
TYPE Review
PUBLISHED 02 November 2023
DOI 10.3389/frobt.2023.1253049

OPEN ACCESS

EDITED BY

Emre Sariyildiz,
University of Wollongong, Australia

REVIEWED BY

Séverin Lemaignan,
Pal Robotics S.L., Spain
Aibek Niyetkaliyev,
Nazarbayev University, Kazakhstan

*CORRESPONDENCE

Ryo Sakagami,
ryo.sakagami@dlr.de

RECEIVED 04 July 2023
ACCEPTED 10 October 2023
PUBLISHED 02 November 2023

CITATION

Sakagami R, Lay FS, Dömel A,
Schuster MJ, Albu-Schäffer A and Stulp F
(2023), Robotic world
models—conceptualization, review, and
engineering best practices.
Front. Robot. AI 10:1253049.
doi: 10.3389/frobt.2023.1253049

COPYRIGHT

© 2023 Sakagami, Lay, Dömel, Schuster,
Albu-Schäffer and Stulp. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Robotic world
models—conceptualization,
review, and engineering best
practices

Ryo Sakagami*, Florian S. Lay, Andreas Dömel,
Martin J. Schuster, Alin Albu-Schäffer and Freek Stulp

Institute of Robotics and Mechatronics, DLR (German Aerospace Center), Wessling, Germany

The term “worldmodel” (WM) has surfaced several times in robotics, for instance,
in the context of mobile manipulation, navigation and mapping, and deep
reinforcement learning. Despite its frequent use, the term does not appear to
have a concise definition that is consistently used across domains and research
fields. In this review article, we bootstrap a terminology for WMs, describe
important design dimensions found in robotic WMs, and use them to analyze
the literature on WMs in robotics, which spans four decades. Throughout, we
motivate the need for WMs by using principles from software engineering,
including “Design for use,” “Do not repeat yourself,” and “Low coupling, high
cohesion.” Concrete design guidelines are proposed for the future development
and implementation of WMs. Finally, we highlight similarities and differences
between the use of the term “world model” in robotic mobile manipulation and
deep reinforcement learning.

KEYWORDS

world model, state representation, software architecture for robotics and automation,
environment modeling, autonomous robots

1 Introduction

The term “world model” (WM) has been used to signify many different concepts. Over
30 years ago, the termwas used to denote a software component that internally represents the
state of the world (Triggs and Cameron, 1991). Already in the 1970s, Shakey the robot had
such a component (Nilsson, 1984). More recently, the deep learning community has adopted
the term to describe internal simulators that an agent uses to simulate the development of
the world (Taniguchi et al., 2023).

Given the generality of the term “world model,” it has essentially become a homonym
for quite distinct concepts. The aim of this review article is to consolidate and refine the
terminology forWMs and their subcomponents and classify existing approaches.We believe
this is essential to enable researchers to clarify what type of WM they are referring to and
facilitate the motivation for the design and implementation of WMs.

The main focus of this article is on WMs for physical robots that execute actions
to perform tasks. Within this scope, a concise definition is given by Bruyninckx (2021):
“world model: the information the robot has about the world around it, and that needs to be
shared between several activities.” Here, “about the world around it” implies that the world
is constrained to the local physical world in which the robot executes its actions. “The
information the robot has about theworld” implies that theWMreflects the external physical

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1253049
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1253049&domain=pdf&date_stamp=2023-10-28
mailto:ryo.sakagami@dlr.de
mailto:ryo.sakagami@dlr.de
https://doi.org/10.3389/frobt.2023.1253049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1253049/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1253049/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1253049/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1253049/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 1
A WM is an internal representation that reflects relevant parts of the physical world in which the robot operates. It is shared by multiple sensors,
planners, and actors.

world, and sensory data are, thus, important to gather this
information. The “activities” are internal processes such as planning
and decision making. This implies that the internal WM must be
a representation rich and accurate enough to select goal-directed
actions and perform tasks.

From a software engineering point of view, “shared between
several activities” in the aforementioned definition is important.
Classically, the robot's activities are categorized into three types:
sense, plan, and act (Gat et al., 1998). This implies that a WM is
a software component that integrates information from multiple
sensors, planners, and actor components and provides consolidated
information about the state of the world to the same components.
Information is exchanged with a WM at its interfaces, which are
generically categorized into two types: tell and ask (Tenorth and
Beetz, 2013). As described in Section 4, information is added or
modified through the “tell” interfaces and queried through the “ask”
interfaces, as shown in Figure 1.

We argue that storing and sharing information among
components is the main motivation for implementing WMs. More
concretely, we propose that the software engineering principles
of “Design for use,” “Do not repeat yourself,” and “Low coupling,
high cohesion” should guide which states and operations should
be included in a WM, and even whether one is required in the
first place. The aforementioned point also highlights the software
engineering perspective on WMs taken in this paper. However, we
also describe the more recent deep learning perspective on WMs
and show how our design principles apply to and motivate WMs in
a deep learning context also.

There are early (Angelopoulou et al., 1992) and more
recent (Landsiedel et al., 2017) reviews on robotic WMs. The
nomenclature and some of the common concepts of worldmodeling
were presented by Belkin et al. (2012). We consider the main
contributions and added value of this review to be 1) to propose

a terminology for common subcomponents of a WM; 2) to identify
typical properties and design dimensions of WMs, as well as
their underlying rationale; 3) to provide an up-to-date overview
of concrete WMs in robotics, as well as their classification along
the design dimensions identified; and 4) to elucidate principles
and guidelines for design decisions about the organization and
implementation of these components.

An in-depth motivation and a model-based approach of WMs
are provided in the insightful and ongoing “Building Blocks
for the Design of Complicated Systems featuring Situational
Awareness” (Bruyninckx, 2021). Our review provides a software-
engineering perspective and aims to be more concise by focusing on
WMs.

The rest of this review is structured as follows. We first
bootstrap our terminology using the Kalman filter as a simple
and well-known example in Section 2. To provide an intuition of
robotic WMs used in real-world environments, and to demonstrate
the applicability of our terminology to such complex WMs
as well, we introduce two more use cases in Section 3. Based
on that, we elaborate on the main components of a world
model—its boundary, state representations, and operations—in
Sections 4–6, respectively. Using the terminology introduced, we
then conduct case studies and classify 15 works on WMs in
Section 7. We then describe the underlying principles for the
design and implementation of WMs in Section 8 and conclude with
Section 9.

2 World model language
bootstrapping

Before turning to complex robotic WMs, we bootstrap our
terminology using a simple, well-known illustrative example: the

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 2
Model of the Kalman filter illustrated as a WM, consisting of a state
(which holds a mutable x and a constant parameter θ), operations
(using A, B, and H), and a boundary.

Kalman filter (Welch and Bishop, 1995). Kalman filters iteratively
estimate the mutable state x ∈ ℝn by incorporating information
of the control inputs u ∈ ℝl and measurements z ∈ ℝm with the
following model1:

xk+1 = Axk +Buk +w Time updatemodel, (1)

zk =Hxk + v Measurement updatemodel. (2)

Figure 2 reinterprets these formulas in terms of the WM
template in Figure 1.

As a WM, the state, consisting of a mutable x and a
constant parameter θ, is meant to reflect the real world. The
multiplications with the matrices A, B, and H are operations
applied to the state to integrate/extract information. The v and
w could be seen to originate from θ, which is used for the
operations.

The WM boundary is represented by the tell/ask interfaces;
everything inside of it is considered to belong to the WM.
Information can be provided to the WM via the tell interface, while
the ask interface is used to extract information.

Based on the aforementioned analyses, we define the
components of a WM as follows.

Definition 1: A WM is segregated by a boundary and internally
consists of a state and operations.

1 We dropped the subscripts of A, H, w, and v for simplification since the
main purpose is to bootstrap the terminology.

3 Introductory examples of robotic
world models

Having bootstrapped our terminology with the Kalman filter
example, we now apply it to more complex robotic WMs. This
demonstrates that the terminology is applicable to different robotic
WMs. Two systems fromdifferent domains are analyzed to provide a
first intuition of what aWM is in a real robotic system. Section 7 lists
15 case studies using our complete terminologies that are described
in Sections 4–6.

3.1 NeBula system

The NeBula system (Agha et al., 2021) is a framework
for autonomous robotic exploration of unknown extreme
environments. The framework was deployed on a team of
multiple different mobile robots, which participated in the
DARPA Subterranean Challenge2 and completed a task of
reaching, detecting, recognizing, and localizing artifacts in various
subterranean environments. Figure 3 shows a partial depiction
of the architecture; this figure is adapted from Figure 6 from the
study by Agha et al. (2021) according to our WM concept shown in
Figure 1.

The inferred world belief plays the role of the WM in this
framework. It integrates the information acquired through the
perception pipelines and provides relevant information for planning
activities.

The state inside the WM consists of the maps of the
environment as well as the robot pose. Different state
representations are employed depending on the information
to represent; the point clouds and occupancy grids are
used for the geometry, while the graph-based representation
(called the information roadmap) is used for coverage and
traversability.

The simultaneous localization and mapping (SLAM)
components convey a major part of the information to the WM.
After preprocessing the raw sensor inputs and asking themost recent
state from the WM3, the perception components first infer the local
map as well as the robot pose and then propagate the results into the
global scene.The planning components also convey the information
to the WM; they estimate the traversability and the hazard of the
surrounding area based on the most recent map queried from the
WM.

3.2 KnowRob system

KnowRob (Tenorth and Beetz, 2013; Beetz et al., 2018) is a
knowledge processing system for autonomous robots to perform
manipulation tasks. KnowRob not only stores original, high-

2 https://subtchallenge.com/

3 In practice, high-level components of the perception activity contain
reasoning activities, which fall into the category of the “planning” in the
classical concept, as shown in Figure 1. Therefore, in Figure 3, there is a
dataflow from the WM to the perception components via the ask interface.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://subtchallenge.com/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 3
Architecture of the NeBula system [adaptation of Figure 6 from the study by Agha et al. (2021)].

resolution, continuous data but also provides abstracted knowledge
through semantic annotations. The framework has been deployed
on different mobile manipulation robots and enabled them to
perform pick-and-place tasks in indoor environments. Figure 4
shows a partial depiction of its architecture and has been adapted
to our template from Figure 6.1 from the study by Cavallo et al.
(2022).

As a central knowledge processing system, KnowRob maintains
a belief state of the world; i.e., it serves as a WM. It employs the
Resource Description Framework as a representation and stores
data as subject–predicate–object triples.The ask interfaces are called
computables, which are used to answer queries. Queries can ask
not only to extract information from the state but also to compute
new information not stored in the state using an ontology as prior
knowledge.

Using sensor data, the perception framework RoboSherlock
(Beetz et al., 2015) tells new states to the WM based on the
most recent semantic map and the object knowledge. The
interface is triggered by a high-level task description as a
command.

The task executive CRAM (Winkler et al., 2012) and the motion
planner Giskard (Fang et al., 2016) also ask the most recent belief
state, the semantic map, and the object knowledge for planning.
The executed task knowledge is conveyed to the WM, allowing the
system to learn from episodic memories.

4 World model boundary

In Section 3, we demonstrated the applicability of Definition 1
to more complex robotic use cases. Sections 4–6 elaborate on the
concepts of each constituting part of a WM: a boundary, a state, and
operations.

The boundary of a knowledge base is generically defined by two
types of interfaces: tell and ask (Tenorth and Beetz, 2013). The tell
interface is used for providing new information, e.g., experiences
and beliefs based on new sensor data, to a robot's memory,
while the ask interface is used for querying inferred knowledge,
e.g., to enable informed decision making during task execution.
In this section, we first elaborate on these tell/ask interfaces

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 4
Architecture for the REFILLS project, where KnowRob (Tenorth and Beetz, 2013) is used as the WM [adaptation of Figure 6.1 from the study by
Cavallo et al. (2022)].

from the perspective of robotic WMs and argue (in Section 4.3)
that the boundary is not inherent to the system but a design
decision.

4.1 Tell interface

The tell interface is the only way to pass information to the WM.
It defines where and which data can be passed to the WM. It does
not necessarily provide direct access to the state.

Since components can provide information only through the
tell interface, it offers a lot of very different inputs to the WM.
Depending on the design, it may take low-level data such as raw
images or very high-level data such as Planning Domain Definition
Language (PDDL) symbols (Fox and Long, 2003). We identified the
following types of information that are typically passed to the WM
(examples are given in the parentheses):

• Sensor data (images)
• Interpreted sensor data (object poses)
• Planning and simulation data (PDDL symbols)
• Action data (expected outcomes by task execution)
• Data from other knowledge bases (experience representations)

• Data from outside (human operator knowledge, enterprise
management system)

A WM does not necessarily provide all of the aforementioned
information; depending on its requirements, only a subset of them
is usually provided on the tell interface.

It should be noted that the state usually stores only relevant
data abstracted through the tell interface. This implies that not all
information provided on the tell interface can be retrieved again on
the ask interface.

4.2 Ask interface

The ask interface is the only way to obtain information
from the WM. It defines which data can be retrieved from
the WM while not necessarily providing direct access to the
state.

Since components can query information only through
the ask interface, it also provides very different outputs
from the WM. Information that can be retrieved from the
WM includes the following types (examples are given in the
parentheses):

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

• Geometric information (transformations between objects)
• Physical information (load data at an end effector)
• Qualitative information (which objects are on the table?)
• Semantic information (which is “my” cup?)

The ask interface often enables information to be retrieved
that is not directly passed via the tell interface, because the
WM itself can derive new information from what it is told and
has stored in its state by applying operations (see Section 6).
This is already the case for the minimal example of the
Kalman filter, where x can be asked, but only z and u are
told.

4.3 Design dimension of the world model
boundary

When components tell/ask information to/from the WM,
multiple different operations could be combined and applied on
the information along the dataflow (“operations” are explained
in Section 6). Therefore, given a robotic system, there are
numerous ways to draw a line to segregate the operations
within and outside of the WM, as shown in Figure 5. This
means that the tell/ask interface can be defined at any locations,
and where to set them is a design decision of the robot
architecture. Design guidelines for this aspect are discussed in
Section 8.2.

5 State representation in world
models

Within the WM, we make a distinction between the state of the
world and the operations that update this state. This interpretation
is best understood in the context of object-oriented programming
(OOP), where an object has an internal state represented by
its instance variables, which are typically private to avoid direct
access. This internal state is what we refer to as the WM state
in this article. The tell/ask interface defines the public member
functions the WM should implement to provide access to its
state. Within the WM, operations can modify the internal state
(see the gray boxes in Figure 5) but cannot be called directly
from outside the WM, which are, thus, represented by private
member functions. Properties of the WM state are presented in
this section, and those of the WM operations are presented in
Section 6.

5.1 State representation: robot or
environment, concrete or abstract

In mobile robotics, we consider a physical mobile robot
operating in a physical environment4. Together, they constitute the
physical world that the robot has to reflect in its WM.

4 The distinction between a robot and an environment becomes less clear in
smart homes or when using Internet-of-things technology, as part of the
robot's sensing capabilities are delegated to the environment. Nevertheless,

In many WM representations covered in this review, there
is a (partial) separation between the state representation of
the robot itself and its environment. This is possible because
the robot and the environment are physically separated. This
increases reusability, as separating the environment and robot
models means that the latter can be easily reused in different
environments.

The state itself is always virtual in a sense that it is an internal
representation of the real world. However, there is a separation
between the concrete part that reflects the physical reality (e.g., a
cup on a table) and the abstract part that does not (e.g., a grasp
pose for this cup). The design goal of reusability again motivates
this separation; concrete aspects will be valid for different tasks or
scenarios, while some abstract aspects can only be used for specific
cases.

Figure 6 illustrates examples of different parts of the states
according to the robot/environment and concrete/abstract aspects.
A robot with a manipulator whose task is to grasp a cup often
needs tomodel themanipulator, its tool center point (TCP), the cup,
and its grasp. The manipulator is a concrete property of the robot,
whereas the TCP of the manipulator is set abstractly by designers to
make task programming easier. The cup is a concrete object in the
environment, whereas potential grasps for the cup are specific to the
manipulator to perform the task.

Making these distinctions explicit, both conceptually and in
the software, makes WMs more modular and reusable for different
robots, environments, and tasks.

5.2 State representation: permanent or
transient, given or estimated

For all practical purposes in robotics, gravity on Earth can be
assumed to be permanent. Walls in houses generally stay where they
are. Furthermore, for most robots, the length of their rigid body
links will not change5. Assuming that such aspects of the world will
not change, i.e., that they are permanent, has many advantages. It
means that such aspects can be relied on even in different situations
once they are given by designers or estimated by the robots. Once
the gravity on Earth is provided or obtained, the robots on Earth
can always measure the mass of the grasped object from the force
measurement. Once the poses of the walls are obtained, the robots
can always localize themselves even if humans change the layout of
furniture drastically. On the other hand, transient parts of the state
are assumed to potentially change and, thus, must be estimated and
updated.

It is a natural design decision to represent the permanent
and transient aspects as constant parameters and a mutable state

in mobile robotics, there typically is a robot that can be carried out of the
environments. The thing being carried out is what we call the physical robot.
The rest is the physical environment.

5 Note that such properties are assumed to be permanent but hardly ever
are intrinsically so. For instance, we do send robots to other planets and
moons, renovations in houses do take place, and the kinematics of your
robot may change after a hardware upgrade. It depends on the domain
which assumptions one is willing to make about aspects that are permanent
in the real world.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 5
Two examples of different WM boundaries (dashed green lines) that could be defined for a WM.

FIGURE 6
Examples of parts of the state according to the terminologies robot/environment and concrete/abstract.

within the WM, respectively. However, the mutable state could also
represent variables that are assumed permanent. This is typically
the case if those values are calculated during the runtime of the
robot. If, for instance, a robot navigating a room creates a map
of it at runtime, the poses of the walls should be part of the
mutable state; even though they are assumed to be permanent in
the real world, their estimated values can be updated with better
estimates as the robot progresses. In such cases, the mutable state
should have an internal structure to distinguish the permanent and
transient aspects so that the robot can exploit the aforementioned
advantages.

For almost all robotics applications, data are given as prior
knowledge to the robot WM during its initialization or during the
operation. For instance, a mobile robot might be given an initial
map before it starts navigating. Such aspects that do not need to be
estimated and, instead, are determined offline can be provided to
the robot, e.g., in a static file. On the other hand, it is quite likely,
especially for autonomous robots, that they need to estimate the
(mutable) state of the world by themselves. This is crucial for the
robots to operate in dynamic environments where objects move or
in partially unknown environments where only a limited amount of
information can be given a priori.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 7
RoboCup (Kitano et al., 1997) examples for parts of the state according to the terminologies permanent/transient in the real world, constant
parameters/mutable state in the WM, and given as prior knowledge or estimated at runtime.

Figure 7 illustrates examples of different aspects of the
representation categorized according to the concepts and
terminologies introduced so far. A robot whose task is to play
football in any football field—as in RoboCup (Kitano et al.,
1997)—often needs to model the field and the pose of the ball.
Since all football fields share a general rectangular layout with two
goals on either side, such permanent knowledge is provided by the
designers. If the actual dimensions of the field to be played on are
known, they can be given and encoded as constant parameters. If
the exact dimensions are not known beforehand, an initial value can
be provided as part of the mutable state, which is then refined and
updated through estimation. The pose of the ball must be part of the
mutable state and continually estimated.

5.3 State representation: time

As discussed in Section 5.2, the mutable state of the WM is
expected to change over time.Therefore, in this section, we highlight
time as an important dimension of the mutable state6. It is crucial to
distinguish two separate types of time here: 1) the real-world time,
which refers to real-world events or changes and 2) the belief time,
at which the robot holds a certain belief as part of its WM state. A
state can model these two time concepts independently. Modeling
time is often useful for error analysis, recovery, and learning-based
automatic improvements.

To describe how these two time concepts are different and can be
modeled, let us consider a mobile manipulation task for a robot with
navigation and manipulation capabilities (see the green rectangle
on the top of Figures 8–11). The robot is first initialized next to an
object placed on a table (at ti). Then, the robot grasps the object
with the gripper (at tg) and navigates to a target location. However,
during navigation, the object slips and is dropped on the floor (at
tl). The robot does not observe this accident, and as a result, the
placing task fails (at tp). The robot has two opportunities to provide
information to the WM: when the robot grasps the object and when

6 Since the constant parameters never change during the robot operation, the
design dimension time is by nature not applicable to the parameters.

the robot tries to place the object. The former is provided by an
action component that executes the grasping skill, and the latter is
provided by a perception component that detects an object in the
gripper.

5.3.1 State without time
We first highlight that a WM does not always need to model

time. For many use cases, it is sufficient to have a state that only
holds the most recent estimate of its belief about each relevant fact
of the real world. In the example given in Figure 8, the belief about
the object location changes over time when new information is
provided, but only the most recent belief is stored and maintained.
Although it simplifies the model, it loses the past information, and
thus, it could not guess the object location at tp anymore.

5.3.2 State with belief time
When the state changes, it is possible to model when the change

in the belief happens. In the example given in Figure 9, the state
changes similarly to Figure 8, but each belief stored is associatedwith
time. This concept enables the state to model when the robot thought
about the real world. Due to this advantage, the robot in this example
could query its past belief, e.g., “when the robot held a belief at tl,
where was the object then?” (the answer is “in the gripper”).

5.3.3 State with real-world time
Another time concept is about changes in the real world. In

the example given in Figure 10, the state stores the information
reflecting the concrete events; the object is estimated to be on the
table in [ti, tg] and at somewhere along the robot trajectory in [tg .
This concept enables the state to modelwhen the real world changed.
By taking this advantage, for example, poses of a constantly moving
object can be estimated by inter/extrapolation.

5.3.4 State with both belief and real-world time
Since these two time concepts are independent of each other,

they could be modeled together, as shown in Figure 11. In this case,
the state keeps its belief at different moments, each of which models
the time in the real world. To understand this easier, it should be
noted that changes in the state over time are additionally modeled
compared to Figure 10; for instance, the most recent belief given

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 8
WM state without a time concept.

in Figure 11 matches the state given in Figure 10. The combination
of these two time concepts enables the WM to answer complicated
questions, e.g., “when the robot held a belief at tl, where was the
object at tg, and is that belief still up-to-date?” (the answer is “the
object was believed to be in the gripper but it was updated afterward
at tp, and it is now actually believed to be somewhere along the robot
trajectory”).

5.3.5 Literature analyses
Time is not represented in the studies by Nilsson (1984),

Lomas et al. (2011), Leidner et al. (2014), Milliez et al. (2014),
Dömel et al. (2017), and Lehner et al. (2018). Some WMs such as
those studied by Triggs and Cameron (1991), Blumenthal et al.
(2013), Foote (2013), Tenorth and Beetz (2013), Beetz et al. (2018),
Schuster et al. (2018), Schuster (2019), and Agha et al. (2021)
represent time in the state. However, the conceptual distinction of
the belief time and the real-world time is not always considered
explicitly. To the best of our knowledge, no WM in the literature
employs both the belief and the real-world time together. The
concepts introduced in this section would help WM designers be
more conscious of and consistent with which time aspects they
implement in the state.

6 World model operations

While the previous section described the design dimensions of
theWMstate, this section does so for the operations thatmanipulate
the state. The input arguments of an operation are information
from the tell interface and/or the state itself and/or the output of
other operations; examples were previously given in Figure 5 in gray.
The output of an operation is returned through the ask interface,
included in the state, or passed as an input to another operation (see
also Figure 5).

General classes of operations defined in this section are
used in Section 7 to analyze different WM implementations
and in Section 8.2.2 to discuss the rigorous design of
WMs.

6.1 Basic operations

Based on the aforementioned generic definition, a set of basic
operations can be defined.All operations can be categorized to either
one of them or a combination of them.

6.1.1 Add
First, we introduce a set of operations that can write into the

state7. The add operation adds input data to the state. Therefore,
after executing this operation, the input is part of the new state,
meaning that this operation implements a direct write-access to
the state. It should be noted that this is the minimal requirement
to the add operation. Depending on the design of the WM, the
add operation might be more complex. For instance, sanity-check
operations might be integrated to guarantee that the new state
conforms to certain rules (e.g., there must be no redundancy in the
state).

6.1.2 Remove
The remove operation removes input data from the state. After

execution of this operation, the data are deleted from the state and
not contained in there anymore. Thus, as the add operation does,
the remove operation also has a direct write-access to the state. It
should be noted that the remove operation might further modify

7 Note that operations can only write into the mutable state since the constant
parameters cannot be changed as discussed in Section 5.2.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 9
WM state with a time concept of its belief. The beliefs are stored in the state associated with time.

other parts of the state than the input depending on the design. For
example, if the state is represented as a tree and the remove operation
is applied to a node, it might remove all children of the node as
well.

6.1.3 Modify
The modify operation replaces previously stored information

with new information. This is technically equivalent to the
combination of the add and remove operations. Semantically,
however, the modification of a world state is more than a
combination of the add and remove operations. Since the state
reflects the real world, a modification of the state implies that either
the world has changed or the belief about the world has been
incorrect.

Depending on the design, the modify operation might be the
only operation which is allowed to write to the world state. For
instance, a controller usually has a vector of a constant dimension
as a state. All measurements (inputs) modify the state by replacing
outdated measurements and do not allow the removal/addition of
an element from/to the vector.

6.1.4 Get
From here, we introduce a set of operations that can read from

the state8.The get operation returns a subset of the state as an output.
Therefore, this operation implements a direct read-access to the state
without modifying it.

6.1.5 Abstract
The abstract operation reduces information from an input

and/or the state to an output by abstracting the information. Since

8 Note that operations can read from both the mutable state and the constant
parameters.

information is lost through this operation, it is not possible to
reconstruct the original information from the result.

For example, we consider the geometric relation between
two objects; it is possible to abstract a qualitative relation,
e.g., on, as an output, using their pose transformation as an
input and a threshold of the distance as a parameter. However,
even with the information that one object is on another, it
is not possible to reconstruct the pose transformation between
them.

6.1.6 Transform
The transform operation transforms an input and/or the state

to an output. The difference to the abstract operation is that no
information is lost, and thus, there exists an inverse operation. For
example, we consider a situation where a robot localizes an object
pose with a movable camera, and we want to obtain the object pose
with respect to a robot base. To calculate it, a transform operation can
be used based on the object pose relative to the camera as an input
and the pose of the camera relative to the robot base from the state.
The transform operation is not limited to geometric transformations;
a unit conversion (e.g., to transform data from millimeter to meter)
is another example.

6.2 Compound operations

If a WM chooses its boundary close to its state, the
aforementioned basic operations are sufficient to implement the
tell/ask interface. For many WMs, however, compound operations
are necessary to integrate the information from the tell interface
into the WM state. Likewise, compound operations enable the ask
interface to retrieve information that requires interpretation based
on the WM state.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 10
WM state with a time concept of the real world. The belief, modeling changes in the real world with time, changes over time, but only the most recent
belief at tp is stored in the state and shown in the figure.

These compound operations can be composed of basic
operations. The basic operations can be chained to allow a more
complex interpretation of the data (pipeline concept). With this
concept, the output of a basic operation is used as an input of the
next operation. Instead of piping the data through operations, basic
operations can also be used to make decisions (decider concept). In
this case, the output of the basic operation is used not to modify the
incoming data but to determine how to integrate them or how to
extract further information. In the following, we show two examples
of such compound operations, one on the tell interface and the other
on the ask interface.

Tell interface—object detection with a camera:The first example
is to integrate new information of the object detection (see
Figure 12A). When a perception component estimates a pose of
an object with a camera, the pose is first estimated in the camera
coordinate frame and given to the tell interface. This information
could be interpreted either 1) as a detection of a new object instance
or 2) as a refinement of the pose of a known object instance.
This decision can be made, e.g., by calculating if the distance to
the nearest known object exceeds a certain threshold. Therefore,
the basic transform and abstract operations are piped through,
and then, either the add or modify operations are decided to be
triggered.

Ask interface—checking if the cup is visible: Another example
is to query if a unique, specific cup is visible to the robot or not
(see Figure 12B). The computation to answer this query could be a
sequence of steps with increasing computational effort. First of all,
it checks if the cup already exists in the state. If yes, the pose of the
cup needs to be checked if it is within the field of view of the camera
(using the transform operation beforehand). If this is also yes, the
last step is to check if the line of sight to the cup is occluded by other
objects or not. If either one of the aforementioned checks (using
the abstract operations) returns “no,” the following (computationally

expensive) operations can be skipped and could answer “no” at the
ask interface.

7 Case studies

The two use cases in Section 3 aimed at providing concrete
examples to illustrate what a robotic WM is. This section
now interprets 15 WM implementations—including the two
aforementioned—by applying the terminology introduced so far.
Our aims are to: 1) show that our concepts are general enough to
be applicable to WMs from very different domains; 2) motivate the
need for a common terminology as the terminologies used now
are different in each work; 3) provide an overview of four decades
of work on robotic world models; and 4) classify these works (see
Table 1).

7.1 Shakey the robot

Already in the first mobile, autonomous robot, Shakey (Nilsson,
1984), the WM was a central component. Based on this WM, the
robot could plan its actions independently and represent the state of
itself and its environment.

7.1.1 WM boundary
The WM boundaries are defined by four functions. On the

tell interface, there are three functions, ASSERT, DELETE, and
REPLACE. The ask interface is implemented by the function
FETCH. The interfaces of the Shakey WM have variable
distance to the WM state. Some information can be added
directly to the state, e.g., a robot position, but for others,
compound operations are necessary, e.g., locations of movable
objects.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 11
WM state with a time concept of its belief and the real world.

7.1.2 State representation
In Shakey, the state is represented by formulas of first-order

logic. The state, thus, consists of statements which link entities from
five different entity classes (Faces, Doors, Rooms, Objects,
and Robot) to other entities or values via various predicates. The
applicable predicates depend on the entity class. The state models
the environment as well as the robot information, and it models
concrete as well as abstract information (e.g., problematic locations).
The state consists of parameters and mutable states that are either
given or estimated by the system. The state does not represent
time.

7.1.3 Operations
The tell/ask interface is similar to the basic operations add,

remove, modify, and get. For some information, these can also be
used directly to implement the interface. However, in addition to
the state, there are axioms that define the operations on the state.
For example, adding a location for an object can either add a new
statement to the state, or if a location is already stored, modify the
existing one, since the rule exists that an object can only be at

one location. For some parts of the state, the interface is, therefore,
realized by compound operations.

7.2 Oxford World Model

The Oxford World Model (Triggs and Cameron, 1991) is
proposed as a geometric database of an autonomous navigation
robot for a factory environment.

7.2.1 WM boundary
One of the main motivations of the Oxford World Model is to

encourage a clean and modular internal software architecture where
different components communicate via theWM.Therefore, theWM
boundary is set so that the WM provides a uniform inter-module
interface.

7.2.2 State representation
The following types of information are stored in the state: a)

a factory layout and route maps; b) object positions and their

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 12
Examples of compound operations. (A) Integrating an object detection result into the state via the tell interface. (B) Querying if a unique, specific cup is
visible to the robot through the ask interface.

3D models; c) sensor features; d) caches of local or temporary
data; and e) tasks and scheduling information. It represents the
environment aspect for both the concrete part (such as poses and
3D models) and the abstract part (such as sensor features). The
factory layout and route maps are permanent but stored into the
state together with other information. Each type of these data is
attached with a common header containing a timestamp. Although
this time is described to model a “time-of-last-modification” of
objects, it is not explicit if this models belief time or real-world
time.

7.2.3 Operations
Basic operations such as adding and removing objects are

executed via indices. In addition, generalized compound operations
are provided, i.e., to perform a specific modification on every object
having the same object type, or to get objects satisfying a specific
spatial condition.

7.3 ROS TF

The Robot Operating System Transform Library (ROS TF)
(Foote, 2013) provides a standard way of maintaining coordinate
frames and transforming data on the open-sourced middleware
ROS (Quigley et al., 2009). The main motivation is to free the
programmers from the necessity of calculating the transformation
between frames.

7.3.1 WM boundary
Due to its general, low-level scope as a use case, the

WM boundary is set around the state. Operations needed for

transform computations are included within the WM boundary,
and many components require such a calculation interface with
the ROS TF. More complex operations (such as how to utilize
obtained transforms) are expected to be implemented on external
components telling/asking the WM.

7.3.2 State representation
The ROS TF uses a tree structure; nodes represent a frame (a

coordinate system), and edges represent a 6-degrees of freedom
(DOF) relative pose. Since the main purpose is to calculate
the transformations between frames, they do not distinguish the
robot/environment, concrete/abstract aspects explicitly.

For efficiency, it distinguishes the mutable state and constant
parameters by using different representations, /tf and /tf_

static, respectively. While the /tf maintains transformations
with the real-world timestamps and represent changes in the real
world, the /tf_static expects that any transform is static and
considered to be valid at any time.

7.3.3 Operations
The basic get and add operations, as well as the transform

operation, are implemented. For sending (adding) information,
the sendTransform operation is used. For querying (getting)
a transformation between two frames, the lookupTransform
operation is used, in which the transform operations are chained.
Using the spherical linear interpolation (SLERP) algorithm
(Shoemake, 1985) (for orientations) and a linear inter/extrapolation
(for positions), lookupTransform approximates the changes of
frames given a timestamp.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

TABLE 1 Classification of representative robotic worldmodels.

World
models

System
coupling

Interface
types

Robot in a
state

Permanent
aspects in
a state

Model time Complex
operations

Perspective Robot type

Shakey the
robot (Nilsson,
1984)

Low Few Yes Yes No No System Mobile robot

Oxford World
Model (Triggs
and Cameron,
1991)

Low Few No No No No Framework Mobile
manipulator

ROS TF
(Foote, 2013)

High Few No Yes Yes No Framework General robot

AIMM system
(Dömel et al.,
2017)

High Many Yes No No Yes System Mobile
manipulator

LRU1
(Schuster et al.,
2020,
Schuster et al.,
2018, Schuster,
2019)

High Few Yes Yes Yes Yes System Mobile robot

LRU2
(Lehner et al.,
2018)

High Many Yes Yes Yes Yes System Mobile
manipulator

NeBula system
(Agha et al.,
2021)

High Few Yes Yes Yes Yes System Mobile robot

KnowRob
(Tenorth and
Beetz, 2013,
Beetz et al.,
2018)

High Many Yes Yes Yes Yes Framework Service robot

Rollin' Justin
(Leidner et al.,
2014;
Leidner et al.,
2012,
Bauer et al.,
2018)

High Many Yes Yes No No System Mobile
manipulator

Robot Scene
Graph
(Blumenthal et al.,
2013)

Low Few No Yes Yes Yes Framework Mobile
manipulator

Multi-robot
teams
(Roth et al.,
2003)

Low Few Yes No Yes No System Mobile robot

SPARK
Systems
(Lehner et al.,
2018,
Warnier et al.,
2012)

Low Few Yes No No Yes Framework Service robot

(Continued on the following page)

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

TABLE 1 (Continued) Classification of representative robotic worldmodels.

World
models

System
coupling

Interface
types

Robot in a
state

Permanent
aspects in
a state

Model time Complex
operations

Perspective Robot type

DL: World
Models (Ha
and
Schmidhuber,
2018)

Low Few Yes No No No Framework Agent in
computer
games

DL:
DayDreamer
(Wu et al.,
2022)

Low Few Yes No No No Framework Mobile or
manipulation
robot

System coupling means how many components communicate with the WM. Interface types are considered to be many if a wide range of different, heterogeneous data are provided/received at
the tell/ask interfaces. Perspective types categorize the referenced work by a perspective they describe the WM from, i.e., as a component within a system or as a framework.

7.4 AIMM system

DLR's Autonomous Industrial Mobile Manipulator (AIMM)
(Dömel et al., 2017) focuses on performing transportation tasks
autonomously in partially unstructured factory environments with
its mobile platform and manipulator.

7.4.1 WM boundary
The AIMM employs a navigation system, an object detector,

a motion planner, and a flow-control system. They must share
the world state, and thus, the WM boundary can be drawn
between them. The object detector provides information about
the pose, category, size, and detection quality of objects at the
tell interface. The motion planner, on the other hand, queries
information about rigid body kinematics such as free space and
collision at the ask interface. The flow-control system exchanges
information with the WM at both the tell and ask interfaces. The
ask interface is typically used for making decisions depending on
the current state. Once the flow-control system executes a skill, the
tell interface is used to reflect the high-level effects expected by the
execution.

7.4.2 State representation
The representation focuses on providing not a detailed

geometric description but a topological-level description of the
relation between different types of objects. For this purpose, the
WM state employs a tree representation. Each node represents
an object with labels specifying its types, and edges connecting
nodes represent a 6-DOF transformation9. Nodes representing
the robot have a type Robot, which are distinguished from the
environment aspects. The object ownership information (such as
which object is grasped by the manipulator), which is abstract, is
modeled by edges constructing the parent–child relations. Other
abstract aspects, e.g., grasps and approaches for manipulation, are
modeled as child nodes of a concrete node with a type RigidBody.

9 Although this is similar to the ROS TF (see Section 7.3), the important
difference to the ROS TF is that this WM aims to represent the world
in a quasi-static, object-based manner with a higher level of abstraction.

Since components require only the most recent state, time is not
modeled.

7.4.3 Operations
There are basic operations having the write access to the

state, such as to add a new node, remove an existing node
(and its children), modify the property of a node or the 6-
DOF pose of an edge, and to reassign a node to another
node.

To have the read access to the state, there are not only basic
operations to simply get a node (or its properties) but also compound
operations. One of them is to query a pair of nodes satisfying certain
conditions by utilizing the tree structure. By specifying types and/or
properties of nodes as well as a maximum/minimum number of
hops between them, only a relevant subset of the state is effectively
extracted. For instance, the motion planner queries only Robot
and RigidBody objects under the branch of the current scene
node.

7.5 LRU1

The core WM on DLR's Lightweight Rover Unit 1 (LRU1) robot
(Schuster et al., 2020) is the multi-layer and multi-robot SLAM
system (Schuster et al., 2018; Schuster, 2019).

7.5.1 WM boundary
The WM boundary can be drawn on the input side between

typically stateless low-level perception components, such as stereo
matching, and the modules of the SLAM system itself that contain
the state related to local and global localization and mapping, such
as the keyframes of visual odometry, the state vector of a local
reference filter, the pose graph for global optimization, the local
obstaclemaps for navigation, and the global 3Dmaps for exploration
planning and multi-agent coordination. Thereby, the SLAM WM
receives preprocessed sensor data from proprioceptive sensors such
as inertial measurement units (IMUs) and exteroceptive sensors
such as stereo cameras via its tell interface. On the output side,
the WM boundary can be drawn between the SLAM system
providing pose and map information via its ask interface and

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

the typically higher-level components consuming these, such as
path planning, exploration planning, mission coordination, or
visualization modules.

7.5.2 State representation
Sensor properties, such as noise models, sensor calibrations,

and certain environment characteristics, such as the local gravity
constant, are assumed to be permanent in the real world during
the system runtime and, thus, provided as parameters to the WM.
The state variables contain information about the concrete aspects
of the world, such as robot poses and 3D geometry, as well as
abstract annotations, such as submap poses, which are mainly
used for SLAM-internal purposes. Real-world time is used in the
local estimation both for sensor data acquisition timestamps as
well as state prediction timestamps, which are important to relate
measurements and estimates to events in the environment and to
the measurements and estimates by other robots. As the SLAM
is concerned with moving agents, non-static poses are always
accompanied by real-world timestamps. For the resulting maps,
timestamps are, however, not necessarily required as the consuming
modules are only interested in the most up-to-date model of the
environment available.

7.5.3 Operations
Most complex operations integratingmeasurements or estimates

into the state variables are triggered by the tell interface. In contrast,
most operations triggered by the ask interface are simple get
operations to return parts of the state, accompanied by minor
abstractions and transformations. However, expensive complex
computations, such as global map compositions, could also be
triggered on demand to abstract or/and transform state variables
and modify caches for intermediate results. Perception data are
typically pushed into the WM, and the WM itself not only pushes
out new state estimates (e.g., poses and maps) to consumers
but also provides pull-based interfaces, e.g., in inter-robot
communication to provide missing data to other agents demanding
them.

7.6 LRU2

DLR's Lightweight Rover Unit 2 (LRU2) robot (Schuster et al.,
2017; Schuster et al., 2020), being a mobile manipulator, uses
two separate WMs, one for navigation, similar to the LRU1
(see Section 7.5), and an additional one to support mobile
manipulation tasks, similar to the AIMM (see Section 7.4). The
information required for manipulation tasks are substantially
different from that used by navigation and exploration components.
Therefore, following the “Low coupling, high cohesion” principle
(see Section 8.1.3) as well as the guideline given in Section 8.2.1.2,
a WM focusing on quasi-static scene representation is additionally
employed. Regardless of the difference of the application domain
(from the factory automation to the planetary exploration), the
AIMMWMcan be employed with ease due to its generally designed
boundary.

There is a unique data exchange on the WM boundary between
these two WMs. The navigation WM queries the real-world
dynamics of manipulated objects at the ask interface of the AIMM

WM. For example, when LRU2 manipulates a box with fiducial
markers, the navigation WM requires to be informed of the changes
accordingly since objects with themarkers are used as landmarks for
the SLAM system.

7.7 NeBula system

As described in Section 3, NeBula is an autonomy solution
for navigation, mapping, and exploration of unknown extreme
environments (Agha et al., 2021).

7.7.1 WM boundary
The purpose of the system is similar to the LRU1 (see

Section 7.5), and thus, theWMalso hasmany similarities, which can
also be implied by the “Design for use” principle (see Section 8.1.1).
Similar to the LRU1, the WM boundary can be drawn at the output
of the low-level, stateless sensor-fusion component HeRO and at the
input of high-level planning components.

7.7.2 State representation
The state models belief over the internal robot state such as its

pose, as well as the external surrounding environment state such as
maps and hazards. The state is an abstracted representation of not
only spatial information but also temporal information. This allows
formaintaining probability distributions over various state domains.
As a unique representation of this system, the state includes the
hierarchical belief representation called the Information Roadmap
(IRM) for making decisions on where to explore, taking uncertainty
into account. The IRM is a graph representation containing concrete
information such as occupancy and abstract information such as
coverage and traversal risks.

7.7.3 Operations
Similar to the LRU1, complex operations are mostly for

integrating inputs from the odometry source and perception results
(such as loop closures) at the tell interface. As one of the compound
operations, factor graph optimization employs a method to identify
and discard incorrect loop closures that can arise while working in
environments with poor perceptual conditions. At the ask interface,
the operations are mostly basic ones to get part of the information
from the state.

7.8 KnowRob system

As described in Section 3, KnowRob is a knowledge processing
system specifically designed for autonomous robots to perform
manipulation tasks in various environments (Tenorth and
Beetz, 2013; Beetz et al., 2018). Its primary function is to
maintain a belief state of the world, serving as a WM that
helps the robot understand and interact with its surroundings.
It features a modular architecture that interfaces components
such as the perception framework RoboSherlock (Beetz et al.,
2015; Bálint-Benczédi et al., 2019), the task executive CRAM
(Beetz et al., 2010), and the motion planner Giskard (Fang et al.,
2016).

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

7.8.1 WM boundary
The WM boundary of KnowRob is not tightly confined around

the belief state. Instead, it encompasses various kinds of state
representations and operations that interact with the belief state.
Information can be asserted through tell interfaces to the belief
state from different components such as RoboSherlock (Beetz et al.,
2015; Bálint-Benczédi et al., 2019) or CRAM (Beetz et al., 2010).
The ask interfaces are also queried by RoboSherlock (Beetz et al.,
2015; Bálint-Benczédi et al., 2019), CRAM (Beetz et al., 2010), and
Giskard (Fang et al., 2016).

7.8.2 State representation
KnowRob predominantly employs a sophisticated symbolic and

semantic representation of the belief state, which encompasses
both the robot and its environment in a cohesive manner. The
semantic concepts of ontology can be regarded as parameters, while
the instantiated data within the belief state can be considered
mutable. Moreover, time plays a significant role, particularly in
the context of episodic memory knowledge. However, no explicit
distinction is made between the real-world occurrence timestamps
and the robot's belief update timestamps. Additionally, the belief state
does not discriminate between concrete and abstract information
explicitly, but both representations are collectively represented in
the knowledge graph. Nonetheless, the system features a component
that primarily focuses on symbolic abstract data, as well as an
inner WM that represents the concrete state through a physics
simulation.

7.8.3 Operations
On both the tell and ask interfaces, operations are used to

query the belief state and assert information to it. The operations
that query the knowledge base range from basic operations to
compound ones, depending on the reasoner (ProLog, SPARQL, …)
used. Additionally, further compound operations are implemented as
computables that can query the belief state.

7.9 Rollin' Justin

The WM of the humanoid robot Rollin' Justin serves as
a fundamental element in the hybrid planning and reasoning
methodology, as detailed by Leidner et al. (2014).

7.9.1 WM boundary
The WM boundary for both the tell and ask interfaces can be

tightly drawn close to the world state. For example, the localization
component updating the robot's position within the world state
based on a pre-computed environmental map communicates
through the tell interface. Another perception component leverages
fiducial markers to adjust the geometric pose of detected objects
via the tell interface during execution. The hybrid planner functions
as both a planning and acting module, utilizing the tell interface
to modify the symbolic state representation during execution while
also querying via the ask interface the current symbolic world state
for task planning purposes.Themotion planner similarly queries via
the ask interface the geometric world state, thus enabling the hybrid
planning approach.

7.9.2 State representation
The state representation adopts an object-centric perspective

of the environment, associating both geometric and symbolic
information with each object. Within the hybrid planning approach
implemented on Rollin' Justin, PDDL predicates are necessary for
high-level task planning, while the geometric state representation
facilitates geometric planning. The object database (Leidner et al.,
2012; Leidner, 2017) serves as a knowledge repository containing
information on object affordances and appearances, embodying
a combination of assumed permanent parameters in the form of
an object taxonomy and transient, mutable state, such as object-
specific abstract grasp frames. The world representation component
(Leidner, 2017) comprises the mutable state variables and is
instantiated from this knowledge.

7.9.3 Operations
State information access relies primarily on basic operations.

The aforementioned components directly add, remove, or modify
both geometric and symbolic state representations. Within
the world representation component, geometric and symbolic
representations are modeled independently. However, various
external approaches exist to ensure consistency between these
representations (Bauer et al., 2018; Bauer et al., 2020; Lay et al.,
2022).

7.10 Robot Scene Graph world model

Blumenthal et al. (2013) proposed a Robot Scene Graph (RSG)
WM as a central, complete geometrical 3D representation of
autonomous robots.

7.10.1 WM boundary
The goal of this WM is to centralize knowledge from the

planning, perception, control, and coordination components. The
WM boundary is set quite away from the state. As described in
the following sections, the WM takes raw sensor data at the tell
interface and caches intermediate data. On the ask interface, for
instance, components can query collision models of the entire
scene.

7.10.2 State representation
The state uses a directed acyclic graph (DAG) to represent a

full 3D scene. In addition to a unique ID and a list of attributes
(which are abstract), each node holds a bounding collision geometry
to represent the concrete, environment aspects. Any geometric data
are assumed to be permanent and stored as parameters. Poses are
represented not by the edges but by nodes called transform.
Since these transforms tend to vary over time, each transform node
stores its data with associated timestamps to represent the real-world
time. The time concept is utilized for operations for tracking and
prediction.

The state stores not only the final resulting data but also raw
sensor data and intermediate data created by operations.

7.10.3 Operations
The unique IDs are used for providing basic operations such as

setData to add information and getData to get information.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

As an example of compound operations, the RSG WM provides an
operation to calculate spatial information. Given a starting node and
a targeted node, the operation queries a path connecting these two
nodes. Based on the transform nodes along the path, it connects
transform operations in a pipeline manner. Since each node can
have multiple parent nodes, it is possible that multiple paths are
discovered. In this case, different policies could be employed, e.g.,
either to use the path containing the most recent timestamp or to
use semantic tags to decide a most reliable path.

7.11 World model for multi-robot teams

Roth et al. (2003) proposed a robotic WM for a team of robots
under high communication latency. Since the application domain
is to let the team of robots play soccer in RoboCup (Kitano et al.,
1997), the WM is quite specific to this domain. Nevertheless, it still
addresses unique challenges common to any dynamic environments
for a multi-robot setup.

7.11.1 WM boundary
The WM takes two sources of information at the tell interface:

vision and communication. The vision component detects all
relevant objects in the world by their colors and produces
information about pose in the local coordinate frame of the robot.
The communication is possible but with only limited bandwidth
and high latency. Therefore, the robots neither synchronize data
streams nor have a centralized external server, and instead, they
communicate only relevant data on an as-needed basis. At the ask
interface, planning components query information for decision-
making activities.

7.11.2 State representation
Each robot maintains its individual world state and a global

world state. The individual one contains the robot, concrete aspects
such as the robot's position and heading, as well as the environment,
concrete aspects such as positions of teammates and opponents.
As parameters, an a priori map of the field is given initially and
utilized for localizing the robot.The global world state consists of the
environment, concrete aspects such as the location of the teammates
and the ball, as well as the environment, abstract aspects such as if a
robot is the goal keeper and if a robot saw the ball.

7.11.3 Operations
As in the study by Stulp et al. (2010), the individual state is

updated by three different policies: either from vision information,
from communicated information, or combination of both. The
updates to the location of the robot and the opponents come directly
from the vision information. The location of the teammates is given
by the communicated information. The ball position is estimated by
using both sets of information via a Kalman filter.

7.12 SPARK system

SPAtial Reasoning and Knowledge (SPARK) (Milliez et al.,
2014) is aWM thatmaintains a state of the world to enable a robot to
plan and act, especially collaborating with human workers. The goal

is to generate symbolic facts from the geometric state representation,
allowing for the creation of collaborative plans and generation of
efficient dialog.

7.12.1 WM boundary
The WM gathers geometric information from perception

components at the tell interface and provides symbolic information
about the robot's belief about human beliefs at the ask interface. The
symbolic information is utilized by the human-aware symbolic task
planner and the execution controller (Warnier et al., 2012).

7.12.2 State representation
In the state, it maintains the robot pose, the quasi-static objects

in the environment, and the positions of humans including their
hands, head, and shoulders. The state is mostly concerned with the
concrete aspects, and onlyminor abstract features are represented for
checking the identity of humans and objects. No time is modeled,
and the state assumes that the most recent belief holds true if no
further information is available.

7.12.3 Operations
There are several complex operations employed in SPARK.

The first example is to track and manage object locations in the
environment. Using the decider concept, it combines basic operations
and eithermodifies the pose of the object, removes the object from the
state, or keeps the statewithout any change. An important compound
operation is to estimate human beliefs, e.g., to compute the visibility
and reachability of an object from a human perspective.

7.13 Deep learning: introducing world
models

The term “world model” was first introduced to the deep
learning community by Ha and Schmidhuber (2018), where the
WM refers to a compressed spatial and temporal representation
of the environment. The work focuses on learning latent spaces as
abstractions of the input sensor space so that it can be used as an
internal simulator, which builds on very early work on learning such
models (Schmidhuber, 1990).

7.13.1 WM boundary
In the architecture proposed by Ha and Schmidhuber (2018),

the world model boundary can be drawn around the vision (V) and
the memory (M) networks. The V network serves as a gateway for
sensory input, consuming RGB images, which can be considered the
tell interface. The M network takes as input the embeddings from
the V network as well as the actions from the control (C) network.
Since the world model boundary in their paper is drawn around the
V and M networks, this propagation of actions from the C network
back to the M network can also be considered a tell interface. The
embeddings from both the V and the M network serve as input to
the C network, and one can interpret this as the ask interface.

7.13.2 State representation
The state consists of the network embeddings of both the V and

M networks and is mutable.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

7.13.3 Operations
Both the V and M networks can be viewed as operations. The V

network can be interpreted as an operation that abstracts the input
3D image into a latent state representation. Another abstraction
happens in the recurrent structure of the M network.

7.14 Deep learning: DayDreamer

Wu et al. (2022) introduced aWMthat learns a forwardmodel of
the environment, predicting the environment dynamics. The neural
network is trained based on a replay buffer of past sensory inputs to
the architecture.

7.14.1 WM boundary
The boundary can be drawn tightly around the neural network

where sensory information such as RGB, depth, proprioceptive joint
readings, and force sensor information are passed as input to the
WM. This sensory input is passed to an encoder network which can
be viewed as a tell interface.The actor–critic algorithm learns a policy
using the latent representation of the encoder network provided
through a ask interface. There is another ask interface in the form
of a decoder network that decodes the same latent representation to
human-readable information.

7.14.2 State representation
The state representation is represented as the latent encoding of

sensory information and predictions from previous states based on
the learned forward model. Therefore, the state is mutable.

7.14.3 Operations
The different components in the neural network architecture

can be interpreted as operations. The encoder network abstracts
the sensory input and adds information to the latent state
representation. The dynamic network acts as a complex operation
that applies kind of a projection, i.e., the forward model to the
latent state representation, and the reward network uses the latent
state representation to predict future rewards. The encoder network
operates as an abstraction, taking the sensory input and adding
to the latent state representation. Acting as another operation, the
dynamic network performs an additional abstraction in the form
of a projection to future dynamics of the environment. Finally, the
reward network adds an additional layer of abstraction to the latent
state representation to forecast future rewards.

7.15 Deep learning: vision

Another recent interpretation of the “worldmodel” was given by
LeCun (Author anonymous, 2022; LeCun, 2022) in a “proposal for a
modular, configurable architecture for autonomous intelligence.” It
should be noted that this work presents a vision for modularization
of deep learning modules for autonomous machine intelligence,
which has not been implemented. We include it nevertheless, as it
highlights a trend toward the formalization of WMs, as shown in
Figure 1.

The WM is one of the six main modules of a configurable
architecture for autonomous intelligence. The WM “is a kind of

simulator of the part of the world relevant to the task at hand.”
LeCun, thus, emphasized the use of WMs as internal simulators
more than using them to reflect the actual state of the outside world.
Indeed, the state itself is not stored in the world model module
but in a module called “short-term memory.” In our terminology,
the “short-term memory” would rather be included in the WM
boundary.

8 Discussion: world model design

As highlighted by the case studies, the design space for WMs
is huge. This raises many practical questions for their design
and implementation. Which types of queries will the planning
components need in order to generate their plans? Which aspects of
the world are to be considered transient or permanent, and which of
the latter dowe know in advance? Should derived intermediate states
be cached any time new information is provided or only when a
query is made that requires the update? What should be the internal
organization of the state? A list, a tree, a relational database, or an
ontology?

These questions are difficult to answer generally.They vary based
on the robot's tasks, sensors, and other system components. In this
section, we offer guidelines for these design considerations.

8.1 Principles from software engineering

First, as a basis for the design guidelines, we highlight the
following software engineering design principles that we consider
relevant to WM design.

8.1.1 Principle: design for use
Since a WM provides information to other software

components, its state should be rich enough to produce the
information relevant to these components. This does not mean,
however, that theWM should store asmuch information as possible;
there is no reason to store data in the state that will never be used
during any tell/ask requests. In the extreme case, if there are no
components to ask any information from a WM, there is no reason
to have a WM at all, for instance, in the subsumption architecture
(Brooks, 1986).

The design of the WM is determined, thus, not by what the
designer assumes is relevant but what the system actually requires.
This is the “Design for use” (DfU) principle, which is also used to
guide the design of ontologies (Smith et al., 2004). This principle
is applicable not only to the contents of the state but also to the
operations and the boundary as well.

8.1.2 Principle: do not repeat yourself
As shown in Section 6, deriving the state of the world from

multiple sources involves many operations, such as abstractions
from low-level sensor data to higher-level representations, or
transformations to convert the data into another form. If different
software components implement these operations separately,
repetition and redundancy are inevitable. This hinders the reuse of
implemented functionality in another component, and furthermore,
it makes debugging activity tedious due to the redundancy

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

(Blumenthal et al., 2013). This is applicable not only to the
operations but also to the state elements. For example, in the NeBula
system (Agha et al., 2021), both the local and long-range motion
planning components need the current robot pose, and it would
be highly redundant if each consumer implemented its own SLAM
algorithm to infer this current pose.

A dedicated WM component should bundle such state elements
and operations in one place and enable other components to update
and query it so that they must not re-implement duplicated data
or redundant computations (Blumenthal et al., 2013). This is the
“Do not repeat yourself ” (DRY) principle in software engineering,
which is formulated as “Every piece of knowledgemust have a single,
unambiguous, authoritative representation within a system” (Hunt
and Thomas, 1999).

8.1.3 Principle: low coupling, high cohesion
The DRY principle helps decide whether a shared WM is

required for a robot or not. The “low coupling, high cohesion”
(LCHC) principle helps decide how many. This principle states
that components in a component-based system should have few
couplings between different components and high cohesion within
a component (Yourdon and Constantine, 1979) as a tight coupling
of components would cause invasive changes on them when
modifications are needed (Heim et al., 2015).

As an example of applying the principle, our LRU2 robot
(Lehner et al., 2018; Schuster et al., 2020) (see also Section 7.6) is
a mobile manipulation platform that navigates based on SLAM
and path planning components and manipulates objects using
visual pose estimation and sampling-based motion planning. As
manipulation is only performed when the robot is not moving, the
tasks of navigation andmanipulation and, thus, the decision-making
components for executing these tasks, are entirely decoupled. It is
thus reasonable to have two distinct WMs because the components
for navigation and manipulation require disjunct queries on the
WM and use different hardware (mobile base vs. articulated arm)
and software (the path planner in the 2.5D geometric space for the
robot base vs. the motion planner in the configuration space for
the manipulator). As the WMs for navigation and manipulation are
disjunct, merging them into one WM would lead to a component
with low cohesions; therefore, a separation into two is preferable
according to the LCHC principle.

If the task specification is changed to require the robot to be able
to grasp objects whilst moving, this would require a reevaluation of
having two WMs. Since the two WMs have to be synchronized quite
frequently for such a use case, having two will lead to high coupling
of theWMs and, thus, will be considered to be a non-optimal design
decision. It is suggested that the two WMs should be merged into
one.

8.2 Guidelines for world model
implementations

The principles introduced in Section 8.1 are applicable to all
aspects of the WM: the state representation, the operations, and
the boundary. However, these principles sometimes contradict each
other, and a trade-off between them must be found. Therefore,
the aim of this section is to clarify where such conflicts exist

and to concretize more specific guidelines for the implementation
of WMs. We propose the following guidelines based on our
experiences obtained during the development of the AIMM WM
(Dömel et al., 2017), which is described in detail in Section 7.4.
Although the guidelines are considered applicable to the WM
approaches reviewed in Section 7, there might be robotic systems
where the guidelines are not always applicable or not feasible to
follow in practice. Nevertheless, the guidelines are our suggestions
for supporting design decisions and not strict regulations a WM
must always satisfy.

8.2.1 Implementation: state representation
8.2.1.1 Reducing redundancy

If information in a state can be generated by applying operations
on other parts of the state, such information is redundant. Since
redundancy is a violation of the DRY principle, it should not
be cached into the state in principle. The redundancy often
makes maintenance difficult; if a part of the state is modified,
the corresponding, redundant part must be updated accordingly
to avoid information mismatch. However, this guideline often
contradicts the “minimize calling frequency and computational
load” guideline (Section 8.2.2.2). Thus, the trade-off is between
reducing redundancy and computational load.

In the AIMM WM (Dömel et al., 2017), intermediate
information is not cached into the state to avoid redundancy since
the operations are called mostly in an event-driven manner.

8.2.1.2 Keeping abstraction levels homogeneous
If a single WM must contain information at different levels

of abstraction, multiple abstraction levels within the state must be
simultaneously kept up-to-date. Having multiple representations
within a state, however, makes it difficult to keep the state consistent
if the different levels of abstraction represent the same aspect of
the world. Ideally, abstraction operations are, thus, computationally
inexpensive so that they can be called regularly on demand.
This is a specific case of the “reduce redundancy” guideline
(Section 8.2.1.1).

In the AIMM WM (Dömel et al., 2017), edges of its tree
representation are used only for geometry and not for symbols. If
necessary, symbols can be computed via operations without high
computational load.

8.2.1.3 Choosing the abstraction level as high as possible, as
low as necessary

The appropriate level of abstraction for the state representation
is determined by the DfU principle. If the abstraction level is too
low, high-level action information cannot be integrated at the tell
interface. On the other hand, if the abstraction level is too high,
e.g., using only symbolic predicates, a motion planner could not
querymetric information about the geometry of the world at the ask
interface. Thus, an appropriate level of abstraction must be chosen
and employed; concretely, it should be as high as possible but as low
as necessary.

In the AIMM WM (Dömel et al., 2017), the abstraction level to
describe a topological relation between different types of objects is
employed so that the sensing components can tell information about
detected objects, the planning components can ask collision-free

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

spaces, and the acting components can tell expected effects of skill
execution.

8.2.1.4 Decreasing dependency among state elements
Even if a state has a homogeneous level of abstraction without

redundancy, a modification in one part of the state may require
updates to other parts. For example, we assume a state has a
list of object poses with respect to the world coordinate frame.
If an object A is placed on another object B in the real world,
and if the pose of the object B changes, the state has to update
the pose of both objects A and B. Such dependencies among
state elements should be avoided as much as possible since they
increase the number of operation calls (see Section 8.2.2.2). In this
example, employing a tree as a data structure of the state could
be one of the solutions [as the AIMM WM does (Dömel et al.,
2017)].

8.2.1.5 Using simple time representations
Finding appropriate representations for time in a WM is

challenging. As described in Section 5.3, there are two kinds of time.
Furthermore, the time in the real world is by nature continuous,
while the state and its modification are usually associated with
discrete time. Due to such complexity, careless introduction
of the time representation could easily increase the model
complexity without providing practical advantages. Following the
DfU principle, the time representation should be employed only
according to the actual necessity from the application. For many
WMs, no explicit modeling of time is needed. Instead, they often
assume that the current world state represents the current real
world.

If modeling of time is required, special attention must be paid
to which type of time is represented and how the discretization
of time is handled in the model. It is also important to decide
carefully which aspects of time to represent in the state and which
to implement by operations. For example, the time interval during
which an object is at a certain position can be modeled directly
in the state. Alternatively, for example, we can store into the state
only the moments at which the position of the object has changed
and let an operation determine the position at certain points of
time by intra/extrapolation. This guideline suggests using a simple
representation, and which is simpler depends, thereby, strongly on
the application.

In the AIMM WM (Dömel et al., 2017), no time needs to be
modeled since having access to themost recent belief about themost
recent world satisfies the requirements from components interfacing
with the WM.

8.2.2 Implementation: operations
8.2.2.1 Modularizing and reusing

As discussed in Section 6, operations can be combined into
compound operations. If some operational routines are common
to multiple operations, they should be modularized and reused,
following the DRY principle.

In the AIMM WM (Dömel et al., 2017), basic operations are
provided as a Python library, allowing for implementing compound
operations reusing the basic ones as a module.

FIGURE 13
Pushing or pulling information, adapted from Figure 2 from the study
by Bainomugisha et al. (2013).

8.2.2.2 Minimizing calling frequency and computational load
Calling operations causes computational load.Thus, keeping the

call frequency low, especially for computationally expensive calls, is
important to achieve better performance.

As shown in Figure 13, when operations are triggered,
information flows can be decided by either the information source
(producers) or their dependents (consumers) (Bainomugisha et al.,
2013)10. Producers can push information any time it is available,
or consumers can request (pull) the information when they
need it (Bainomugisha et al., 2013). Which way is preferable
depends on the use case, i.e., the design decision should be
made by the DfU principle. In general, we see that the flow
of task-specific information that is only relevant to one or a
few consumers is best implemented via a pull and the flow of
general information that is relevant to many consumers via a
push.

It should be noted that the push and pull are implementation
models of how operations are triggered and how the tell/ask
interfaces are called. Although it is counter-intuitive, for example,
the ask interface can be implemented by the push approach, where
the WM periodically publishes information to other components.
Similarly, the tell interface can be implemented by the pull approach,
where theWM triggers a perception component in a pollingmanner
to update the state periodically.

As mentioned in Section 8.2.1.1, caching intermediate results
in the state causes data duplication. However, it can contribute
to minimizing the computation load by operations, as shown in
Figure 14A. Without caching, the operations f1, f2, and f3 must be
called every time information flows from the producer (at the top)
to the consumer (at the bottom). If the results of these functions are
cached in the state (gray boxes), they must only be called in case
information is out-of-date.

Caching also enables push and pull information flows to be
decoupled, as shown in Figure 14C. This means that operations can

10 Note that the WM can be both a producer and a consumer. From the
perspective of the tell interface, the WM is a consumer. From the perspective
of the ask interface, the WM is a producer.

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

FIGURE 14
(A) Information flow without caching intermediate data in the state. (B) State caching results of operations. (C) Caching allows for decoupling of push
and pull.

be implemented to either push or pull information, depending on
their frequency and computational cost. We consider, for instance,
that f1 and f2 are computationally cheap and not called very often.
Then, any time new information is provided by the producer, it is
opportune to immediately push by calling f1 and f2 and then to
store the intermediate result in the state. If f3, on the other hand,
is computationally expensive, the state would be pushed no further.
Rather, f3 would only be applied to the cached, pushed results of f1
and f2 upon request by one of the consumers, and the “pulled” result
of f3 would be cached as well.

In the AIMM WM (Dömel et al., 2017), as written in
Section 8.2.1.1, no intermediate information is cached into the state.
Since the WM represents semi-static environments, components
basically push information at the tell interface and pull information
at the ask interface.

8.2.3 Implementation: boundary
8.2.3.1 Keeping the boundary abstracted from components

If the WM boundary is set too close to the producer and
consumer components, operations only specific to them will
be included within the WM. Since such component-specific
operations are not useful for other components, this is against
the DfU principle. This is especially critical when the same WM
is used for different robotic systems because of differences in
software/hardware components.

The AIMM WM (Dömel et al., 2017) keeps the generality of
operations exposed at the boundary, and thus, the same WM can
also be used for our planetary exploration rover LRU2 (Lehner et al.,
2018) (see also Section 7.6).

8.2.3.2 Setting the boundary where operations are reusable
The aforementioned guideline could lead to an extreme design

to have the WM boundary right around the state. However, this
leads to reuse of operations; i.e., it is against the DRY principle
and Section 8.2.2.1. Thus, the WM boundary should be set so that
the operations common and useful for multiple components are
included within the WM.

9 Conclusion

In this review, we provided an overview of four decades of
work on robotic WMs and classified concrete implementations in
Sections 3, 7.Themain contributions are tomake design dimensions
of WMs explicit (Section 5, 6) and to highlight the underlying
principles that guide decisions on these WM design dimensions
(Section 8.1) as well as the trade-offs that may be necessary when
they are in conflict (Section 8.2).

We learned that the WM does not exist. Even when following
the same guiding principles, good WM designs highly depend on
the robotic system, the environment in which it operates, and the
tasks it is expected to perform. The principles may well lead to
a design where one robot has more than one WM, for instance,
one for navigation and another for manipulation, as highlighted in
Section 8.1.3.

A current trend is that the deep learning community is
increasingly embracing the design of modular neural architectures
and has also identified the WM as a necessary component within
such designs. This trend—which we believe to be driven by the “low
coupling, high cohesion” principle—is very much aligned with the
stance in this review, even if the underlying implementation of states

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

and operations as deep neural networks is quite different from the
robotic WMs focused on in this review.

In Section 4, we saw that different WM boundaries lead to
quite distinct interpretations of what a WM is and what it should
encompass. However, all of these interpretations canwell be referred
to as a “world model,” and it is, thus, essentially a homonym
for different concepts. By refining the terminology for WMs and
their subcomponents and classifying existing approaches, our aim
is to enable researchers to clarify what type of WM they are
referring to and facilitate the motivation for their design and
implementation.

One of the future research challenges we foresee is how
to design a WM for future robotic systems to perform
tasks in more realistic, less controlled scenarios. System
complexity will increase by employing more novel and diverse
hardware/software components, and new requirements will be
posed to WMs. We expect the principles and guidelines discussed
in Section 8 to promote the invention of novel, unforeseen WM
designs.

Author contributions

RS, FL, AD, MS, and FS substantially contributed to the
derivation of the definition of the world model (WM), as well as
the identification of the important design dimensions of WMs.
AA-S and FS contributed to the draft, format, and revision of the
manuscript critically so that it has a consistent logical flow and
provides a smooth introduction to the topic (e.g., by introducing
Section 2 for language bootstrapping and splitting the case studies

in Sections 3, 7). Every author contributed to the analyses and
categorization of related work in the case studies in Section 7.
All authors contributed to the article and approved the submitted
version.

Funding

This work was supported by the project ARCHES (contract
number ZT-0033), the project iFOODis (contract number KA2-
HSC-06), and the project CoViPa (contract number KA1-Co-02),
a grant from the Helmholtz Association's Initiative and Networking
Fund.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Agha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A.,
et al. (2021). “NeBula: quest for robotic autonomy in challenging environments; TEAM
CoSTAR at the DARPA subterranean challenge,”. arXiv:2103.11470 [cs.RO]. [Online].
Available: https://arxiv.org/abs/2103.11470.

Angelopoulou, E., Hong, T., and Wu, A. (1992). ““World model representations for
mobile robots,”,” in Proceedings of the Intelligent Vehicles ‘92 Symposium, 293–297.

Author anonymous (2022). “Yann lecun on a vision to make ai systems learn and
reason like animals and humans.”. https://ai.facebook.com/blog/yann-lecun-advances-
in-ai-research/.

Bainomugisha, E., Carreton, A. L., Cutsem, T. v., Mostinckx, S., and Meuter, W.
d. (2013). “A survey on reactive programming,”. ACM Comput. Surv. 45 (4), 1–34.
doi:10.1145/2501654.2501666

Bálint-Benczédi, F.,Worch, J.-H., Nyga, D., Blodow,N.,Mania, P.,Márton, Z.-C., et al.
(2019). “RoboSherlock: cognition-enabled robot perception for everyday manipulation
tasks,”. arXiv:1911.10079 [cs.RO]. [Online]. Available: https://arxiv.org/abs/1911.
10079.

Bauer, A. S., Schmaus, P., Albu-Schäffer, A., and Leidner, D. (2018). ““Inferring
semantic state transitions during telerobotic manipulation,”,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE), 1–9.

Bauer, A. S., Schmaus, P., Stulp, F., and Leidner, D. (2020). ““Probabilistic effect
prediction through semantic augmentation and physical simulation,”,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 9278–9284.

Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A. K., and Bartels,
G. (2018). ““Know Rob 2.0—a 2nd generation knowledge processing framework for
cognition-enabled robotic agents,”,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA) (IEEE), 512–519.

Beetz, M., Mösenlechner, L., and Tenorth, M. (2010). ““Cram — a cognitive
robot abstract machine for everyday manipulation in human environments,”,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1012–1017.

Beetz,M., Bálint-Benczédi, F., Blodow,N., Nyga, D.,Wiedemeyer, T., andMarton, Z.-
C., “RoboSherlock: unstructured information processing for robot perception,”in 2015
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
1549–1556.

Belkin, A., Kuwertz, A., Fischer, Y., and Beyerer, J. (2012). “World modeling for
autonomous systems,”. Innov. Inf. Syst. Model. Tech. 1, 135–158. doi:10.5772/38190

Blumenthal, S., Bruyninckx, H., Nowak, W., and Prassler, E. (2013). ““A scene graph
based shared 3D world model for robotic applications,”,” in 2013 IEEE International
Conference on Robotics and Automation (ICRA) (IEEE), 453–460.

Brooks, R. A. (1986). “A robust layered control system for a mobile robot.”. IEEE J.
Robot. Autom. 2 (1), 14–23. doi:10.1109/jra.1986.1087032

Bruyninckx, H. (2021). “Building blocks for the design of complicated systems
featuring situational awareness,”. https://robmosys.pages.gitlab.kuleuven.be/.

Cavallo, A., Costanzo,M., DeMaria, G., Natale, C., Pirozzi, S., Stelter, S., et al. (2022).
“Robotic clerks: autonomous shelf refilling,”. Springer International Publishing, 137–170.
ch. 6.

Dömel, A., Kriegel, S., Kaßecker, M., Brucker, M., Bodenmüller, T., and Suppa, M.
(2017). “Toward fully autonomous mobile manipulation for industrial environments,”.
Int. J. Adv. Robotic Syst. 14 (4), 1729881417718588. doi:10.1177/1729881417718588

Fang, Z., Bartels, G., and Beetz, M. (2016). ““Learning models for constraint-based
motion parameterization from interactive physics-based simulation,”,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE), 4005–
4012.

Foote, T. (2013). ““tf: the transform library,”,” in Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, ser. Open-Source
Software workshop, 1–6.

Fox, M., and Long, D. (2003). “PDDL2.1: an extension to PDDL for expressing
temporal planning domains,”. J. Artif. Intell. Res. 20, 61–124. doi:10.1613/jair.
1129

Frontiers in Robotics and AI 23 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
https://arxiv.org/abs/2103.11470
https://ai.facebook.com/blog/yann-lecun-advances-in-ai-research/
https://ai.facebook.com/blog/yann-lecun-advances-in-ai-research/
https://doi.org/10.1145/2501654.2501666
https://arxiv.org/abs/1911.10079
https://arxiv.org/abs/1911.10079
https://doi.org/10.5772/38190
https://doi.org/10.1109/jra.1986.1087032
https://robmosys.pages.gitlab.kuleuven.be/
https://doi.org/10.1177/1729881417718588
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sakagami et al. 10.3389/frobt.2023.1253049

Gat, E., Bonnasso, R. P., and Murphy, R. (1998). “On three-layer architectures,”. Artif.
Intell. Mob. robots 195, 210.

Ha, D., and Schmidhuber, J. (2018). “World models,”. CoRR abs/1803, 10122.
[Online]. Available: http://arxiv.org/abs/1803.10122. doi:10.5281/zenodo.1207048

Heim, R., Nazari, P. M. S., Ringert, J. O., Rumpe, B., and Wortmann, A.
(2015). “Modeling robot and world interfaces for reusable tasks,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 1793–1798.

Hunt, A., and Thomas, D. (1999). “The pragmatic programmer. From journeyman to
master,”. Addison-Wesley.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., and Matsubara, H.,
“Robocup: a challenge problem for AI and robotics,” in RoboCup-97: robot soccer world
cup I, ser. Lecture notes in computer science, H. Kitano, Ed., vol. 1395. Springer, 1997, pp.
1–19. doi:10.1007/3-540-64473-3_46

Landsiedel, C., Rieser, V., Walter, M., and Wollherr, D. (2017). “A review of spatial
reasoning and interaction for real-world robotics,”. Adv. Robot. 31 (5), 222–242. doi:10.
1080/01691864.2016.1277554

Lay, F. S., Bauer, A. S., Albu-Schäffer, A., Stulp, F., and Leidner, D. (2022).
“Unsupervised symbol emergence for supervised autonomy using multi-modal
latent dirichlet allocations,”. Adv. Robot. 36 (1-2), 71–84. [Online]. Available:.
doi:10.1080/01691864.2021.2007169

LeCun, Y. (2022). “A path towards autonomous machine intelligence,”. https://
openreview.net/pdf?id=BZ5a1r-kVsf.

Lehner, P., Brunner, S., Dömel, A., Gmeiner, H., Riedel, S., Vodermayer, B.,
et al. (2018). ““Mobile manipulation for planetary exploration,”,” in IEEE Aerospace
Conference, 1–11.

Leidner, D., Borst, C., and Hirzinger, G. (2012). ““Things are made for what they are:
solving manipulation tasks by using functional object classes,”,” in 2012 12th IEEE-RAS
International Conference on Humanoid Robots (Humanoids 2012), 429–435.

Leidner, D., Dietrich, A., Schmidt, F., Borst, C., and Albu-Schäffer, A. (2014).
““Object-centered hybrid reasoning for whole-body mobile manipulation,”,” in 2014
IEEE International conference on robotics and automation (ICRA) (IEEE), 1828–1835.

Leidner, D. (2017). “Cognitive reasoning for compliant robot manipulation,”. Ph.D.
Thesis. Bremen: Universität Bremen.

Lomas, M., Cross, E., Darvill, J., Garrett, R., Kopack, M., and Whitebread, K.
(2011). ““A robotic world model framework designed to facilitate human-robot
communication,”,” in Proceedings of the SIGDIAL 2011 Conference, 301–306.

Milliez, G., Warnier, M., Clodic, A., and Alami, R. (2014). ““A framework for
endowing an interactive robot with reasoning capabilities about perspective-taking and
belief management,”,” inThe 23rd IEEE International Symposium on Robot andHuman
Interactive Communication, 1103–1109.

Nilsson,N. J. (1984). ““Shakey the robot,”,” inAI center, SRI international (Menlo Park,
CA, USA: Tech. Rep.).

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. “Ros: an
open-source robot operating system,” in ICRA Workshop on Open Source Software,
2009.

Roth, M., Vail, D., and Veloso, M. (2003). ““A real-time world model for multi-robot
teamswith high-latency communication,”,” in Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), 3,
2494–2499.

Schmidhuber, J. (1990). “Making the world differentiable: on using self supervised
fully recurrent neural networks for dynamic reinforcement learning and planning in
non-stationary environments,”. Ser. ForschungsberichteKünstliche Intell. Inst. für Inf. 126.

Schuster, M. J., Brunner, S. G., Bussmann, K., Büttner, S., Dömel, A., Hellerer, M.,
et al. (2017). “Towards autonomous planetary exploration: the lightweight rover unit
(LRU), its success in the SpaceBotCamp challenge, and beyond,”. J. Intelligent Robotic
Syst. (JINT) 93, 461–494. doi:10.1007/s10846-017-0680-9

Schuster, M. J., Müller, M. G., Brunner, S. G., Lehner, H., Lehner, P., Sakagami,
R., et al. (2020). “The ARCHES space-analogue demonstration mission: towards
heterogeneous teams of autonomous robots for collaborative scientific sampling in
planetary exploration,”. IEEE Robotics Automation Lett. (RA-L) 5 (4), 5315–5322. doi:10.
1109/lra.2020.3007468

Schuster, M. J., Schmid, K., Brand, C., and Beetz, M. (2018). “Distributed stereo
vision-based 6d localization andmapping for multi-robot teams,”. J. Field Robotics (JFR)
36, 305–332. [Online]. Available:. https://onlinelibrary.wiley.com/doi/abs/10.1002/
rob.21812. doi:10.1002/rob.21812

Schuster, M. J. (2019). “Collaborative localization and mapping for autonomous
planetary exploration: distributed stereo vision-based 6D SLAM in GNSS-denied
environments,”. Ph.D. dissertation, University of Bremen. [Online]. Available: http://
nbn-resolving.de/urn:nbn:de:gbv:46-00107650-19.

Shoemake, K. (1985). “Animating rotation with quaternion curves,”. SIGGRAPH
Comput. Graph. 19 (3), 245–254. [Online]. Available:. doi:10.1145/325165.325242

Smith, M. K., Welty, C., and McGuinness, D. L. (2004). “OWL web ontology language
guide,”. https://www.w3.org/TR/2004/REC-owl-guide-20040210/DesignForUse.

Stulp, F., Utz, H., Isik, M., and Mayer, G. (2010). ““Implicit coordination with
shared belief: a heterogeneous robot soccer team case study,”,” in Advanced robotics, the
international journal of the robotics society of Japan.

Taniguchi, T.,Murata, S., Suzuki,M., Ognibene, D., Lanillos, P., Ugur, E., et al. (2023).
“World models and predictive coding for cognitive and developmental robotics: Frontiers
and challenges,”.

Tenorth, M., and Beetz, M. (2013). “KnowRob: a knowledge processing
infrastructure for cognition-enabled robots,”. Int. J. Robotics Res. 32 (5), 566–590.
doi:10.1177/0278364913481635

Triggs, B., and Cameron, S. (1991). ““The Oxford robot world model,”,” in Expert
systems and robotics (Springer Berlin Heidelberg), 275–284.

Warnier, M., Guitton, J., Lemaignan, S., and Alami, R. (2012). ““When the robot puts
itself in your shoes. managing and exploiting human and robot beliefs,”,” in 2012 IEEE
RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive
Communication, 948–954.

Welch, G., and Bishop, G. (1995). “An introduction to the Kalman filter,”. University
of North Carolina at Chapel Hill, 95–041. Tech. Rep.

Winkler, J., Bartels, G.,Mösenlechner, L., and Beetz,M. (2012). ““Knowledge enabled
high-level task abstraction and execution,”,” in First Annual Conference on Advances in
Cognitive Systems, 131–148. Citeseer.21

Wu, P., Escontrela, A., Hafner, D., Abbeel, P., andGoldberg, K. (2022). ““Daydreamer:
world models for physical robot learning,”,” in 6th Annual Conference on Robot
Learning. [Online]. Available: https://openreview.net/forum?id=3RBY8fKjHeu.

Yourdon, E., and Constantine, L. L. (1979). “Structured design: fundamentals of a
discipline of computer program and systems design,”. Yourdon Press.

Frontiers in Robotics and AI 24 frontiersin.org

https://doi.org/10.3389/frobt.2023.1253049
http://arxiv.org/abs/1803.10122
https://doi.org/10.5281/zenodo.1207048
https://doi.org/10.1007/3-540-64473-3_46
https://doi.org/10.1080/01691864.2016.1277554
https://doi.org/10.1080/01691864.2016.1277554
https://doi.org/10.1080/01691864.2021.2007169
https://openreview.net/pdf?id=BZ5a1r-kVsf
https://openreview.net/pdf?id=BZ5a1r-kVsf
https://doi.org/10.1007/s10846-017-0680-9
https://doi.org/10.1109/lra.2020.3007468
https://doi.org/10.1109/lra.2020.3007468
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21812
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21812
https://doi.org/10.1002/rob.21812
http://nbn-resolving.de/urn:nbn:de:gbv:46-00107650-19
http://nbn-resolving.de/urn:nbn:de:gbv:46-00107650-19
https://doi.org/10.1145/325165.325242
https://www.w3.org/TR/2004/REC-owl-guide-20040210/DesignForUse
https://doi.org/10.1177/0278364913481635
https://openreview.net/forum?id=3RBY8fKjHeu
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 World model language bootstrapping
	3 Introductory examples of robotic world models
	3.1 NeBula system
	3.2 KnowRob system

	4 World model boundary
	4.1 Tell interface
	4.2 Ask interface
	4.3 Design dimension of the world model boundary

	5 State representation in world models
	5.1 State representation: robot or environment, concrete or abstract
	5.2 State representation: permanent or transient, given or estimated
	5.3 State representation: time
	5.3.1 State without time
	5.3.2 State with belief time
	5.3.3 State with real-world time
	5.3.4 State with both belief and real-world time
	5.3.5 Literature analyses

	6 World model operations
	6.1 Basic operations
	6.1.1 Add
	6.1.2 Remove
	6.1.3 Modify
	6.1.4 Get
	6.1.5 Abstract
	6.1.6 Transform

	6.2 Compound operations

	7 Case studies
	7.1 Shakey the robot
	7.1.1 WM boundary
	7.1.2 State representation
	7.1.3 Operations

	7.2 Oxford World Model
	7.2.1 WM boundary
	7.2.2 State representation
	7.2.3 Operations

	7.3 ROS TF
	7.3.1 WM boundary
	7.3.2 State representation
	7.3.3 Operations

	7.4 AIMM system
	7.4.1 WM boundary
	7.4.2 State representation
	7.4.3 Operations

	7.5 LRU1
	7.5.1 WM boundary
	7.5.2 State representation
	7.5.3 Operations

	7.6 LRU2
	7.7 NeBula system
	7.7.1 WM boundary
	7.7.2 State representation
	7.7.3 Operations

	7.8 KnowRob system
	7.8.1 WM boundary
	7.8.2 State representation
	7.8.3 Operations

	7.9 Rollin' Justin
	7.9.1 WM boundary
	7.9.2 State representation
	7.9.3 Operations

	7.10 Robot Scene Graph world model
	7.10.1 WM boundary
	7.10.2 State representation
	7.10.3 Operations

	7.11 World model for multi-robot teams
	7.11.1 WM boundary
	7.11.2 State representation
	7.11.3 Operations

	7.12 SPARK system
	7.12.1 WM boundary
	7.12.2 State representation
	7.12.3 Operations

	7.13 Deep learning: introducing world models
	7.13.1 WM boundary
	7.13.2 State representation
	7.13.3 Operations

	7.14 Deep learning: DayDreamer
	7.14.1 WM boundary
	7.14.2 State representation
	7.14.3 Operations

	7.15 Deep learning: vision

	8 Discussion: world model design
	8.1 Principles from software engineering
	8.1.1 Principle: design for use
	8.1.2 Principle: do not repeat yourself
	8.1.3 Principle: low coupling, high cohesion

	8.2 Guidelines for world model implementations
	8.2.1 Implementation: state representation
	8.2.1.1 Reducing redundancy
	8.2.1.2 Keeping abstraction levels homogeneous
	8.2.1.3 Choosing the abstraction level as high as possible, as low as necessary
	8.2.1.4 Decreasing dependency among state elements
	8.2.1.5 Using simple time representations

	8.2.2 Implementation: operations
	8.2.2.1 Modularizing and reusing
	8.2.2.2 Minimizing calling frequency and computational load

	8.2.3 Implementation: boundary
	8.2.3.1 Keeping the boundary abstracted from components
	8.2.3.2 Setting the boundary where operations are reusable

	9 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

