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The current paper proposes a hierarchical reinforcement learning (HRL) method
to decompose a complex task into simpler sub-tasks and leverage those to
improve the training of an autonomous agent in a simulated environment. For
practical reasons (i.e., illustrating purposes, easy implementation, user-friendly
interface, and useful functionalities), we employ two Python frameworks called
TextWorld and MiniGrid. MiniGrid functions as a 2D simulated representation of
the real environment, while TextWorld functions as a high-level abstraction of this
simulated environment. Training on this abstraction disentangles manipulation
from navigation actions and allows us to design a dense reward function instead
of a sparse reward function for the lower-level environment, which, as we show,
improves the performance of training. Formal methods are utilized throughout
the paper to establish that our algorithm is not prevented from deriving solutions.
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1 Introduction

In recent years, there has been a surge of effort and resources invested into what
was dubbed “Embodied AI” (Yenamandra et al., 2023b; a; Gao et al., 2022; Duan et al.,
2022), which is described as robotic agents that have the ability to exist in the real world
(have a body), learn from it, and interact with it. The overall goal of this field of AI is
to deliver robotic agents that carry out tasks, manipulate objects, and can serve people
in their daily routines. There are multitudes of challenges arising from this field, such
as navigation (Gervet et al., 2022), natural language processing (NLP) (Shridhar et al.,
2020a), simulation (Weihs et al., 2020), computer vision (Anderson et al., 2018), motion and
task planning (Garrett et al., 2021), manipulation challenges (Xie et al., 2019), challenges
involving all of these (Bohren et al., 2011), and even hardware limitations, just to name
a few. However, another perhaps often undervalued challenge is breaking down the
inherently complex language commands into simpler, more manageable, sub-commands
or “sub-tasks.” This is partly an NLP challenge and, at the same time, a task planning
challenge.
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1.1 Problem statement

Let us consider a case where the user issues a command to the
robotic agent in the form of natural language. This voice command
can easily be converted into text for the agent to process textual
data rather than sound. The agent would then need to map this
text command into robotic commands in order to execute it. The
command given is not based on a standardized set of commands
(e.g., “move forward” and “turn right”) but, instead, is based on
the common tongue and human understanding. This means that
depending on the complexity of the command, mapping it into
robotic actuation can prove a difficult objective. For example,
commands such as “grab the water bottle in front of you” is a
relatively simple task that, given proper NLP, involves a computer
vision task requiring to recognize the object “water bottle” currently
within the agent’s vision and amanipulation task requiring to grab it.
Relatively, that is, to commands such as “bring the water bottle” do
not clarify where the water bottle is. If not currently within vision,
the agent would need to search for it, adding the task of navigation.
Additionally, if there was a door or obstacle in the way of navigation,
another manipulation task would result from the command.

Conventionally, the mapping of the user command to robotic
actuations that the different tasks are comprised is done within a
neural network (NN) which is trained via reinforcement learning
(RL)1.TheNN, given the input, the user command, and the state it is
currently in, would output the actions to perform in the current time
step. If the actions performed led to a positive reward, the weights
of the network would be altered in a way that “reinforces” those
actions. In other words, as long as we can map the user commands
to rewards for specific goal states, NN will learn the mapping of
its input (state + user command) to its output (current actions to
take) in order to reach those goal states. For example, considering
the previous command “bring the water bottle,” the goal state would
be the agent holding the water bottle in front of the person who
asked. Automatically assigning rewards to goal states based on the
user command is one problem. However, despite assuming we have
amodule that does this, there is still the problem of sparse rewarding
remaining, i.e., before the NN is trained, it takes random actions
(exploration), and due to the complexity of the environment, it
might never (or very rarely) reach the goal-only sparse reward and,
therefore, might never (or very poorly) learn the correct actions.
Furthermore, it is important to note that, in our workspace, in most
simulations and in the real world, the agent needs to have the right
orientation and location before choosing the right pick/place or
open/close action. Therefore, even a simple space of 6 × 6 cells in
a grid environment (see Figure 4) can lead to a high number of
reward-less actions before the agent is rewarded, which can result
in extreme slow learning. Overall, robotic tasks tend to prove hard
in terms of constructing a reward function due to complex state
space representations and usually demand a human-in-the-loop
approach (Singh et al., 2019). This has been well-documented in
the literature (Kober et al., 2013) and results in sparse rewarding
(Rauber et al., 2021; Rengarajan et al., 2022) or even the binary goal

1 This is a simplification. The NN we mention could comprise different NNs
and other modules, but ultimately, this will be the box (black/gray/white) that
is trained and is responsible for mapping the commands to robotic actuation.

reward (1 if the goal state is reached and 0 otherwise). The same
is true in the case of embodied AI. Hence, dense rewarding is
desirable. We show that reward assignment in such cases can be
simplified with task decomposition by implementing an approach
that tackles these problems. Using formal methods, we guarantee it
can reach solutions, and we present proof-of-concept examples and
environment testing.

We argue that TextWorld is a Python framework that can
deal with the aforementioned challenges (Côté et al., 2019). Briefly,
TextWorld is an open-source text-based game developed by
Microsoft and aims to assist the development of NLP agents. In
TextWorld, every “world” is described in text form (hence, the
name), and the player can provide written commands to navigate
this world. The goal of the game is also described as text and often
entails pick-and-place objectives. Every environment has a goal
defined as a series of actions being taken where each action is a
string. We take advantage of the useful functionalities of TextWorld,
such as language understanding, textual representation of a state,
and most notably, an extendable knowledge base. The knowledge
base is a set of rules that is applied to the environments. It means
that we have some a priori knowledge about the context of every
environment and the “meaningful” interactions with the objects that
can be found in TextWorld. This knowledge contains information
about a limited amount of actions that are sensible to take (e.g.,
“grab the water bottle”) and excludes the rest (e.g., “eat the water
bottle”), which is pivotal to encode in our RL setup. Essentially,
the knowledge base reflects common sense reasoning, which is
necessary when we have object interaction and we cannot afford
computational resources to explore all possible combinations of
legal actions with existing objects. Moreover, it contains sufficient
information about the different ways of describing the same
command (e.g., “put the water bottle on the table” and “place
the bottle of water on the table” are the same commands written
differently)2. Afterward, the Python framework we chose as the
simulator for testing our method is MiniGrid. MiniGrid is a 2D
grid-world simulation that can be considered an abstraction of the
real environment. It is simple enough compared to TextWorld that it
only adds navigation actions to its complexity and has very similar
object interactions to it. Consequently, it not only leaves room
for lower levels of hierarchy (e.g., MiniWorld Chevalier-Boisvert,
2018) but also coherently proceeds with the higher level of our
hierarchy.

Our approach and embodied AI research, in general, can
have great implications in the flourishing field of human–machine
collaboration and, more specifically, industrial robotics. According
to the flowchart drawn by Konstantinidis et al. (2022), it could lead
to business opportunities (and we have already seen examples of
robot assistant products or pets (Keroglou et al. 2023), research
opportunities (as we have already seen advancement in RL research
that answers the high demands of robotic agents like massive
datasets inDeitke et al. (2022) and competitions), and lastly, the next
human-centered industrial revolution called “Industry 5.0” (that
emphasizes human–machine interaction). Othman et al. (2016) also

2 To be exact, there are verbs that TextWorld does not recognize and will
inform the player in such a case (e.g., “grab the water bottle” results in “This
is not a verb I recognize.” However, since the knowledge base is extendable,
one can add the verb “grab” as an alternative to “pick up.”
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shows the use of robots in advancedmanufacturing systems thatwill,
no doubt, be benefited by embodied AI research.

1.2 Related work

Our method is inspired by ideas in the areas of reward
engineering (Ng et al. (1999); Laud (2004); Toro Icarte et al. (2020)),
hierarchical reinforcement learning (HRL) (Dietterich et al. (1998);
Barto and Mahadevan (2003)), dense rewarding of sub-tasks
(Xie et al., 2019), and, most notably, from another TextWorld
implementation called ALFWorld (Shridhar et al., 2020b). To avoid
any confusion between these two similar works, we highlight the
differences and concurrently our contributions. In ALFWorld, the
BUTLER agent also incorporates TextWorld inside its framework
in order to learn abstract high-level actions before translating them
to low-level actions (inside the ALFRED-simulated environment).
Both works first train a TextWorld agent. The key difference lies
in the translation between TextWorld and the real problem. In
other words, ALFWorld directly translates the text–action output
of the agent to simulator actions, whereas we use the text–action
outputs of our agent to embed more rewards inside the simulator
and afterwards train a different low-level agent inside this now
reward-dense simulator. Since this approach enriches the simulated
environment, it is independent from the ML method and, thus,
can be more wildly adopted. Normally, an environment should
already possess reward-dense qualities to promote learning, but to
the best of our knowledge, a lot of embodiedAI challenges lack these
dense reward functions. For example, in the study by Yadav et al.
(2023), the distance-from-goal and a Boolean, indicating whether
the goal has been reached or not, are provided and can be used as
rewards, but it lacks sub-task rewards such as when obstacles are
avoided and when a room in the right sequence of rooms is reached.
In the recent Open-Vocabulary Mobile Manipulation (OVMM)
challenge (Yenamandra et al., 2023b), competitors can define the
pick reward and place reward for the pick-and-place tasks, but the
challenge could still benefit frommore reward definitions such as the
distance-from-pick and distance-from-place rewards and rewards
for “go to {room}” and “open/close door” commands (the last two
are possible in our setup). Perhaps this happens because optimal
action sequences (which would be the rewarded sub-actions) to
reach the required goal cannot easily be defined. Furthermore, sub-
optimal solutions should also be provided corresponding rewards,
which increases the complexity. Another key difference is that we
developed a holistic RL solution, meaning that low-level navigation
and manipulation actions are also learned through training in an
RL setup, whereas in ALFWorld, BUTLER uses the A* algorithm
for navigation, pre-trained models for object segmentation, and
other built-in algorithms for manipulation. Let us clarify here that
the manipulation actions taken by the RL agent in our setup are
of a higher level of hierarchy compared to ALFWorld (as for the
navigation actions, they are quite similar). When we execute the
manipulation action “pick up the bottle,” as long as the agent is next
to the bottle and faces it, then the bottle is placed inside the agent’s
inventory, whereas in ALFWorld, the agent executes relative arm-
movement actions before interacting with the object. Despite this
difference, RL agents are still preferred over standardized algorithms
since they can be trained to perform tasks the algorithms would fail,

either due to reaching their limits or because they are made to deal
with a subset of problems.

During the development of this work, new technologies surfaced
that are important to highlight and which could be beneficially
combined with our approach. Reliable large language models
(LLMs) such as ChatGPT (Liu et al., 2023) have emerged which
can reason human speech. It could be argued that ChatGPT’s
language understanding power and API can assist our current
“decomposer” (i.e., TextWorld). Since TextWorld is a text-based
description game, ChatGPT could quickly and reliably deduce the
right actions and greatly decrease the exploration needed inside
the TextWorld-dedicated RL agent. In short, it could be used as an
expert demonstrator. In another example, TaskLAMA (Yuan et al.,
2023) achieves general task decomposition via LLMs, but these
modules could not replace TextWorld since they would first need
an understanding/description of the environment the tasks are
based upon. 3D LLMs (Hong et al., 2023) achieve just this. In other
words, they extract textual descriptions from 3D features and can
perform task decomposition. However, the researchers did not use
the sub-tasks for enriching the simulations with rewards, and this is
where our novelty lies. Other times, researchers will often manually
decompose the problem, using their intuition, into sub-tasks and
construct dedicated rewards in order to improve training, as was
done by Kim et al. (2023), who split the pick-and-place task into
approaching the object location, reaching the object position and
grasping it.The current work is an HRL algorithm that performs the
following tasks:

1. Decomposes a complex command to its simpler components;
2. Automatically integrates those sub-commands into environment

rewards;
3. Learns to solve the reward-dense environment.

Similar ideas are used in the area of integration of task and motion
planning (ITMP). For example, a high-level planner is presented
by He et al. (2015), who solved a motion planning problem using a
framework with three layers (high-level planner, coordinating layer,
and low-level planner) but without applying reinforcement learning
techniques.

The mathematical framework of our work is based on the
implementation of formal methods. Formal methods were only
recently studied in reinforcement learning setups, aiming to
provide guarantees related to the behavior of the agent (Li et al.,
2016; Alshiekh et al., 2018; Icarte et al., 2018). A popular line of
work involves formal methods to provide safety guarantees. For
example, Alshiekh et al. (2018) introduced the concept of “shielded
reinforcement learning.” Specifically, they introduced safety rules
expressed as finite-state machines. Using formal methods, we prove
that in every case scenario, under generic and common assumptions
(Definition 4), our algorithm is not constrained to derive solutions
(Theorem 1). For practical reasons, we define and prove Theorem 1
by appropriately implementing two specific environments: a) a
simulated environment (i.e., MiniGrid) and b) an abstraction of this
environment (i.e., TextWorld). However, Theorem 1 can be proved
true for any two environments (where the one is an abstraction of
the other), which can be modeled as deterministic finite automata
(DFA) (Keroglou and Dimarogonas, 2020a).

We aim to present a solution that utilizes the TextWorld
framework to enhance the training in a simulated real-world
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environment for embodied AI. Our current work demonstrates
the efficacy of the aforementioned solution in the simulated
environment of MiniGrid. This work does not enhance simulations
currently used in embodied AI such as Habitat (Manolis Savva*
et al. (2019); RoboTHOR (2020)), and DialFRED (Gao et al., 2022).
Instead, it serves as preliminary grounds to showcase the benefits of
adopting it and to enable such extensions. The problem domain we
address is sparse rewards in embodied AI simulations by employing
complex task decomposition. In summary, our contributions are as
follows:

1. An RL module that decomposes complex text commands into
simpler sub-commands.

2. A holistic RL solution that empirically shows the advantages of
dense-reward environments by leveraging the aforementioned
contribution.

3. Proof, based on formal methods, that there exists a solution for
our methodology.

All in all, with this paper, we first discussed the necessity
of adequately solving sparse RL problems, then we propose an
automatic and mathematically rigorous way of dividing the task
at hand into “solvable” sub-tasks that will guide rewards, and,
finally, we empirically demonstrate the performance improvements
in an appropriate RL environment within a simulation framework.
The paper is developed as follows: Section 2 presents important
mathematical notions needed for the development of the material
presented in the following sections and formally describes our
methodology in detail; and Section 3 presents simulations 1)
illustrating our method to a running example and 2) comparing
our RL setup guided by a dense reward function that exploits task
decomposition, with anRL setup guided by a simple reward function
(without task decomposition). Finally, possible future extensions of
our work are discussed in Section 4.

2 Materials and methods

In this section, we develop our methodology. First, we revisit
the appropriate mathematical definitions (i.e., Markov decision
processes (MDPs) in RL setups and finite-state automata) that are
essential for understanding the TextWorld and MiniGrid automata.
Later, we define the DFAs that describe our two simulation
modules and briefly define the multiple choice user interface
(MCUI) we constructed. These definitions summarize the essence
of our methodology which we use to define the RL problem with
mathematical notations. Finally, we prove that, using our method,
the agent will not reach terminal states that are not goal states, and
thus, a solution always exists. First, our objective is to train an agent
capable of finding the solution of a complex user-defined task using
reinforcement learning techniques. Part of the solution involves the
automatic optimal decomposition of the complex task given by a
user to a set of simpler sub-tasks that the agent needs to sequentially
satisfy.We formally describe our solution as follows (see Figure 1 for
the corresponding diagram):

1. An MCUI is implemented to express the user-defined task (see
Section 2.5).

2. An abstraction of the workspace (of MiniGrid) is defined in
TextWorld (see Section 2.4).

FIGURE 1
The proposed concept consists of i) a multiple choice UI (MCUI) which
captures a user-defined task, ii) the TextWorld framework which is
used to decompose the user-defined task into a set of simpler
sub-tasks, and feeds iii) an RL setup in a simulated environment (in our
example, MiniGrid) with an appropriate reward function.

3. An RL problem (RL–TextWorld) is formulated with a user-
defined task interpreted as a goal state (see Section 2.6).

4. An RL–MiniGrid problem (see Section 2.7) is formulated
with a dense reward function derived from the solution of
RL–TextWorld.

5. The performance of a PPO (Schulman et al., 2017) agent that
solves the RL–MiniGrid problem is evaluated for the cases of
dense and sparse (i.e., without exploiting the structure of the
complex task) reward functions.

The following should be noted: the command requested as input
by the user is a pick-and-place type command and must be in the
specific form described in Section 2.5. The user can pick from a list
of available items inside the house setting that are displayed in text
form via MCUI before training starts. The TextWorld environment
must be an accurate abstraction of the simulated environment.
Dense rewards are embedded automatically to MiniGrid, given the
TextWorld output.

Hereafter, we use the abbreviations “TW” and “MG” for the
words TextWorld and MiniGrid, respectively. The entirety of our
code can be found inGitHub3, as well as a notebook filewhich allows
anyone to reproduce the results shown in Section 3 with Google
Colab4.

2.1 Markov decision process of an RL setup

In a reinforcement learning setup, an agent is guided by
appropriate rewards in order to learn a policy that maximizes the
total return. In such a setup, the environment can often be modeled
by an infinite Markov decision process, which is formally defined as
follows.

3 https://github.com/AthanasiosPetsanis/DiplomaClone

4 https://github.com/AthanasiosPetsanis/DiplomaClone/blob/main/Main.
ipynb
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Definition 1: Markov decision process (Li et al. 2016). An infinite
MDP is a tuple (S,A,p(., ., .),R(.)), where

• S ⊆ Rn is a continuous set of states;
• A ⊆ Rm is a continuous set of actions;
• p: S × A × S → [0, 1] is the transition probability function with
p(s,a, s′) being the probability of taking action a ∈ A at state
s ∈ S and ending up in state s′ ∈ S (also commonly written as a
condition probability p(s′|s,a);
• R: τ→ R is the reward function which is defined in general for
state–action trajectory τ = (s0,a0,… , sT), where T is the finite
horizon (i.e., maximum number of finite steps).

The goal of a reinforcement learning problem is to find
an optimal stochastic policy π*: S×A→ [0,1] that maximizes
the expected accumulated reward, (i.e., π* = argmaxπ (Epπ(τ)[R(τ)]),
where pπ(τ) is the trajectory distribution from following policy π,
and R(τ) is the reward obtained, given τ). The transition p(s,a, s′) is
usually unknown to the learning agent.

2.2 Finite state automaton (FSA)

In the case studied in this paper (TW and MG environments),
there is no uncertainty regarding the outcome of the executed action
(deterministic setting). This allows us to express the workspace,
along with the dynamics of the agent as a finite state automaton
(FSA) (Keroglou and Dimarogonas, 2020b) and, in particular, as a
deterministic finite automaton (DFA), which is defined as follows:

Definition 2: Deterministic Finite Automaton (DFA). An FSA is
captured by G = (X,Σ,δ,x0,F), where

• X = {1, 2, … , N} is the set of states;
• Σ is the set of events (i.e., actions);
• δ: X × Σ → 2X is, in general, a nondeterministic state transition
function, and FSA is called a nondeterministic finite automaton
(NFA). In the simpler case, where δ: X×Σ→ X, we call
it a deterministic transition function, and FSA is called a
deterministic finite automaton orDFA. For a set Q ⊆ Xand σ ∈ Σ,
we define δ(Q,σ) = ⋃ q∈Qδ(q,σ). Function δ can be extended
from the domain X×Σ to the domain X×Σ* in a recursive
manner: δ(x,σs) ≔ δ(δ(x,σ), s) for x ∈ X, s ∈ Σ*, and σ ∈ Σ (note
that δ(x,ɛ) ≔ {x});
• x0 is the initial state; and
• F is the set of accept states.

2.3 Simulated environment expressed in
MiniGrid

Definition 3: The simulated environment is captured in MiniGrid
(grid workspace) by a DFA G = (Xg,Σg,δg,X0,g,Fg), where

• Xg= {pa, o1, … , on} is the set of states, where

• pa = (wa,ha)is the position of the agent expressed as the cell
(wa, ha) in anM×Ngrid, where 1 ≤ wa ≤M, 1 ≤ ha ≤ N, and
• oi = (pi,ci)are the properties of the object obji ∈ O,
O = {obj1,… ,objn}, where

– piis the position of objiand
– ci = (carry(i), type(i),prop(i))is the configuration of obji.

The elements of ciare
∗ carry(i),a function that indicates if the object is carried

by the agent;
∗ type(i)that indicates the type of the object (1 for

movable objects, 2 for containers, and 3 for support
objects); and
∗ prop(ithat indicates if the object is open or closed

(prop(i) = 1or prop(i) = 0, respectively). For all objects
that we cannot open or close, prop(i) = 0

• Σg = ΣN,g ∪ ΣM,g is the set of actions, where
• ΣN,g = {turn right, turn left, move forward} is the set of
navigation actions for G; and
• ΣM,g = {pick, drop, toggle} is the set of manipulation actions
for G
• δg : Xg ×Σg → Xg is the deterministic transition function.
• x0,g is the initial state and
• Fg =Xg is the set of A states (i.e., the goal-states we are attempting
to reach).

Definition 4: Weassume the following for the simulated environment
in MiniGrid. Assumptions A1–A4:

A1) All objects (movable, support, and containers), rooms, doors, and
connections between rooms are already identified.

A2) A room r is mapped to a set of cells in MiniGrid
Ar = {(w1,r,h1,r),…,(wmr,r,hnr,r)}, where for 1 ≤ i ≤mr,
1 ≤ j ≤ nr (wi,r,hj,r) is a cell in the M×N grid. We also define
the set Ar,f ⊆ Ar of all free cells that belong to a room as the cells
where no support objects are placed.

A3) All free cells (Ar,f) that belong to the same room are connected.
This is formally defined as follows: for all objects, for any
legal object configuration ci, and for any pair of states
xi = (pa,i,o1,… ,on) ∈ Xg, with pa,i = (wa,i,ha,i) ∈ Ar,f, and
xj = (pa,j,o1,… ,on) ∈ Xg with pa,j = (wa,j,ha,j) ∈ Ar,f, there exists
t ∈ Σ*

g, such that δg(xi, t) = xj and t′ ∈ Σ*
g such that δg(xj, t′) = xi.

A4) A connection between two rooms in MG (e.g., room A is
connected to room B) means that considering that the door that
connects the two rooms is open, then, for all objects, for any legal
object configuration ci, there exists a pair of states xi,xj ∈ Xg,
where pa,i = (wa,i,ha,i) ∈ ARA, f and pa,j = (wa,j,ha,j) ∈ ARB, f and a
path t ∈ Σ*

g, s.t. δg(xi, t) = xj.

We can easily create simulated environments in MG that follow
the aforementioned assumptions. Specifically, for A3, we simply
neither want to have isolated areas of free cells of the same room5

nor do we want, with A4, to obstruct the transition between rooms.

2.4 Abstraction in TextWorld

The finite abstraction of the real workspace can be expressed
in TW by incorporating the information from A1 and by defining

5 Note that only support objects or walls can cause a possible isolation, and
the agent can move to a free cell in which a movable object is placed (i.e.,
dropped).
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FIGURE 2
Overview of the workspace, where labels are assigned to important
elements of the environment.

an appropriate environment state and transition function. We can
replace TW abstraction with any other abstraction of the simulated
environment which can be modeled as a DFA.

Definition 5: Environment state in TextWorld (Côté et al. 2019). A
game state s ∈ S is a set of true logical propositions s = (p1,… ,p|s|). For
example, a logical proposition is p≔“The apple is inside the fridge.” For
illustration purposes, we define the environment state using a running
example.

Example 1: We have the following example, which is shown in
Figure 2. In our example, we have

1. The set of different rooms R = {RA,RB};
2. The set of movable objects M = {apple};
3. The set of containers C = {fridge,door}; and
4. The set of objects that support other objects Sup = {table}.

The initial state is s0 = (p1,p2,p3,p4,p5,p6), where p1,p2,p3,p4,p5,and
p6 are the following logical propositions: p1 ≔“The fridge is at RoomB,”
p2 ≔“The fridge is closed,” p3 ≔“The agent is at Room A″, p4 ≔“The
door is closed,” p5 ≔“The table is at Room A,” and p6 ≔ “The apple
is inside the fridge.”We revisit now the set of logical rules provided by
Côté et al. (2019) (i.e., the existing knowledge base6) for environments
that belong to Theme:“Home.”

Definition 6: Knowledge base. For c ∈ C, r ∈ R, sup ∈ Sup, and
m ∈M, we have the following set of logical rules for our problem:

i. open(c) ≔ {at(P, r) ∧ at(c, r) ∧ closed(c)} ⇒ opened(c)
ii. close(c) ≔ {at(P, r) ∧ at(c, r) ∧ opened(c)} ⇒ closed(c)
iii. take(m,c) ≔ {at(P, r) ∧ at(c, r) ∧ in(m,c)} ⇒ in(m, I)
iv. take(m, sup) ≔ {at(P, r) ∧ at(sup, r) ∧ on(m, sup)} ⇒ in(m, I)
v. put(m, sup) ≔ {at(P, r) ∧ at(c, r) ∧ open(c) ∧ in(m, I)} ⇒ on(m, sup)
vi. insert(m,c) ≔ {at(P, r) ∧ at(sup, r) ∧ in(m, I)} ⇒ in(m,c)

Example continued: The initial state (s0 = (p1, p2, p3, p4, p5))
is expressed using the following logical propositions: p1≔at( fridge,
RB), p2≔closed( fridge), p3≔at(P, RA), p4≔closed(door), p5≔at(table,
RA), and p6≔in(apple, fridge).

6 The knowledge base can be easily extended by adding extra rules.

The abstraction in TW can be expressed as a DFA
TextWorld = (S,Σ,δT,x0,T).

Definition 7: For DFA TextWorld = (S,Σ,δT,x0,T), we have

i. The set of environment states in TW  s ∈ S (Definition 4).
ii. The set of actions, Σ = ΣM ∪ΣN, where

– ΣM = {open(c1),open(c2),…, take(f1,c1),…,} is the set of
manipulation actions for TW and

– ΣN = {go west,go east,go north,go south} is the set of
navigation actions for TW.

iii. The transition function δT(x,σ) = x′, for x,x′ ∈ S, and σ ∈ Σ is
described using the aforementioned logical rules that are stored in
the knowledge base and define what is possible in the game.

iv.The initial state x0,T = s0.

It is noteworthy that in this environment, the location of each
object is the room the object is in and not a set of grid coordinates
like the previous state. In this way, the constructed TW environment
abstracts the concept of room distance found in MG and greatly
simplifies the problem. Sub-tasks such as “go to the bedroom” can
be rewarded in MG only after the agent reaches that room and not
as the agent approaches it. In other words, actions that do not reach
the sub-task state, such as movement, do not receive a reward.

2.5 Multiple Choice User Interface

We consider user-defined tasks in an MCUI. In our framework,
a user defines the task specification as a triplet task = (obj1,obj2, loc),
where obj1 ∈M is an object that can be picked up/dropped off
and carried by a mobile robotic platform (e.g., a bottle of water),
obj2 ∈ Sup is a support object (e.g., a table) on/at which the
movable object (defined in 1) can be placed in loc ∈ R, which is a
location which is the destination for the movable object (obj1). The
information from MCUI (i.e., task) is used to identify all goal states
in a reinforcement learning problem expressed in TW.

Definition 8: The set of goal states for a task specification
task = (obj1,obj2, loc), where obj1 ∈M, obj2 ∈ Sup, and loc ∈ R, is
Stask = {s = (p1, p2, … , p|s|) ∈ S: ∃[pi≔at(P, loc)] ∧ [pj≔on(obj1,
obj2)] ∈ s}. The reward for all s ∈ Stask is R(s) = 100+

100
n
, where n is

the number of the total steps needed for the agent to reach state s.We
attempt to find the shortest path that leads to a goal state.

2.6 Reinforcement learning problem
formulated in TextWorld (RL–TextWorld)

Essentially, a reinforcement learning agent in TW explores the
DFA TextWorld = (S,Σ,δT,x0,T).

The RL problem is terminated when the RL agent reaches a
state s ∈ Stask. The sequence of actions that leads the agent to that
state is σ[1]σ[2]…σ[n], and the corresponding state trajectory is
s[0]s[1],…, s[n], where s[0] = s0 and s[n] = s, and for i ∈ {1,n}, we
have s[i] = δT(s[i− 1],σ[i]).

Example 1: We specify the task “Put the apple on the table,” which
is formally defined as the triplet task = (apple, table, RoomA).
Solving the RL problem in TextWorld (see Section 4.1), we obtain
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the following action sequence: σ6 = σ[1]σ[2]σ[3]σ[4]σ[5]σ[6], where
σ[1] = open(door), σ[2] = go east, σ[3] = open( fridge), σ[4] =
take(apple, fridge), σ[5] = go west, and σ[6] = put(apple, table).

2.7 Reinforcement learning problem
formulated in MiniGrid (RL–MiniGrid)

In a simulated environment captured by DFA G (introduced in
Section 2.3), we formulate the RL–MiniGrid problem, which is guided
by a dense reward function Rd as follows:

a) We automatically merge sequentially executed navigation tasks,
with a successivemanipulation task, producing a new task sequence
σ′[1]σ′[2]…σ′[n′], where n′ ≤ n. For example, σ[1]σ[2] =
( go east) (open( fridge)) is merged to σ′[1] = open( fridge).

b) For an action σ′, a state xp = (wp
a,h

p
a,o

p
1,…,o

p
k) ∈ XG (the previous

state, before the execution of σ′) and state xc = (wc
a,hca,o

c
1,…,o

c
k) ∈

XG (the current state, after the execution of σ′), we define the
following set of rules Rules = {R1.1,R1.2,R2.1,R2.2,R2.3}:
1. For a container object oi ∈ C, we have
1) R1.1 which is satisfied if (σ′ = open(oi)) ∧ (propp(i) = 0)
∧ (propc(i) = 1);

2) R1.2 which is satisfied if (σ′ = close(oi)) ∧ (prop
p(i) = 1)

∧ (propc(i) = 0).
2. For a movable object om ∈M, a container or support object

oj ∈ C∪ Sup, a container object oi ∈ C, and a support object
os ∈ Sup, we have
1) R2.1 which is satisfied if (σ′ = take(om,oj)) ∧ (carryp(m)
= 0) ∧ (carryc(m) = 1);

2) R2.2 which is satisfied if (σ′ = put(om,os)) ∧
(carryp(m) = 1) ∧ (carryc(m) = 0) ∧ (pcm = p

c
s);

3) R2.3 which is satisfied if (σ′ = insert(om,oi)) ∧
(carryp(m) = 1) ∧ (carryc(m) = 0) ∧ (pcm = p

c
i ).

c) We compute the dense reward function, as shown in Algorithm 1.
In particular, we are inspired by ideas used by Mataric (1994)
applied to a problemwithmultiple sub-goals. In our case, we use the
number of remaining sub-tasks as a metric to measure the progress
toward the user-defined task.

2.8 Proof that the hierarchical RL algorithm
can derive solutions

Theorem 1: If we have a DFA G in MG, its abstraction is expressed
as a DFA-TW, and the assumptions A1–A4 hold, then we prove that
RL-TW does not restrict the RL-MG from deriving solutions.

Proof 1: The following lemmas are based on A1–A4:

Lemma 1: i) A manipulation action that involves an interaction
with obji changes only configuration ci (of obji) and ii) a navigation
action changes only the position of the agent (pa) and the position
of the objects that the agent is carrying.

Lemma 2: If room A is connected with room B and the door that
connects them is open, then the agent can reach any free cell in room
B (ARB, f) starting from any free cell in roomA (ARA, f), executing only
navigation actions and vice versa.

Lemma3: Theexecution of amanipulation action (ΣM,g) is required
for the satisfaction of a rule.

Lemma 4: Between two successively satisfied rules ∈ Rules (Rule[k]
and Rule[k+ 1]), we do not need to execute any other manipulation
action.

Lemma 5: If we are at a state where Rule[k] is satisfied and
Rule[k+ 1] is not satisfied yet, thenwe can always reach a state where
Rule[k+ 1] can be satisfied by executing only navigation actions
(ΣN,g).

A sequence σ′[1]…σ′[n′] (sequentially satisfied sub-goals) is
given as input to the RL-MG problem to restrict its solutions to only
those that sequentially satisfy the rules Rule[1]Rule[2]…Rule[n′],
where Rule[k] ∈ {R1.1,R1.2,R2.1,R2.2,R2.3} corresponds to the
conditions satisfied for σ′[k].

Lemma 1 allows us to argue that manipulation and navigation
actions are completely disentangled, and they affect different
properties of the agent and/or objects present in the environment.
From Lemmas 3 and 4, we argue that the sequence of the
manipulation actions that we need to execute is the one that
sequentially fulfills the conditions of Rule[1]Rule[2]…Rule[n′].
Moreover, from Lemma 5 (which is based on Lemma 2), we also
argue that sequences of only navigation actions are executed in-
between the satisfaction of successive rules. Concluding our proof,
it is easy to argue that any sequence of sub-goals (from RL-TW)
that is provided as input to the RL-MG problem does not restrict
the problem from deriving to solutions7

Theorem 1 can be easily generalized to be true to all other
environments, which can be expressed as DFAs. The analysis can
be done similarly as it is illustrated in this proof for TW and MG
environments.

3 Results

Our proposed methodology is applied to the running example.
The results are shown in Sections 3.1, 3.2. Next, we run the previous
example with the same hyperparameters at different levels of
difficulty. These results demonstrate the increasing need of dense
rewarding even in such relatively simple environments.

3.1 Running example: TextWorld
framework (RL-TW)

First, we construct the simulation of the example (Figure 2)
in the MG environment (Figure 4) with the aforementioned
assumptions (see A1–A4). Then, we construct the abstraction in
TW, as shown in Figure 3. The user interacts with a text-based
interface (Section 2.5). Specifically, we ask the user to input the
desired movable object in the desired location and on the desired
supporter object. In our example, the movable object is “Apple,”
the location is “Room A,” and the supporter object is “Table.” We
continue by automatically constructing the goal state, i.e., “place

7 The more general case of nondeterministic models, like general MDPs, is left
for a future work.
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FIGURE 3
(A) The player/agent is set into room A, and a door is added to the corridor connecting the rooms A and B. Supporter and container items are added to
each room, and the remaining items are added on the floor, on top of supporter items, or inside container items. The graphical representation given
here is not part of the game, which is text-based. (B) Training with the Q-learning agent in TW. X-axis-left (blue) is the average number of actions taken
in the span of every 10 episodes in the y-axis. X-axis-right (orange) is the exploration that indicates the probability the action taken is random instead of
policy-based and decreases with every iteration (as the agent learns).

FIGURE 4
(A) Simulation environment of MG for the running example. The green square is the table, the yellow block is the door, the blue container is the fridge,
which has a red ball inside (i.e., the apple), and the red arrow is the player. The black blocks are empty cells, the gray blocks are walls, and the key (only
present in the hard environment shown in Figure 6) is self-evident. (B) Results of MiniGrid training. The x-axis is the average return of 16 episodes every
run for 300 runs ( y-axis), which we call epochs. The results with (blue) and without (red) our method are shown. The shaded region around the lines
indicates the standard deviation. The maximum return of sparse-rewarding reaches lower than that of dense-rewarding since it lacks the sub-task
rewards.

apple on table” while situated in room A. Training in TW via a Q-
learning algorithm (Watkins and Dayan, 1992) is run for a total of
1,000 episodes with a maximum of 400 steps each. In each step,
the agent takes an action, and the episode ends whenever the agent
reaches the goal or when the maximum number of steps is reached.
At the end of the training, the agent is evaluated by being tested in
the same environment (reliant only on its policy, unaffected by the
exploration), and the following actions are produced:

Open door→ go east→ open fridge→ take apple from fridge
→ go west→ put apple on table.

This is the optimal solution,meaning that there is no shorter task
path than this. This result shows that TW efficiently decomposed

our example command into sub-tasks. The illustrated example is
the medium-difficulty environment. For the purpose of showing
the limitations of sparse rewarding, we test our method in three
different levels of difficulty (easy, medium, and hard). The other
two are shown in Section 3.3. Although training here requires
a high number of iterations, the training time does not surpass
1 min. The spikes observed during training are caused by the
decaying exploration value which reaches a minimum of 0.05,
which corresponds to a 5% chance that the action taken is random.
However, during evaluation, when the agent takes actions based on
its policy, the actions are the minimum required. The same is true
for the figures of the easy and hard difficulties (Figure 5).
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FIGURE 5
(A) Environment and training for the easy version of the example in TW and (B) environment and training for the hard version of the example in TW.

FIGURE 6
(A) Environment and training for the easy version of the example in MG and (B) environment and training for the hard version of the example in MG.

3.2 Running example: MiniGrid framework
(RL-MG)

Reward function in MG is designed using Algorithm 1
(exploiting TW training). Training in MG uses the PPO algorithm
(Schulman et al., 2017). The MiniGrid training scripts allow for
the use of the A2C algorithm (Mnih et al., 2016) as well. Exactly
because we wanted to highlight that our approach is decoupled
from the underlying RL algorithm, we did not perform any
particular performance analysis on the available algorithms. On the
contrary, we utilized the “go to” option for the RL problems with
discrete actions, which is the PPO approach, without modifying a
thing. Of course, and if needed by the actual robotic application,
one could utilize different algorithms or perform hyperparameter
tuning to acquire better (more tailored to the problem at hand)
solutions. We also included a LSTM network (Hochreiter and
Schmidhuber, 1997) in the agent neural network to introduce
memory. Specifically, during training, the agent remembers the last
eight actions performed. Training occurs over 16 environments
running in parallel for 300 episodes each. The environments differ
only in the randomness of their exploration. Each episode lasts for
a maximum of 128 steps or until the agent reaches the ultimate
goal (i.e., the user command). We plot the average return of
the 16 environments every episode. More details regarding the
hyperparameters of training are given in Appendix A.

Figure 4B shows the result of the medium-difficulty
environment. This environment has a total of four sub-tasks due to
the sub-tasks “go east” and “go west” being fused with manipulation
actions, as mentioned in Section 2.7.This result shows that the agent

with our method greatly outperforms the agent without it, for the
running example. The difference in the peak return in Figure 4B
and Figure 6 between the two lines is due to sub-tasks adding
more rewards with our method and should not be confused with
performance. Instead, performance should be judged based on the
number of epochs until each agent reaches saturation (i.e., learns
the solution).

3.3 Additional runs

In order to better test results with and without our approach,
we examined two more iterations of the previous example. The first
one is the easy version, and the second, the hard version. The easy
environment decreases the number of sub-tasks to just two, while
the hard environment increases them to five by adding the “take key”,
“open door” and “open” sub-tasks (unlocking the door is assumed to
happenwithin the “open door” sub-task) and also increasing the size
of the overral grid to 7 × 7. Again, as in the example, we show the
TW environment and training (Figure 5) andMG environment and
training (Figure 6) but now for the a) easy and b) hard difficulties.

Thehard environment shown in Figure 6B is one sub-task harder
and a little larger than the medium environment in Figure 4A.
As shown in the graphs, this difference is enough for the PPO
agent to reach its limits and never reach the goal. These versions
show that in very simplistic environments, our method does not
provide substantial improvement, but in the case of a more complex
environment (still far less complex than the real world), it is crucial.
The standard deviation spikes that appear at the start ofMG training
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Algorithm 1. Computation of the dense reward function Rd-subroutine.
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(Figure 6; Figure 4) are due to the 16 environments running in
parallel that converge at different times as a result of the randomness
in exploration. On the other hand, the lack of spikes during the
middle and end of the training indicates that all environments
converged to the same solution, which we checked to be the optimal.

Training also presented some challenges. We chose Q-learning
since it can be much faster in simple problems. Despite this, the
trade-off is that as the number of feasible states and feasible actions
increases, the size of the Q-matrix also increases proportionally
which, in turn, increases the time it takes for the weights to be
updated and the overall training time. It became painstakingly
clear that Q-learning without a neural network will not suffice in
more complex environments. In an effort to reach convergence,
we experimented with negative rewards provided to irrelevant
actions. Our code still has that option, but after some fine-tuning
of hyperparameters, we concluded that this was not necessary.

4 Discussion

Section 4.1 summarizes themain points of our work. Section 4.2
discusses the shortcomings of our work; Section 4.3 presents the
implications, while Section 4.4 discusses possible directions we
consider worthwhile pursuing.

4.1 Conclusion

It is self-evident that even in such an elementary and minimal
environment compared to the real world, home agents require
guidance from dense reward functions to learn to carry out
complex tasks. Task decomposition is an easy-to-use approach for
introducing those dense rewards. We formulated a method that
can be used to improve training in embodied AI environments by
harnessing the task decomposition capabilities of TW, proved it can
provide optimal solutions in our framework, and demonstrated its
efficacy in MG. A shortcoming of the proposed method is that, for
every simulation environment, a TW environment must be built
manually, which can be quite arduous.

4.2 Limitations

HRL algorithms have shown to speed up many offline planning
algorithms (Sacerdoti, 1974; Dean and Lin, 1995), where the
dynamics of the environment are known in advance. However,
in the real world, pre-existing knowledge about the environment
is not always possible. Even worse, many times, the environment
is dynamic. Current embodied AI simulators do not take into
account dynamic variables and consider the environment static
and, sometimes, known. This is the case in our setup as well.
Every time the environment changes, we would need to retrain our
agent. Theoretically, trained in large, diverse datasets, the agents
could develop a problem-solving policy that handles all possible
environments. Even if we consider the real environment to be a
white box, another limitation is that we currently need to manually
construct it inside the simulator and then inside the levels of
abstraction.

Yet another limitation is the assumption of deterministic setups
(also commonly found in simulations). In other words, instead
of specific actions leading to specific states (based on the current
state), they could lead to different states in a stochastic manner. For
example, in real-world scenarios, a robotic agent might fail to grasp
the bottle of water due to noise or errors, leading to the same state
it was in previously instead of the state with the bottle inside its
inventory. Theoretically speaking, we can extend our definition to
support stochasticity.

4.3 Implications

For robotic tasks specifically, HRL is a powerful tool to simplify
the complete challenge. In many applications, researchers break
down the challenges to distinct tasks that are easier to manage,
removing the need for a global RL agent to disentangle them on its
own. If the vision of a complete embodied AI agent is to be realized,
it will encompass multiple modules, each handling a different task
and a robust training dataset. The task decomposition itself is
important since it can become complicated and arduous if done
manually, butwithout proper rewards for each sub-task, themodules
will not be trained adequately. Therefore, our method (with the
right adjustments) that decomposes the problem in order to assign
rewards can prove to be a big boost to any attempt at an embodied
AI agent. For a broader use, we would need to define a general
deterministic finite automaton (or multiple with slight variations)
that applies to existing popular simulators and then, a compatible
code that would automatically apply the resulting sub-task reward
from TW to that simulator. Lastly, for handling dynamic cases, we
would need to extend to an NFA.

Moreover, our experiments could be used in reference to
emphasize the adverse performance of sparse rewards even in
simplistic problems or for demonstrating TW task decomposition
capabilities. The current work can also be adopted, as is, for finding
a task plan and then finding more fine-grained navigation actions.
In other words, a more advanced simulation can be placed on top
of our work which will benefit from sub-tasks or sub-actions of TW
and MG, respectively.

4.4 Future work

For future work, we aim to make the process of constructing
an abstraction of the environment automatic. Additionally, our
lowest level of hierarchy might be far from being characterized
realistic, but replacing it with a simulator that allows more low-level
robotic actions such as Habitat (Manolis Savva* et al. (2019)) only
requires the manual abstraction of the environment and adapting
to the reward-assigning module. Alternatively, MG could stand
as the second level of hierarchy that helps with the enrichment
of the third lower-level environment for additional navigation
actions. Another direction that we are interested to pursue is using
temporal logic to specify the complex task and design the reward
function. Extensions of this work will also explore more general
setups.

The upcoming Habitat challenge of 2023 (Yenamandra et al.,
2023a) has Open-Vocabulary Mobile Manipulation (OVMM) tasks
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(the goal is a text description instead of coordinates), and they
access the partial success of sub-tasks, which means it is possible
that they can provide rewards for those sub-tasks as well. However,
these are limited to the tasks quote-on-quote “1) finding the target
object on a start receptacle, 2) grasping the object, 3) finding the
goal receptacle, and 4) placing the object on the goal receptacle (full
success).” Our approach could enhance the sub-tasks even more
by introducing sub-tasks like “go to the {room}” where {room}
can be replaced by existing rooms (i.e., bedroom, living room, and
toilet). Moreover, MG could introduce navigation sub-tasks such
as “go forward” and “turn right.” We intend to adapt our method
to the environments of this and future competitions. By replicating
the winning implementations, we can more convincingly showcase
training speedups and, consecutively, evaluation performance
improvement.
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Appendix A: Hyperparameters

For the purposes of reproducibility, in Tables A1, A2, we list the
hyperparameters for the RL agents of TW and MG, respectively.
Alternatively, one can reproduce the results by running the
notebook file (found at: https://github.com/AthanasiosPetsanis/
DiplomaClone/blob/main/Main.ipynb) in Google Colab.

Starting with Table A1, the goal state is defined by the user_
input, which is the same for all levels of difficulty and equal to the
string “put apple on table.” The rest of the variables were tuned
empirically in order to see convergence in all TW training examples.
Here, we use the term “epochs” for nothing more than the total of
150 steps. Therefore, five epochs of the 150 steps mean a total of 750
steps, which was the minimum necessary number of steps in order
for the algorithm to achieve the optimal result.The value 0.004 of the
exploration decay rate (expl_decay_rate) ensured that by the end of
the training for any of the tested environments, the agent reached the
minimumexploration value (min_expl) of 0.05 and, therefore, relied
mostly on the learned policy. The min_expl value was not chosen
to be 0 in order to allow deviations from the learned policy and
potentially discover better routes. This is a common practice during
training RL agents. It is also common to use a high value for the
discount variable gamma but less than 1 since the future reward is
less valuable than the present reward.

For Table A2, frames are the total number of steps for the
experiment defined frames = graph_points ⋅ procs ⋅ frames_per_proc,
where graph_points is the number of points in the MG-training
graph, procs is the number of processes (i.e., environments) running
in parallel, and frames_per_proc are the frames per process before
updating. We empirically chose graph_points to be 300, while
the default values of procs and frames_per_proc are 16 and 128,
respectively. Recurrence is the number of times the step gradient is
backpropagated (default 1). If >1, an LSTM is added to the model to
introduce memory. Seed, as usual, determines the pseudo-random
number generation of the code. Save_interval indicates how many
graph points the results are saved. Log_interval indicates how many

graph points the results will be displayed on the terminal. More
details can be found in the code: rl-starter-files.

TABLE A1 TW training hyperparameters.

Hyperparameter Value

max_epochs 5

max_eps 150

min_expl 0.05

expl_decay_rate 0.004

gamma 0.9

user_input “put apple on table”

TABLE A2 MG training hyperparameters.

Hyperparameter Value

frames 614,400

frames_per_proc 128

graph_points 300

recurrence 8

seed 1

procs 16

save_interval 10

log_interval 1
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