). “Parameter estimation method using an extended Kalman
filter,” in Proceedings of the Joint North America, Asia-Pacific ISTVS Conference,
Fairbanks, Alaska, USA, June 2007.

Cheng, S., Li, L., Guo, H.-Q., Chen, Z.-G., and Song, P. (2019). Longitudinal
collision avoidance and lateral stability adaptive control system based on MPC
of autonomous vehicles. IEEE Trans. Intelligent Transp. Syst. 21 (6), 2376–2385.
doi:10.1109/tits.2019.2918176

Dahl, J., and Andersen, E. D. (2022). A primal-dual interior-point algorithm for
nonsymmetric exponential-cone optimization. Math. Program. 194 (1-2), 341–370.
doi:10.1007/s10107-021-01631-4

Deits, R., and Tedrake, R. (2014). “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in Proceedings of the 2014 IEEE-RAS

international conference on humanoid robots, Madrid, Spain, November 2014, 279–
328.

Du, H., Hao, B., Zhao, J., Zhang, J., Wang, Q., and Yuan, Q. (2022). A path planning
approach for mobile robots using short and safe Q-learning. Plos one 17 (9), e0275100.
doi:10.1371/journal.pone.0275100

Egmont-Petersen, M., de Ridder, D., and Handels, H. (2002). Image processing with
neural networks—A review. Pattern Recognit. 35 (10), 2279–2301. doi:10.1016/s0031-
3203(01)00178-9

Haider, M. H., Wang, Z., Khan, A. A., Ali, H., Zheng, H., Usman, S.,
et al. (2022). Robust mobile robot navigation in cluttered environments
based on hybrid adaptive neuro-fuzzy inference and sensor fusion. J.
King Saud University-Computer Inf. Sci. 34 (10), 9060–9070. doi:10.1016
/j.jksuci.2022.08.031

Karur, K., Sharma, N., Dharmatti, C., and Siegel, J. E. (2021). A survey
of path planning algorithms for mobile robots. Vehicles 3 (3), 448–468.
doi:10.3390/vehicles3030027

Kim, Y.-H., Jang, J.-I., and Yun, S. (2018). “End-to-end deep learning for
autonomous navigation ofmobile robot,” in Proceedings of the 2018 IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, January 2018,
1–6.

Lee, M.-F. R., and Yusuf, S. H. (2022). Mobile robot navigation using deep
reinforcement learning. Processes 10 (12), 2748. doi:10.3390/pr10122748

Limon, D., Calliess, J., and Maciejowski, J. M. (2017). Learning-based Nonlinear
Model Predictive Control * *The authors would like to ackowledge to the Spanish

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://doi.org/10.3390/s23114992
https://doi.org/10.3390/s23114992
https://doi.org/10.1109/tits.2019.2918176
https://doi.org/10.1007/s10107-021-01631-4
https://doi.org/10.1371/journal.pone.0275100
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1016/j.jksuci.2022.08.031
https://doi.org/10.1016/j.jksuci.2022.08.031
https://doi.org/10.3390/vehicles3030027
https://doi.org/10.3390/pr10122748
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

MINECO Grant PRX15-00300 and projects DPI2013-48243-C2-2-R and DPI2016-
76493-C3-1-R as well as to the Engineering and Physical Research Council, grant
no. EP/J012300/1 for funding this work. IFAC-PapersOnLine 50 (1), 7769–7776.
doi:10.1016/j.ifacol.2017.08.1050

Peñaloza-Mejía, O., Márquez-Martínez, L. A., Alvarez, J., Villarreal-Cervantes, M.
G., and García-Hernández, R. (2015). Motion control design for an omnidirectional
mobile robot subject to velocity constraints. Math. Problems Eng. 2015, 1–15.
doi:10.1155/2015/608015

Quan, H., Li, Y., and Zhang, Y. (2020). A novel mobile robot navigation method
based ondeep reinforcement learning. Int. J. Adv. Robotic Syst. 17 (3), 172988142092167.
doi:10.1177/1729881420921672

Ramezani, M., Habibi, H., Sanchez-Lopez, J. L., and Voos, H. (2023). “UAV
path planning employing MPC-reinforcement learning method considering collision
avoidance,” in Proceedings of the 2023 International Conference onUnmannedAircraft
Systems (ICUAS), Warsaw, Poland, June 2023, 507–514.

Saeedinia, S. A., and Tale Masouleh, M. (2022). The synergy of the multi-
modal MPC and Q-learning approach for the navigation of a three-wheeled
omnidirectional robot based on the dynamic model with obstacle collision avoidance
purposes. Proc. Institution Mech. Eng. Part C J. Mech. Eng. Sci. 236 (17), 9716–9729.
doi:10.1177/09544062221095414

Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., and
Ryll, M. (2023). Real-time neural MPC: Deep learning model predictive control
for quadrotors and agile robotic platforms. IEEE Robotics Automation Lett. 8 (4),
2397–2404. doi:10.1109/lra.2023.3246839

Song, Y., and Scaramuzza, D. (2020). “Learning high-level policies for model
predictive control,” in Proceedings of the 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, October 2020, 7629–7636.

Stano, P. (2022). Model predictive path tracking control for automated road vehicles:
A review. Annu. Rev. Control.

Villarrubia, G., De Paz, J. F., Chamoso, P., and De la Prieta, F. (2018). Artificial
neural networks used in optimization problems. Neurocomputing 272, 10–16.
doi:10.1016/j.neucom.2017.04.075

Wang, J., Ding, X., Xia, H., Wang, Y., Tang, L., and Xiong, R. (2017). “A LiDAR based
end to end controller for robot navigation using deep neural network,” in Proceedings of
the 2017 IEEE International Conference onUnmanned Systems (ICUS), Beijing, China,
October 2017, 614–619.

Werling, M., Ziegler, J., Kammel, S., and Thrun, S. (2010). “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in Proceedings of the 2010
IEEE International Conference on Robotics and Automation, Anchorage, AK, USA,
May 2010, 987–993.

Xie, R., Meng, Z., Wang, L., Li, H., Wang, K., and Wu, Z. (2021). Unmanned
aerial vehicle path planning algorithm based on deep reinforcement learning
in large-scale and dynamic environments. IEEE Access 9, 24884–24900.
doi:10.1109/access.2021.3057485

Xiao, X. (2022). “Learning model predictive controllers with real-time attention for
real-world navigation,”, 2022, https://arxiv.org/abs/2209.10780.

Yang, K., Gan, S. K., and Sukkarieh, S. (2010). An efficient path planning and control
algorithm forRUAV’s in unknown and cluttered environments. J. Intelligent Robotic Syst.
57, 101–122. doi:10.1007/s10846-009-9359-1

Yao, P., Wang, H., and Su, Z. (2015). Real-time path planning of unmanned
aerial vehicle for target tracking and obstacle avoidance in complex dynamic
environment. Aerosp. Sci. Technol. 47, 269–279. doi:10.1016/j.ast.2015.09.
037

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://doi.org/10.1016/j.ifacol.2017.08.1050
https://doi.org/10.1155/2015/608015
https://doi.org/10.1177/1729881420921672
https://doi.org/10.1177/09544062221095414
https://doi.org/10.1109/lra.2023.3246839
https://doi.org/10.1016/j.neucom.2017.04.075
https://doi.org/10.1109/access.2021.3057485
https://arxiv.org/abs/2209.10780
https://arxiv.org/abs/2209.10780
https://arxiv.org/abs/2209.10780
https://arxiv.org/abs/2209.10780
https://doi.org/10.1007/s10846-009-9359-1
https://doi.org/10.1016/j.ast.2015.09.037
https://doi.org/10.1016/j.ast.2015.09.037
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohaghegh et al. 10.3389/frobt.2023.1226028

Nomenclature

Nomenclature entries should
have the units identified

M Mass

r Wheels’ radius

L Distance to wheels

Iz Inertia of the Robot

J Inertia of the Wheels

d Maximum possible movement

dθ Maximum possible rotation angle

Vmax Maximum possible velocity for the robot

ωmax Maximum possible angular velocity

γ̂T The estimated model parameter by Kalman Filter

φ̂w(k) The estimated robot angle

Ŷk+1 The one-step-ahead prediction of Yk

Y f The (x-y) position vector of the target destination

Yd(k) The generated path at time step k

Sij The Boolean number 0 or 1 of the screen state in (i,j)th matrix index

In The input synaptic current on the neuron n (mA)

ρn The adaption potential (mV)

Vn The neuron membrane function (mV)

Subscripts

dθq = [xw yw φw
]
T

Position of the robot in the global coordinate and angle of the robot vector

,q Robot velocity

∙q Robot acceleration

τ ∈ R3 Torque input

M(q) ∈ R3 Inertial matrix

C(q∙,q∙)q Coriolis

B(q) ∈ R3×3 Centrifugal force vector

xoi(t−1) The ith obstacle position

voi(t−1) The ith obstacle velocity

J(t) The cost of the MPC at time t

Yk = Y(t) = [q
∙q]T Sample of position and velocity vector of the robot dynamic at time t = k∆t

Uk The control law, i.e., the generated path

Ŷk+1 The one-step-ahead prediction of Yk

F Discrete-time error-feedback gain

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.1226028
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Environment simulation and data collection
	2.2 Mobile robot model
	2.3 Prediction of the future states
	2.4 The log-convex navigation MPC definition
	2.5 Designing control law with stability guarantee
	2.6 Recurrent neural network design to seek the near optimal path

	3 Simulation results
	3.1 Impact of dynamic constraints on path planning efficiency
	3.2 Performance of the proposed log-concave MPC in sample environments with static and dynamic obstacles
	3.3 Difference between the designed RNN planner and the optimization of log-MPC strategy
	3.4 Performances of the proposed log-MPC and RNN-log-MPC strategies in comparison of RRT, A-star and LQ-MPC methods
	3.5 Potential challenges and future directions

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Nomenclature

