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Comparison of strength profile
representations using
musculoskeletal models and their
applications in robotics

Sheila Sutjipto*, Marc G. Carmichael and Gavin Paul

UTS Robotics Institute, University of Technology Sydney, Sydney, NSW, Australia

Musculoskeletal models provide an approach towards simulating the ability of
the human body in a variety of human-robot applications. A promising use for
musculoskeletal models is to model the physical capabilities of the human body,
for example, estimating the strength at the hand. Several methods of modelling
and representing human strength with musculoskeletal models have been
used in ergonomic analysis, human-robot interaction and robotic assistance.
However, it is currently unclear which methods best suit modelling and
representing limb strength. This paper compares existingmethods for calculating
and representing the strength of the upper limb using musculoskeletal models.
It then details the differences and relative advantages of the existing methods,
enabling the discussion on the appropriateness of each method for particular
applications.
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1 Introduction

There has been recent interest in the use of models to interpret the effect
of musculoskeletal variability on human physical performance. Such models have
primarily been applied in human factors and ergonomics to design tasks that prevent
musculoskeletal disorders and improve productivity by considering human capability.
Leveraging information gained from musculoskeletal models, the frontiers of human-
robot interaction integrate the knowledge of human capability to alleviate physical
burden during manual handling (Peternel et al., 2019); in healthcare, for the assessment
and estimation of human capability (Carmichael and Liu, 2015); and more recently, to
provide assistance via robotic solutions (Carmichael and Liu, 2011; Lai et al., 2019; Petrič
 et al., 2019).

Human capability can be defined using various quantities. However, physical strength
is an appropriate measure when considering the utilization of robotics to alleviate the
physical burden during laborious tasks. Anthropometric surveys of human strength
often systematically measure the strength of isolated joints in the limb, such as the
shoulder (Riemann et al., 2010; Baillargeon et al., 2022), elbow (Hernandez et al., 2015),
wrist (Decostre et al., 2015; Chimera et al., 2021), and the hips and knee (Kordi et al., 2017).
Although relatively simple to perform, these strength measurements only consider a single
joint in the limb, usually limited to movement within anatomical planes and constrained
under isometric or isokinetic conditions.
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FIGURE 1
Examples of strength profiles computed and represented by rays (black dots), a polytope (yellow), and an ellipsoid (blue).

Instead of strength at the joint, whole limb strength measured at
the end-point of the limb (i.e., hand or foot) is a more relevant
measure of physical capability for real-world interactions. Whole
limb strength may be estimated by considering the isolated joint
strength capacities of a limb, and similar methods are used in
robotics to calculate the end-point loading capacity of a robot arm.
This makes sense in robotics since robot joint strength is typically
uncoupled.

Such strategies for human strength estimation predominately
rely on empirical measurements of Maximum Voluntary
Contractions (MVC), or model-based approximations, to estimate
whole-limb strength (Sasaki et al., 2010; Hernandez et al., 2015;
Rezzoug et al., 2021). The main drawback of this approach is the
resources and time necessary to acquire good quality data as it
requires consideration of factors such as managing body posture
and sensor placement and handling fatigue. Additionally, applying
this joint-strength approach when calculating whole-limb strength
does not take into consideration the complex inter-joint and
inter-muscular factors that affect the strength of the limb due to
multi-articular muscles.

The whole-limb strength can be better estimated using a
musculoskeletal model that characterises the kinematic, dynamic
and musculo-tendon properties of a limb. The advantage
of utilizing musculoskeletal models is that, given a suitably
accurate model, the limb strength can be estimated in arbitrary
limb configurations, and kinematic and dynamic conditions.
Additionally, musculoskeletal models also consider multi-
articular muscles, agonist-antagonist co-contraction, and other
biomechanical factors that affect whole-limb strength. Several
methods have been developed to utilize musculoskeletal models
for estimating the strength at the end of a human limb, with
different approaches to calculating and representing this strength
being proposed (Carmichael and Liu, 2013; Hernandez et al., 2018;

Petrič et al., 2019; Sohn et al., 2019; Skuric et al., 2022). Figure 1
shows three methods commonly used for strength representation
at the hand.

Despite the variety of existing methods for calculating and
representingwhole-limb strength usingmusculoskeletalmodels, the
suitability of thesemethods in different applications requires further
investigation.

In this work, an existing musculoskeletal model is employed to
facilitate the comparison of commonly usedmethods for calculating
and representing the whole-limb strength of a limb. This paper
is not intended to be a comprehensive review of musculoskeletal
modelling, or themodels for strength estimation.We instead directly
compare three different methods for computing and representing
strength, focusing on their differences, advantages, and limitations.
Section 2 provides a necessary overview of musculoskeletal models.
Section 3 details existing methods of using musculoskeletal models
to calculate whole-limb strength. In Section 4, the strength
models are applied to demonstrate their differences. Finally, in
Section 5, trade-offs in the methods and the suitability of different
strength estimation methods for various robotics use cases is
discussed.

2 Musculoskeletal modelling

Musculoskeletal models use modelling techniques and
computational tools to represent and simulate complex
neuromuscular systems. They provide a means of studying
these systems to gain insights into their inner workings without
direct measurement. This section provides a non-exhaustive
summary of common musculoskeletal modelling methods that
form the basis of the strength estimation methods discussed
in Section 3.
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FIGURE 2
Strength representations are generated using a musculoskeletal model
representing a human. An optimization model calculates the
maximum magnitude of external force (SP =max [FE]) the human can
oppose (Carmichael and Liu, 2013).

2.1 Limb kinematics and dynamics

The human skeletal system can be modelled as a system of rigid
bodies representing the body segments and the joints connecting
them. The kinematics and dynamics of such a system can be
ascertained using methods similar to those utilized in robotics.

The configuration of the limb is described by a vector of
generalised joint coordinates, q = [q1,q2,…,qk]

T ∈ ℝk. The pose of
the limb end-point, x is computed using forward kinematics (1).

x = f (q) (1)

The spatial velocity of the end-point, ẋ is calculated using
the partial derivative of the forward kinematic relationship (2).
The Jacobian matrix, J(q) ∈ ℝn×k relates joint-space generalised
coordinate velocities to Cartesian linear and angular velocities.

ẋ = ( ∂f
∂q
) q̇ = J (q) q̇ (2)

Each rigid link in the model possesses attributes such as mass
and inertial properties. Incorporating these parameters, the dynamic
equation of the system can be expressed as (3) whereH is the inertia
matrix,C are centrifugal and Coriolis effects and τG are joint torques
due to gravity. An external force applied to the limb end-point is
included, represented as the product of a unit vector representing
the force direction, u, and the scalar magnitude of the external force,
FE, as shown in Figure 2.

H (q) q̈+C (q, q̇) q̇+ τG (q) = τM + J(q)Tu ⋅ FE (3)

where the vector, τM, represents the joint torques resulting from
muscle forces.

2.2 Musculo-tendon units

Actuation of the human body is achieved by the contraction
of muscles that are attached to the skeleton via tendons.

Musculoskeletal models commonly represent this muscular
actuation by musculo-tendon units (MTUs), with each unit
representing their respective muscle (or group of muscles) and the
tendons connecting them to the skeleton. The MTU model allows
the force output of the muscle to be computed as a function of its
length, contraction velocity, muscle fibre pennation angle, and other
state variables and physiological parameters. Various MTU models
have been developed (Zajac, 1989; Schutte et al., 1993; Thelen et al.,
2003) with most models derived from the Hill muscle model
(Hill, 1938).

The force output of a muscle is a combination of the active
and passive force output exhibited by the muscle. The amount
of active force output a muscle produces is represented by its
activation, a ∈ [0,1]. An activation of a = 0 represents a completely
passive muscle, while a = 1 represents the muscle at full contraction.
It is noted that muscles cannot generate or relax their force
output instantaneously. The activation dynamics of a muscle can be
modelled with a first-order differential equation relating the rate
of change in activation to the muscles’ excitation, often utilizing
different time constants for activation and deactivation. However,
activation dynamics are often not considered when conducting
strength analyses. Prior work has shown that static and dynamic
optimization can produce similar results (Anderson and Pandy,
2001) and that the system is generally assumed to be static
(McKay et al., 2007; Sohn et al., 2019; Aldini et al., 2021).

During peak isometric force, tendons exhibit minimal stretch,
around 3%, as shown by Zajac (1989). Thus, with the assumption
that the tendon is rigid, the length of the muscle fibre can be
geometrically related to the total MTU length. By defining this
length and contraction speed as l and ̇l, respectively, and assuming
the tendon is rigid, the MTU tensile force can be expressed as
(4) comprising a passive force component and an active force
component dependent on the activation, a.

The force-length and force-velocity relationships for these
elements have been modelled as normalized curves that are
functions of the normalized muscle fibre length and normalized
muscle fibre contraction velocity. These non-linear relationships
are captured by functions ̃fPm(l, ̇l) and ̃f

A
m(l, ̇l), corresponding

to normalized passive and active force output respectively
(De Sapio et al., 2005).The scalar value, F0 represents the maximum
peak isometric force of the muscle, m, often estimated from the
physiological cross-sectional area of the muscle.

fm = ̃f
P
m (l, ̇l)F

0
m⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

passive fPm

+ ̃fAm (l, ̇l,am)F
0
mam⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

active fAm

(4)

The joint torque, τM generated from the muscle forces is
calculated as.

τM = τP + τA, where (5)

τP = −LTfP (6)

τA = −LTKAa (7)

where fP = [ fP1 , f
P
2 ,…, f

P
m]

T represents the vector of passive muscle
forces, fA = KAa represents the vector of active muscle forces, a =
[a1,a2,…,am]

T represents the vector of muscle activations, L(q) ∈
ℝm×k is the Jacobian matrix containing partial derivatives that
relate the rate of change in MTU lengths to the rate of change in
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joint coordinates, i.e., ̇l = Lq̇ where l = [l1, l2,…, lm]T ∈ ℝm. Using
energy principles, LT maps the muscle forces to joint torques. The
negative sign in Equations 6, 7 is due to the convention of the partial
derivative in L relating a positive change in joint coordinate to
a positive change in MTU length. However, the MTU activation
causes muscles to shorten, not lengthen. The right-hand side of the
active component shown in (4) can be represented as a diagonal
matrix, KA, containing the MTU forces generated per unit muscle
activation (De Sapio et al., 2005).

3 Methods of computing whole limb
strength

We define the problem of computing whole limb strength as the
following: given the state of the limb (or body), compute the force-
producing capabilities at the end-point of the limb.

Considering the human limb represented as a musculoskeletal
model (MM) like that shown in Figure 2, this problem can be
formulated as: given the state of the musculoskeletal model, (q, q̇,
q̈), determine the force-producing capabilities at the end-point of
the limb (e.g., FE), subject to system constraints such as the system’s
equation of motion (3).

To compare methods for computing whole limb strength, it
is important first to acknowledge that there are multiple ways
to represent this strength. In this work, strength representations
are classified into three types: Point, Polytope, and Ellipsoid.
The following subsections will detail existing methods for
computing strength from the musculoskeletal model for each
representation.

3.1 Points

The simplest method for representing strength is to consider
a single direction of interest and to compute the maximal force-
producing capabilities of the end-point of the limb in that chosen
direction. Early works iterated on this approach at the limb
end-point to obtain strength in discrete directions corresponding
to push and pull, up and down, and left and right (Badler 
et al., 1993).

With each of the aforementioned axes being orthonormal, there
are too few axes to ascertain amore accurate strength representation
of the hand. In Cartesian space, this would result in 6 points that
describe the strength in the positive and negative x,y and z-axes.
However, choosing vectors along a plane formed by these axes allows
a 2D profile to be constructed. Discretizing the space around the
hand leads to a desire to calculate strength along a vector of interest.
Determining the locationwhere the ray intersects with the boundary
of the strength profile, can be referred to as ray-shooting. This
boundary is dictated by the maximal force-producing capabilities of
the limb end-point in all Cartesian directions.

One application of the ray-shootingmethod to compute strength
at the end-point of the limb is presented in Carmichael and Liu
(2013). Starting with the equation of motion of the musculoskeletal
model (3), and substituting (5), (6), (7), the equation of motion of
the limb can be represented as:

JTu ⋅ FE = τB + LTKAa (8)

where elements that are independent of muscle activation or the
external force (Hq̈, C, τG and τP) are combined into a single joint
torque vector, τB (9).

τB =Hq̈+C+ τG − τP (9)

With the musculoskeletal model equation of motion in the form
above, computing the strength can be formulated as an optimisation
problem to find the maximum scalar value of FE.

Once u is defined, the problem of computingmaximum strength
becomes an optimisation problem to maximise the scalar, FE. These
methods search the space of feasible muscle activations to find
solutions thatmaximiseFE subject to the system’s equation ofmotion
(8) being satisfied.

The underlying approach developed in Carmichael and Liu
(2013) leverages (8) and implements a linear optimisation stated as.

Objective: max [FE] (10)

Subject to: JTu ⋅ FE = τB + LTKA ⋅ a (11)

0 ≤ a ≤ 1 (12)

FE < Fmax (13)

wheremuscle activations are bound between 0 ≤ a ≤ 1 and Fmax is set
to 300N (Carmichael and Liu, 2013). In Carmichael and Liu (2013),
this optimisation was solved using linear programming techniques.

Similar methods exist that take an alternative approach,
for example, simplifying the computation by ignoring elements
contributing to the bias torques, τB (Valero-Cuevas, 2009;
Sohn et al., 2019).

3.2 Polytopes

When a strength profile is required (instead of strength in
discrete directions), a strength polytope can be generated. A
polytope (polygon in 2D, polyhedra in 3D) is a visually intuitive
representation of strength across different directions.

A polytope can be created by repeatedly utilising ray-
shooting methods in directions spanning Cartesian space and then
connecting the data points to produce the polytope. For example,
a 2D strength profile can be visualized by computing the strength
about the hand in discretized directions existing in frontal, coronal
and sagittal planes (Carmichael and Liu, 2011; Hernandez et al.,
2015). The accuracy of the polytope to represent the true strength
profile of the limb depends on the number of strength calculations
made. Therefore, this approach to polytope generation, although
simple, can be computationally demanding if a high-fidelity profile
is required.

These polytopes are defined by feasible sets in the muscle, torque
or Cartesian spaces where the muscle activations have undergone
a linear transformation that is only valid for a particular state of
the musculoskeletal model. For representing strength capability,
the output space of interest is the Cartesian space where the
set of feasible wrenches exists. Early works include generating
such polytopes by directly measuring forces in Cartesian space
(Valero-Cuevas et al., 1998) or mapping maximum joint torque
measurements into the Cartesian space (Sasaki et al., 2011).

Alternatively, other methods exist that compute convex
polytopes using techniques developed for closed-chains
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(Bouchard et al., 2010; Gouttefarde and Krut, 2010), which similarly
determines the available wrench set considering minimum and
maximum values in the input space. The hyper-plane shifting
method (HPSM) exploits the nature of convex polytopes of which
the force set is (Skuric et al., 2022). This method uses hyperplanes
to find the intersection of half-spaces to define the polytope.
Depending on the use case, it is useful to obtain the vertices
of the polytope, which can be achieved with existing methods
(Bremner et al., 1998).

Although an exact solution provides the most accurate result,
the complexity of achieving such a task for a high dimensional
real-time system is intractably time-consuming, thus limiting
its use to offline applications (Skuric et al., 2022). Subsequently,
various approximation algorithms have been implemented to
approximate the set of feasible wrenches of the limb. Ultimately,
these approximation algorithms generate the vertices of the polytope
whilst employing a particular method of computing strength as
described in Section 3.

Rather than performing a more exhaustive search of the
solution space, the iterative convex hull algorithm presented in
Skuric et al. (2022) approximates the polytope by strategically
generating vectors to maximize muscle force. The approach
presented grows the polytope by performing the optimization to
find the maximum strength at the desired vector, then, based upon
a threshold, determines whether a new polytope vertex is found
or whether the point is close enough to the existing face to be
considered to lie on that face. This can reduce the time required
to generate the polytope since it is based on a required level
of accuracy.

3.3 Ellipsoidal representations

An alternative representation of whole limb strength is the
ellipsoid. Ellipsoidal representations are a popular graphical tool
used for analyzing kinematic chains (e.g., robot manipulators)
through measures such as manipulability (Yoshikawa, 1984) and
dynamic manipulability (Yoshikawa, 1985).

When examining the capability of a robotic manipulator, these
aforementioned measures are based on the manipulator Jacobian, J,
as derived in Eq. 1. Formanipulability, if rankJ <m, themanipulator
is considered to be in a singular state and cannot satisfy any
arbitrary ẋ, thus implying a system low manipulability. A scalar
value can be associated with this manipulability descriptor with the
following equation,

w = √det(JJT) (14)

This value corresponds to the volume of an ellipsoid represented
in Cartesian space, which has beenmapped from a unit sphere in the
joint space of the manipulator, thus satisfying ‖a‖ = 1.

q̇Tq̇ ≤ 1 (15)

(J−1ẋ)T (J−1ẋ) ≤ 1 (16)

ẋT(JJT)−1ẋ ≤ 1 (17)

These ellipsoidal concepts, commonly applied in robotics,
can be applied to musculoskeletal models to evaluate the

strength of the limb. Conceptually, this class of representation
considers a unit sphere in the m-dimensional muscle activation
space and how this transforms into an ellipsoid of force-
production in the limb Cartesian space, which is defined as
the Muscular Force Manipulability Ellipsoid (MFME) (Petrič
 et al., 2019).

Using (8), and assuming a unit sphere in the muscle activation
space (i.e., ‖a‖ = 1, following similarly to Eq. 17, and no bias
torques (τB = 0), since its effect only translates the centre of the
ellipsoid), an expression can be derived for the corresponding
ellipsoid (18).

aTa ≤ 1

((LTKA)
−1JTuFE)

T
((LTKA)

−1JTuFE) ≤ 1

FEuT((J−TLTKA)(J−TLTKA)
T)
−1
uFE ≤ 1 (18)

Using singular value decomposition, the inner component of
(18), (J−TLTKA)(J−TLTKA)

T, can be decomposed to obtain the
properties necessary to define an ellipsoid. From this process, the
eigenvectors and eigenvalues of the matrix can be obtained; these
are the orthonormal vectors corresponding to the principal axes of
the ellipsoid, and the corresponding magnitudes of these principal
axes are defined by the singular values.

In contrast to polytope representations, it is evident that there
are necessary assumptions embedded into the ellipsoid formulation
that violate physiological constraints. Namely, the resulting ellipsoid
has been mapped from a unit sphere in the muscle activation space.
These limitations are detailed in the discussion.

4 Comparison of methods and
representations

This section compares three different techniques: the ray-
shooting method presented in Carmichael and Liu (2013), the
strength polytope derived from Gouttefarde and Krut (2010) and
implemented in Skuric et al. (2022), and the strength ellipsoid
described in Petrič et al. (2019).

A musculoskeletal model comprising 50 muscles and 7 degrees
of freedom (DoF) Saul et al. (2015); McFarland et al. (2019) was
used to compare these approaches to generate strength and illustrate
their respective representations. For simplification, the model has
been reduced to 4DoF encompassing motions at the shoulder
(elv_angle, shoulder_elv, shoulder_rot) and elbow (elbow_flexion).
The computer model was modified from Saul et al. (2015) as
described by McFarland et al. (2019) to include an updated range
of motion at the shoulder, and ligaments models representing
the glenohumeral and coracohumeral ligaments. Furthermore, the
muscle model was updated with force-length and tendon curves
matching the original model’s respective curves (Millard et al.,
2013). This model was utilised with the OpenSim (Seth et al., 2018)
application programming interface via MATLAB (Mathworks,
Inc., Natick, MA, United States of America). This contains
and facilitates the calculation of physiological variables, such
as KA, L, and J, required for the estimating the force at the
end-point.

The limb dynamics are set to reflect the state of the human
upper limb during MVC, i.e., q̈ = q̇ = 0. The torque due to gravity
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possesses the effect of translating the centre of the representation
for both polytopes or ellipsoids, consequently it is omitted as
it does not alter the profile of the representation. Additionally,
it is well understood that muscle fatigue affects the output
capability of the human.Within literature, several models have been
proposed to predict fatigue (Xia and Frey Law, 2008; Ma et al., 2009;
Peternel et al., 2016), and such approaches have been employed
in human-robot collaboration frameworks (Lorenzini et al., 2019;
Peternel et al., 2019). In this work the effects of fatigue on limb
strength are ignored and assume that the limb is capable of
performing peak isometric strength, since the intent is to highlight
the differences between the methods and representations rather
than the effect of fatigue. Unless otherwise specified, the polytopes
generated using the ray-shooting method utilized the results
obtained from using HPSM to choose the ray directions for
easier comparison. In other words, the vertices from the HPSM
polytope are normalized to form the unit vectors used in the
ray-shooting method.

The presented results are based on conditions observed
during MVC and rely on commonly employed assumptions in
musculoskeletal models. This condition is utilised since MVC is
frequently employed when assessing the force generation capacity
of a muscle or muscle group, and can subsequently be used to
normalize EMG signals for obtaining a muscle activation. As
mentioned in 2.2, this assumes that the arm is static, i.e., q̈ = q̇ =
0, the tendons are rigid (Zajac, 1989), the torque due to gravity
is ignored since it is not a function of the muscle activation, and
activation dynamics are omitted (Anderson and Pandy, 2001). By
removing these factors, this work solely focuses on discerning the
differences between the methods employed during the process of
estimating end-point capability.

4.1 Effect of enforcing a unit circle input
space on strength capacity

A series of arm configurations with their corresponding MFME
is illustrated in Figure 3. This figure demonstrates how the ellipsoid
changes based on the configuration of the arm. In configurations
where the hand is situated in front of the torso, the arm is relatively
well configured to move in arbitrary directions (Figures 3A, B).
Hence the isotropy of these ellipsoids is relatively high compared
to when the hand is located outside of this region, as shown in
Figures 3C, D.

Figure 3D depicts the upper limb in a singular pose. It is well
known that the manipulability and the force ellipsoids will collapse
into orthogonal line segments for manipulators. Similarly, for this
arm configuration, the corresponding ellipsoid follows the same
trend and elongates along the structure of the arm. In this pose,
the force that can be sustained by the arm passes through the joints
and subsequently generates no torques supporting the resulting
ellipsoid.

4.2 Analysis of MFME and polytopes

From the vertices that form the polytope, the information
contained can be simplified to understand the directions of how the

FIGURE 3
Musculoskeletal model in four different poses with their respective
muscular manipulability ellipsoids. Higher ellipsoid isotropy is shown
in (A, B), compared to the isotropy in (C, D).

limb is capable of arbitrarily moving. For Figure 4, an ellipsoid is
generated using the vertices that form the polytope where a least-
squares approach1 is used to ascertain the general directions that the
limb is most or least capable.

For particular poses, it can be seen from Figure 4, that the axes
of the MFME ellipsoid are visibly misaligned to the polytope-fitted
ellipsoid. For the principal axis, this difference is noted to be 98°.
Additionally, the magnitudes associated with each principal axis of
the polytope-fitted ellipsoid indicate a better balance of strength in
all directions. This measure is based upon a measure of eccentricity

1 Ellipsoid fit: https://www.mathworks.com/matlabcentral/fileexchange/24693-
ellipsoid-fit
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FIGURE 4
Calculated ellipsoids generated for the pose of the musculoskeletal model shown. The MFME is shown in blue, and the ellipsoid generated from the
ray-shooting method polytope is shown in yellow.

FIGURE 5
Calculated ellipsoids generated for the pose of the musculoskeletal model shown. The MFME is shown in blue and scaled force ellipsoid in orange.

as described by Bayle et al. (2001), where the singular values of the
ellipsoids, obtained via singular value decomposition, are utilized.
For this measure, a value closer to 0 describes an ellipsoid that
resembles a sphere, indicating a better balance of strength in all
directions, while a value closer to 1 describes an ellipsoid that is
elongated along the principal axes, indicating a direction that is
better capable of generating force in than the other axes. From
Figure 4, the MFME ellipsoid possesses a value of 0.98, whilst the
polytope-fitted ellipsoid possesses a value of 0.97. Furthermore,
when comparing the magnitude of the principal axis of these
ellipsoids, the polytope-fitted ellipsoid possesses a radii value that
is 52% the length of the MFME ellipsoid.

4.3 MFME vs. force ellipsoid

Results from the previous analysis raised questions about
why there is such a difference in the methods. As a result, the
MFME is compared to a force ellipsoid commonly computed for
robotic arms. These methods are based solely on limb kinematics
(Yoshikawa, 1985).

Figure 5 compares the MFME and force ellipsoids. The results
demonstrate that the MFME is heavily aligned with the force
ellipsoid, with an angular difference of 16° for the principal axis,
which suggests theMFME is primarily governed by limb kinematics.

4.4 Effect of muscular impairment

Assistive and rehabilitation robotics that meet the needs of
users with physical impairment is an attractive use case for strength
models. Here, strength models are compared to represent the
change in whole-limb strength due to muscular impairment. For
this analysis, the impaired muscle groups are the biceps, triceps
and anterior deltoids. An impairment of each muscle group was
simulated by limiting the activation to 10% of their full capability,
and then a comparison has been made between the impaired and
non-impaired strength profiles.

4.4.1 Effect of muscle impairment on ellipsoid
properties

Observing the MFMEs in Figure 6, it is interesting to note that
the volume between the impaired bicep and tricep group is similar.
In particular, this is illustrated in Figure 6A–F. Since muscles have
the ability to “push” and “pull”, based on the activation unit-sphere
constraint implies that −1 ≤ a ≤ 1, an impairment on the bicep can
be compensated by the tricep and vice versa. The impairment of
the deltoid is much greater than that of the bicep or tricep when
comparing the difference in ellipsoid volumes, as highlighted in
Figures 6H,I. This observation can be attributed to the amount of
muscle force that can be generated by the deltoids’ antagonistmuscle
pair. From these illustrations, it is evident that the effect of this
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FIGURE 6
The effect of the muscular impairment on the muscular manipulability ellipsoid. The unimpaired ellipsoid is shown in grey, and the impaired muscle
groups are shown as follows: biceps in red (A–C); triceps in green (D–F); deltoids in blue (G–I).

impairment is capable of altering the direction andmagnitude of the
ellipsoid’s principal axes, changing the direction inwhich the human
is most and least capable.

4.4.2 Effects of impairment on force output using
polytopes

Unlike ellipsoids, polytopes are able to capture the effect of
removing one-half of an antagonistic muscle pair. For example, the
bicep is responsible for generating a joint torque about the elbow, and
its contractionwould cause the hand tomove towards the head of the
model. Thus, theoretically, if the agonist bicep muscle is impaired,
the force output about the elbow is reduced. This is supported
by the resultant polytopes in Figure 7 comparing unimpaired and
impaired profiles.

The impaired polytope profile better captures the result
of impairment when compared to ellipsoid representations.

Comparing Figures 6, 7, shrinkage is shown to occur on one
side of the polytope, whereas the ellipsoid has minimal shrinkage
since muscles can push and pull, allowing antagonist muscles to
compensate for the impairment. The difference between ellipsoid
and polytope representations is particularly strikingwhen impairing
the triceps. The polytope indicates a distinct loss of capability in the
opposite direction of the bicep, supporting the agonist-antagonistic
nature of the two muscle groups.

4.5 Consistency of polytope and
ray-shooting approaches

TheHPSMpolytope and ray-shootingmethods are compared in
terms of the consistency of the strength profiles they produce. First,
the ray-shooting directions specified using an evenly distributed
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FIGURE 7
Effect of muscular impairment on the force polytope from different viewpoints. The unimpaired polytope is shown in dark grey, the upper force limit is
shown in light grey where the grey circle corresponds to a radius of strength 300N, and the impaired muscle groups are shown as follows: biceps in
red (A–C); triceps in green (D–F); deltoids in blue (G–I).

FIGURE 8
Three sets of two polytopes are generated using different methods, illustrating the discrepancies that exist. For all plots, the HPSM polytope is shown in
yellow, ray-shooting method with the unit sphere discretized in cyan and a combination of the unit sphere discretized with the vectors representing
the vertices of the HPSM polytope in green.
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set of discrete directions are compared. The two polytopes, shown
in Figure 8 on the left, show the HPSM polytope being visibly
larger. The computation of the polytope volume shows a 12.5%
difference.

Second, the comparison is repeated, this time by using the
normalized vertices of the HPSM polytope as the directions for the
ray-shooting method. The two polytopes, shown in Figure 8 in the
centre, illustrate that by aligning the directions of the ray-shooting
method with the vertices of the HPSM polytope, an improved
consistency is achieved. In this case, a volume difference of 1.5%
is calculated. This still represents a significant difference in the
two methods.

The third comparison shown by the rightmost illustration in
Figure 8 depicts two polytopes generated from the ray-shooting
method. The difference between the two polytopes is a result of the
input vectors for the ray-shooting method. It is evident that the
choice of input vectors influences the resulting polytope. For the
polytopes shown in the figure, a difference of 5.5% is recorded.

5 Discussion

The results show that there are clear differences in the methods
used to calculate and represent whole-limb strength. For robotics
applications utilizing musculoskeletal models, such as designing
adaptive controllers for robotic rehabilitation, the choice of which
representation is utilized has the potential to change the functional
capability of the robot vastly. This is especially salient for robotic
systems aiming to provide assistance corresponding to individuals’
loss of muscular capability.

Naturally, a difference in strength values calculated based upon
(Carmichael and Liu, 2013) and the HPSM (Gouttefarde and
Krut, 2010) will exist as a result of different formulations. The
ray-shooting method presents the most accurate solution when
calculating strength values since the equations of motion are not
simplified. However, these strength calculations are limited to
discrete directions, and when sampling a large sample space, like
generating polytopes, the computational cost becomes intractable.
While variations like HSPM can provide exact solutions for a
complete strength representation, they struggle to enable real-time
applications due to their computational complexity. Additionally,
its current formulation makes assumptions regarding the equations
of motion, which may skew the results. Alternative ray-shooting
methods, which are adaptive based on a desired resolution or profile,
may lower the computational time. However, achieving a high-
accuracy polytope may reverse those computation time gains by
increasing the total number of computations. Specifying a high
precision for the proposed method in Skuric et al. (2022) results
in a polytope that approaches the HPSM-generated ellipsoid. The
discrepancy between methods could be a result of optimizing
for the bias torques and subsequently optimizing for the muscle
forces responsible for exerting the maximum output force whilst
(Carmichael and Liu, 2013) attempts to find a muscle activation
within a single optimization calculation.

Although the human upper limb is a highly redundant system,
simulations of muscular dysfunction across three muscles, i.e.,
triceps (long, lateral and medial) indicate that muscle dysfunction
can significantly affect the strength profile. It is particularly

apparent when examining the strength polytope, where polytope
shrinkage is asymmetrical and corresponds to the operation
of agonist-antagonistic muscle pairs. In contrast, the ellipsoid
representation appears to be relatively insensitive to modelled
muscular impairment, demonstrated by minimal changes for both
the ellipsoid volume and principal axes. This suggests that the
evaluated ellipsoid strength profile is unsuitable for representing the
change in whole-limb strength due to muscle dysfunction.

Strength results using the ellipsoid method were substantially
different from the other methods compared.This is not unexpected,
as significant assumptions and simplifications are required, limiting
their applicability. Ellipsoid methods assume a unit-norm input, in
our case, a unit-sphere of muscle activations. This is not a true
neuromuscular constraint when performing physical tasks, and
hence the strength profiles generated using the ellipsoid methods
cannot be treated as a high-fidelity or perhaps even a realistic
measure of whole-limb strength. In fact, this constraint implies that
muscle activations can be negative, or in other words, that muscles
can push to produce torque around the joint. This is obviously a
substantial simplification of the mapping from muscle activation
to joint torque. However, the simplicity and efficient computation
of the ellipsoid method possesses benefits. The representation
is particularly convenient for determining strength isotropy and
volume. It also makes visualization easier. The ellipsoid method for
calculating strength aligned closely with the force-ellipsoid method,
which is commonly used when analyzing robotic manipulators.
This suggests its suitability for use in applications dependent on
kinematics considerations.

A mathematical approach for evaluating human strength is
detailed in Section 2 and Section 3, and then applied in Section 4.
Based on the findings in Section 4, methods that employ principles
that closely align with human physiology and real-world physics
demonstrate results with the highest accuracy, capable of discerning
the effect of muscle dysfunction on a strength profile.

For applications that require a complete representation that
can run online, the method proposed in Skuric et al. (2022) is
ideal. These applications could involve assistance-as-needed control
schemes dictated by maximum or minimum strength over the
entire polytope.Alternatively, the assistance-as-needed systemcould
enhance human strength uniformly in all directions based on
the current pose that is exhibited by the human (Petrič et al.,
2019). A complete representation of strength can aid rehabilitation
practitioners in comprehending the impact of muscle dysfunction.
The ability to identify such impairments would subsequently aid
in guiding treatment (Baillargeon et al., 2022). Furthermore, an
understanding of overall human strength in varying poses enables
those working within ergonomics to make information driven
design choices for workflows.

High fidelity representations have been used for biomechanics
to study muscle redundancy (Kutch and Valero-Cuevas, 2011;
Sohn et al., 2019) and responses to stimuli (McKay et al., 2007).
In these works, highly accurate representations are convenient
for simulating human and animal capability when compared
with utilising cadavers. This enables rigorous studies that work
towards understandingmuscle coordination and quantifyingmuscle
dysfunction sensitivity.

In the case of analyzing muscle dysfunction visually, it can
be difficult to ascertain when viewing the entire polytope. It may
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be more useful to only view a slice of the polytope aligned
with anatomical planes such as the frontal, sagittal or transverse.
Although, it is possible to calculate an entire polytope to obtain
a profile, producing a profile using the ray-shooting method may
take less computational time. Similar to polytope representations of
strength, these profiles enable practitioners to develop programs that
target specific muscle groups, ensuring that other muscles are not
overcompensating for the impaired muscle.

Through the quantification of muscle capability, assistance-as-
needed control schemes or robotics rehabilitation devices can tailor
the user experience by adapting the level of assistance based on a
percentage of their estimated strength in a specified direction. The
ray-shooting method would be suitable if the system only needs to
determine the compensation required in a particular direction. In
this approach, both impaired and fully capable muscle models can
be utilized, enabling the optimization process to be called twice.The
resulting difference can then be employed by the control scheme to
determine an appropriate level of assistance.

For the ray-shooting method, an incomplete representation,
caused by too few sampled vectors, results in accurate point
estimates along those specific directions. For example, if the goal
was to produce a force profile representing a human applying
a force to a surface, the representation would reduce all other
directions to 0. However, if a uniformly sampled sphere is used
as the directions of interest but has too few vectors, then when
fitting a convex hull to these points, the polytope inaccurately reflects
endpoint strength along unsampled directions due to discontinuities
produced by the sparse estimates. Likewise, the approach proposed
by Skuric et al. (2022) yields a polytope accurate in selectively
optimized directions while exhibiting underestimated values in
unoptimized directions due to user-specified lower desired accuracy.
These underestimations are either a value of 0 since the vector is
not considered to be of interest or an inter-point surface estimate
based on the polytope representation. In an AAN framework,
these underestimations of the humans’ capabilities are likely to
trigger additional user assistance. Although robotic assistance has
been shown to benefit the human Skuric et al. (2022), it has been
postulated that if an operation is perceived to be too easy or
challenging for the human to accomplish, it is likely to result in a
reduced performance. Subsequently, usersmust ensure that the areas
of interest utilised, whether it may be for maximum or minimum
strength, reflect the capability of the human.

Unlike the polytope and ray-shooting methods, ellipsoid
methods struggle to capture muscular capability, and their
overestimation of muscle properties do not accurately represent
the magnitude or direction of muscle loss. These assumptions make
this representation easy to visualize and convenient for determining
the strength isotropy and volume. However, this makes ellipsoid
representations an unsuitable candidate for tasks that require high-
fidelity visualisations of strength. These representations can still
be applied for assistance-as-needed control paradigms that are
designed to provide assistance through an understanding of relative
strength (e.g., when assistance provided is a ratio related to themajor
and minor axes corresponding to the maximum and minimum
directions of strength, respectively).

Within biomechanics, ellipsoid models have been fitted to
experimental data obtained for the purpose of quantifying the
overall strength magnitude and isotropy (McKay et al., 2007;

Baillargeon et al., 2022). In this respect, the representation possesses
benefits based on its mathematical properties, similar to the MFME
representation. Unlike fitting an ellipsoid to measured data, the
MFME representation is heavily influenced by the kinematics of
the limb rather than the effect of the muscles. Consequently, users
should be mindful in its application. Since the representation is
visually aligned with representations for limb kinematics, it lends
itself well to understanding the natural stiffness of the arm and the
directions it is capable of resisting forces leveraging the geometry of
the limb (Ajoudani et al., 2017).

Further research is required to explore static and dynamic
optimization for the upper limb and to analyze the implications of
the parameter set, including factors like passive muscle forces and
activation dynamics. As previously stated, these factors were omitted
so as not to confound findings during the comparison. Additionally,
this paper does not provide comparisons with data obtained from a
user case study, however, the results presented provide similar trends
for the effect of muscle impairment when compared to Carmichael
and Liu (2013). In future, it would be of interest to investigate how
individuals perceive different representations in a physical human-
robot setup, utilizing an adaptive control scheme based on the
outputs of the strength modelling method. This research direction
would provide valuable insights into human preferences and needs
while providing an informed resource for facilitating improved
interactions between humans and robots.

6 Conclusion

Musculoskeletal modelling presents a promising avenue for
developing robotic systems that understand humans’ physical
needs. This paper outlines existing methods for calculating
and representing strength using musculoskeletal models. Three
prevalent methods for calculating and representing strength are
compared: Point, Polytope, and Ellipsoid. These methods are
compared to generate insight into human strength and how changes
in the model affect the representations produced. It then details
the differences and relative advantages of the existing methods,
discussing the appropriateness of each method for particular
applications.

The results demonstrated clear differences in the methods
compared, indicating that careful consideration is required when
choosing which methods to utilize in robotic applications. In
particular, the ellipsoid method produced substantially different
profiles than the other methods. This is attributed to the
simplifications and biomechanical inconsistencies intrinsic in
the ellipsoid representation. However, the ellipsoid method for
calculating strength was closely aligned with the force-ellipsoid
method, suggesting its suitability for use in applications is dependent
on kinematics considerations.

Both the point representation (using the ray-shooting method)
and polytope (using the HPSM method) showed alignment in
their results and captured the effects of muscular impairment on
whole limb strength. Small differences in strength results were
observed, warranting additional research into the implications of
both methods.
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