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Simultaneous localization and
mapping in a multi-robot system
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1Department of Control Engineering, Qom University of Technology, Qom, Iran, 2School of
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A basic assumption in most approaches to simultaneous localization and
mapping (SLAM) is the static nature of the environment. In recent years, some
research has been devoted to the field of SLAM in dynamic environments.
However, most of the studies conducted in this field have implemented SLAM
by removing and filtering the moving landmarks. Moreover, the use of several
robots in large, complex, and dynamic environments can significantly improve
performance on the localization and mapping task, which has attracted many
researchers to this problem more recently. In multi-robot SLAM, the robots can
cooperate in a decentralized manner without the need for a central processing
center to obtain their positions and a more precise map of the environment.
In this article, a new decentralized approach is presented for multi-robot SLAM
problems in dynamic environments with unknown initial correspondence. The
proposed method applies a modified Fast-SLAM method, which implements
SLAM in a decentralized manner by considering moving landmarks in the
environment. Due to the unknown initial correspondence of the robots, a
geographical approach is embedded in the proposed algorithm to align and
merge their maps. Data association is also embedded in the algorithm; this is
performed using the measurement predictions in the SLAM process of each
robot. Finally, simulation results are provided to demonstrate the performance
of the proposed method.

KEYWORDS

SLAM, multi-robot SLAM, Fast-SLAM, dynamic environments, moving landmarks, map
merging

1 Introduction

Simultaneous localization and mapping (SLAM) is one of the most important
developments in the field of robotics, enabling robots operating inGPS-denied environments
to perceive their surroundings and localize themselves within the identified map. This is
especially useful for industries such as underground mining and nuclear decommissioning,
where mobile robots are required to explore and complete various tasks, such as
maintenance, inspection, and transportation, in environments that are inaccessible and
hazardous for humans. These missions are accomplished either using a single robot in
isolation (Montazeri et al., 2021) or using a team of cooperative robots (Burrell et al.,
2018). The robot or robots need to cope with the time-varying, restricted, uncertain, and
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unstructured nature of the environment to achieve planning and
execution of the necessary tasks. This in turn requires the design
and development of advanced motion control and navigation
algorithms, along with strong cognitive capabilities in order for the
robot to perceive the surrounding environment effectively. The use
of both single- and multi-robot platforms can be advantageous,
depending on the specific application and environment.

SLAM-based navigation refers to the techniques by which
the robots simultaneously localize themselves in an unknown
environment where a map is required. This technique can be
applied to single-robot (Debeunne and Vivet, 2020) or multi-
robot (Almadhoun et al., 2019) systems, as well as in either
static (Kretzschmar et al., 2010) or dynamic (Saputra et al., 2018)
environments.

In a static environment, landmarks are fixed, which means that
all objects in the environment are stationary and none are moving
(Stachniss et al., 2016). A dynamic environment is an environment
in which objects are moving, such as an environment that includes
humans, robots, and other means of transportation. In a dynamic
environment, the SLAM process becomes more complex due to
continuous changes in the environment (such as moving objects,
changing colors, and combinations of shadows), and this makes
the problem more challenging, for example, by creating a mismatch
between previous and new data (Li et al., 2021).

Several successful solutions have been presented for the single-
robot and multi-robot SLAM problem in static environments
(Saeedi et al., 2016; Lluvia et al., 2021).However, the SLAMproblem
in a dynamic environment is more complicated due to the
requirements for simultaneous detection, classification, and tracking
of moving landmarks. In recent years, single-robot and multi-
robot SLAM problems in dynamic environments have attracted the
attention of many researchers. In (Vidal et al., 2015; Badalkhani and
Havangi, 2021), solutions for solving the single-robot and multi-
robot SLAM problems in dynamic environments are presented. In
(Vidal et al., 2015), a method is presented for SLAM in which only
static (fixed) landmarks are considered andmoving ones are omitted
from themap.The paper uses an outlier filter and separates fixed and
moving landmarks, which are included in a set of negligible signs;
the authors only use fixed landmarks to implement their solution to
the SLAM problem and do not consider moving landmarks.

In (Badalkhani and Havangi, 2021), a solution for the multi-
robot SLAM problem in a dynamic environment is presented.
The proposed SLAM-based method is developed using a Kalman
filter (KF); it detects moving landmarks based on possible location
constraints and expected landmark area, which enables detection
and filtering of moving landmarks. The main goal of (Badalkhani
and Havangi, 2021) is the development of a new method to identify
the moving parts of the environment and remove them from the
map.

There are also some pieces of research implementing the SLAM
problem in a dynamic environment through object recognition
or using image processing techniques. However, some of these
methods, such as those presented in (Liu et al., 2019; Pancham et al.,
2020; Chen et al., 2021; Theodorou et al., 2022; Guan et al., 2023),
also aim to remove moving landmarks found in the dynamic
environment.

As mentioned, researchers who have investigated the problem
of SLAM in a dynamic environment using one or more robots have

mostly attempted to implement SLAM through the elimination of
the moving landmarks, with only fixed ones being retained for the
mapping procedure, which leads to the failure of the method when
the environment is complex, with many moving objects, or in the
absence of fixed objects.

In this paper, in contrast with previous work, a decentralized
multi-robot modified Fast-SLAM-based algorithm is designed for
use in a dynamic environment where all the landmarks are moving.
It is worth mentioning that, in Fast-SLAM (Montemerlo et al.,
2002), particle filtering (PF) (Godsill, 2019) is used to handle
the non-linear kinematics of the robots via the Monte Carlo
technique. Fast-SLAM is a filtering-based approach to SLAM
decomposed into a robot localization problem, and a collection
of landmark estimation problems conditioned on the robot pose
estimate. This can be obtained using Bayes’ rule combined with
the statistical independence of landmark positions which leads to
Rao Blackwellized particle filtering (RBPF) SLAM (Sadeghzadeh-
Nokhodberiz et al., 2021).

In this study, we have simplified the multi-robot Fast-SLAM
problem by considering two wheel-based robots in a dynamic
environment with two moving landmarks with a known kinematic
model. The proposed method can easily be extended to cases with
more robots and landmarks. Each robot searches the environment
and observes it with its onboard lidar sensor. Here, it is assumed
that the kinematic models of the robots and landmarks are known,
which makes the use of a modified Fast-SLAMmethod meaningful.
This method is based on observer use of a particle filter and
extended Kalman filter (EKF). However, several modifications of
the normal Fast-SLAM method are required. The first modification
is adding a prediction step to the EKF used for mapping using
the kinematic model of the landmarks. Adding this step to the
algorithm does not obviate the need for initialization, as the initial
values of the landmarks’ positions are assumed to be unknown.This
prediction step is performed using the landmark’s kinematic model
at every sample time after the first visit to the landmark, even if the
landmark has not been visited again by the lidar sensor. The second
modification is that, in contrast with the normal approaches to data
association with static landmarks, data association is performed
based on the predicted measurement obtained from the predicted
map. When data association is performed based on the predicted
position of a landmark, it is less likely that a previously visited
landmark will be wrongly diagnosed as a new one due to its
movement. As the third modification, and due to the unknown
initial correspondence, coordinate alignment and map-merging are
added to the algorithm. In this step, the relative transformation
matrix of the robots’ inertial frames is computed when the robots
meet each other, using a geographical approach as presented in
(Zhou and Roumeliotis, 2006; Romero and Costa, 2010) to compute
this transformationmatrix, and themaps obtained in the coordinate
system of each robot are then fused and merged.

In summary, the novelty of this paper can be considered to be the
extension of the Fast-SLAM algorithm in several aspects, as follows:

1. Addition of a prediction step to the EKF used for mapping, based
on the kinematic model of the landmarks after the first visit to
each landmark and at every sample time.

2. Data association based on the predicted measurements obtained
from the predicted map.
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FIGURE 1
The robots and their corresponding coordinates.

3. Addition of coordinate alignment and map-merging to the
algorithm when the robots meet each other.

The paper is organized as follows. In Section 2, a system
overview is presented, including a kinematicmodel of the robots and
landmarks as well as the lidar measurement model. The modified
Fast-SLAM algorithm for the dynamic environment is proposed in
Section 3. Section 4 describes the coordinate alignment and map-
merging problem. Simulation results are presented in Section 5, and
conclusions are provided in Section 6.

2 System overview

In this paper, for the sake of simplicity, two mobile robots
and two dynamic landmarks have been considered. As an example,
differential drive mobile robots such as the Pioneer P3-DX
(Zaman et al., 2011) moving in a dynamic environment were
selected for the study. The robots are equipped with lidar and IMU
sensors. In this section, the kinematic models of the robots and
landmarks and the measurement model of the lidar are assumed to
be known.

It is worth mentioning that IMUs can provide information
on linear acceleration and angular velocity. However, linear
speed can be obtained through the integration of linear
acceleration.

2.1 Kinematic model of the robots

The kinematic model for the two differential drive Pioneer P3-
DX mobile robots can be written as follows:

[[[

[

xri(k+ 1)
yri(k+ 1)

φri(k+ 1)

]]]

]

=
[[[

[

xri(k) + v(k)cos(φri(k) +ω(k)Δt)

yri(k) + v(k) sin(φri(k) +ω(k)Δt)

φri(k) +ω(k)Δt

]]]

]

+ υri(k), (1)

where xri and yri are the i
th positions of the robot on the x and y axes

and φri is its corresponding direction relative to the x-axis for i = 1,2.
The coordinate system of the first robot is G1 and that of the second
robot is G2, as depicted in Figure 1. In (1), υri(k) is zero-mean non-
Gaussian process noise with a known probability density function
(PDF). Additionally, Δt is the sampling time of the process and the
variables v(k) and ω(k) are the linear and the angular velocities of
the robot, which are assumed to be known.

Eq. 1 can be rewritten in the general non-linear state space form
as follows:

xri(k+ 1) = fri(xri(k),uri(k)) + υri(k), (2)

where xri(k) = [xri(k) yri(k) φri(k)]
T, uri(k) = [ω(k) v(k)]T,

and fri(xri(k),uri(k)) is the kinematic model presented in (1).

2.2 Kinematic model of the landmarks

In this study, both landmarks are considered to be moving, with
the following kinematic model:

[[[

[

xLj,ri(k+ 1)

yLj,ri(k+ 1)

φLj,ri(k+ 1)

]]]

]

=
[[[[

[

xLj,ri(k) + vLj(k)cos(φLj,ri(k) +ωLj(k)Δt)

yLj,ri(k) + vLj(k) sin(φLj,ri(k) +ωLj(k)Δt)

φLj,ri(k) +ωLj(k)Δt

]]]]

]
+ υLj,ri(k), (3)

where xLj,ri and yLj,ri are the jth positions of the landmark on the
x and y axes, respectively, and φLj,ri is its corresponding direction
with respect to the x-axis for j = 1,2, presented in Gi for i = 1,2.
Variables vLj(k) andωLj(k) are the linear velocity and angular velocity
of landmark Lj, respectively; Δt is the sampling time of the process,
and k refers to the sample number. It is assumed that vLj(k) andωLj(k)
are known parameters. Moreover, υLj,ri(k) is a zero-mean Gaussian

noise vector: that is, υLj,ri(k) ∼ N(0,RLj,ri), where N(., .) refers to the
Gaussian PDF.

By writing (3) in the general non-linear state space model, we
obtain

xLj,ri(k+ 1) = fLj,ri(xLj,ri(k),uLj(k)) + υLj,ri(k), (4)

where xLj,ri(k) = [xLj,ri(k) yLj,ri(k) φLj,ri(k)]
T
,

uLj(k) = [ωLj(k) vLj(k)]
T, and fLj,ri(xLj,ri(k),uLj(k)) is the kinematic

model presented in (4).

2.3 Lidar measurement model

Lidar sensor output includes the distance and angle of each robot
relative to the observed landmarks. Each observation by each robot
of the landmarks that are present can be expressed by the following
observation model:

zLj,ri(k) =
[

[

rLj,ri(k)

φLj,ri(k)
]

]
+ υij,

rLj,ri(k) = √(xri(k) − xLj(k))
2
+ (yri(k) − yLj(k))

2
,

φLj,ri(k) = arctan 2(
yri(k) − yLj(k)

(xri(k) − xLj(k)
), (5)

where zLj,ri represents the ith robot observation vector of the jth

landmark in the environment, rij represents the distance of the robot
from the observed landmark, and φij is the corresponding angle of
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FIGURE 2
The relationships between different coordinates.

FIGURE 3
Real and estimated position of robot R1 in the frame G1.

the robot relative to the landmark. Additionally, υij is a zero-mean
Gaussian measurement noise vector with the covariance matrix
of Rzij . Moreover, (5) can be rewritten in the general non-linear
measurement model as follows:

zLj,ri(k) = h(xri(k),xLj(k)) + υij. (6)

3 Modified Fast-SLAM with dynamic
landmarks

Robots R1 and R2 explore the environment, with each of them
performing the SLAM process from the corresponding frames
of G1 and G2, respectively; and an independent map of the
environment is thereby created by each of them. Information on
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FIGURE 4
Real and estimated position of robot R2 in the frame G1.

FIGURE 5
Real and estimated position of robot R2 in the frame G2.
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FIGURE 6
Real and estimated values of xr1, yr1, and φr1 in G1.

the distances and angles of the robots relative to the observed
landmarks is provided by the lidar sensor in each robot. Each
robot then uses a modified Fast-SLAM algorithm. In the proposed
modified Fast-SLAM, Rao Blackwellized particle filtering (RBPF)
is employed to estimate both vehicle trajectories and landmark
positions, inwhich each landmark is estimatedwith EKF andPFs are
employed to generate particles only used for trajectory estimation.
In the remainder of this section, this process is explained, with
the application of a modification in EKF due to the presence of
moving landmarks with known kinematics. The general steps of
Fast-SLAM consist of particle filtering with embedded extended
Kalman filtering for the mapping; the data association process;
and the map-merging procedure. These steps, with the necessary
modifications, are explained for our problem in the following
subsections.

3.1 Particle generation

An important and initial step in the PF is particle generation.
To this end, particles are generated using the known PDF
of υri(k) through Monte Carlo simulation, where particles
of υlri(k− 1) for l = 1, ...,N are generated and replaced in the

motion model of the ith robot (1), and therefore xlri(k), y
l
ri
(k),

and φlri(k) for l = 1, ...,N and i = 1,2 are generated. It is worth
mentioning that N refers to the number of particles. This
process can be formulated in the following general form
according to (2):

xlri(k) = fri(x
l
ri(k− 1),uri(k− 1)) + υ

l
ri(k− 1). (7)

3.2 Mapping

Each robot separately performs mapping after the particle
generation process using EKF, as explained in the below subsections.
After the first meeting of the robots and coordinate transformation,
the maps are merged, as explained in detail in subsequent
subsections.

3.2.1 EKF for mapping
• Initialization

After the particle generation process as explained in the previous
subsection, when the jth landmark is visited for the first time,
initialization is performed using the inverse sensor model for
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FIGURE 7
Real and estimated values of xr2, yr2, and φr2 in G1.

each particle, as follows, if it has been visited at sample instant k
(neglecting the measurement noise):

x̂l+Lj,ri(k) = x
l
ri(k) + rLj,ri(k)cos(φLj,ri(k) +φ

l
ri
(k)),

ŷl+Lj,ri(k) = y
l
ri
(k) + rLj,ri(k) sin(φLj,ri(k) +φ

l
ri
(k)),

φ̂l+Lj,ri(k) = φLj,ri(k) +φ
l
ri
(k),

(8)

Where x̂l+Lj,ri(k) , ŷ
l+
Lj,ri
(k), and φ̂l+Lj,ri(k) generally refer to the

posterior estimates. Although the posterior estimates are obtained
in the update step of the Bayesian filtering procedure, as the initial
values will be used for prior estimates in the prediction step, a
similar notation has been used. (8) can be rewritten in the following
general form using (6):

x̂l+Lj,ri(k) = h
−1(zLj,ri(k),x

l
ri(k)). (9)

Moreover, let predicted covariance matrix Pl+
Lj,ri
= KI3, where K

is a small real number and I3 is an identity matrix.

• Prediction step

After the first visit to the jth landmark, prior estimates
(predicted estimates) x̂l−Lj,ri(k), ŷ

l−
Lj,ri
(k), and φ̂l−Lj,ri(k) are computed

based on the landmark kinematics (3) at each time step for
each particle l. Additionally, it is necessary to compute the
predicted covariance matrix. This step is the first modification
of our method compared with normal Fast-SLAM with static
landmarks, in which no kinematics exist for the landmarks. In
other words:

x̂l−Lj,ri(k) = fLj,ri(x̂
l+
Lj,ri
(k− 1),uLj(k− 1)). (10)

Pl−
Lj,ri
(k) = Al+

Lj,ri
Pl+
Lj,ri
(k− 1)(Al+

Lj,ri
)
T
+RLj,ri , (11)

where in (11) Pl−
Lj,ri

is the predicted covariance matrix and Pl+
Lj,ri

is the
updated one. Moreover:

Al+
Lj,ri
=
∂fLj,ri(xLj,ri(k− 1),uLj,ri(k− 1))

∂xLj,ri(k− 1)
||

|x̂l+Lj,ri(k−1),uLj(k−1)

. (12)

• Data association

Data association is one of the important issues for SLAM
in dynamic environments. For this purpose, in this paper, the
measurement prediction is simply computed as follows:
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FIGURE 8
Estimation errors exr1

, eyr1
, and eφr1

in G1.

FIGURE 9
Estimation errors exr2

, eyr2
, and eφr2

in G1.
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FIGURE 10
Real position of landmark L1 and position estimated by robot R1 in the frame G1.

FIGURE 11
Real position of landmark L2 and position estimated by robot R1 in the frame G1.
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FIGURE 12
Real position of landmark L1 and position estimated by robot R2 in the frame G1.

FIGURE 13
Real position of landmark L2 and position estimated by robot R2 in the frame G1.
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FIGURE 14
Real and estimated position of robot R1 in the frame G1 (with different initial conditions).

FIGURE 15
Real and estimated position of robot R2 in the frame G1 (with different initial conditions).
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ẑi−Lj,ri(k) =
[

[

̂rl−Lj,ri(k)

φ̂l−Lj,ri(k)
]

]
, j = 1,2

̂rl−Lj,ri(k) = √(x
l
ri(k) − x̂

l−
Lj,ri
(k))

2
+ (ylri(k) − ŷ

l−
Lj,ri
(k))

2
,

φ̂l−Lj,ri(k) = arctan 2(
ylri(k) − ŷ

l−
Lj,ri
(k)

(xlri(k) − x̂
l−
Lj,ri
(k)
),

(13)

where ̂ri−Lj,ri(k) represents the estimated distance of the ith robot from
the jth landmark, and φ̂l−Lj,ri(k) represents the estimated angle of the ith

robot relative to jth landmark. Next, the Euclidean distance between
the real observations, zLj,ri(k), and the estimated ones is simply
calculated:

rldij = ‖zLj,ri(k) − ẑ
l−
Lj,ri
(k)‖. (14)

For data association, the condition rldij < μ for j = 1,2 is first
checked, where μ is a predefined threshold. Subsequently, if this
condition is established for both observed landmarks, the smaller
value is selected.

• Update step

If the landmark j is observed, this step is performed in a similar
way to normal Fast-SLAM,which consists of gain computation, state
update, and covariance update, as follows:

SlLj,ri(k) =H
l−
Lj,ri
(k)Pl−

Lj,ri
(k)(Hl−

Lj,ri
(k))

T
+Rzij ,

Kl
Lj,ri
(k) = Pl−

Lj,ri
(k)(Hl−

Lj,ri
(k))

T
(SlLj,ri(k))

−1
,

x̂l+Lj,ri(k) = x̂
l−
Lj,ri
(k) +Kl

Lj,ri
(k)(zLj,ri(k) − ẑ

l
Lj,ri
(k)),

Pl+
Lj,ri
(k) = (I−Kl

Lj,ri
(k)Hl−

Lj,ri
(k))Pl−

Lj,ri
(k),

(15)

where SlLj,ri is the residual covariance, K
l
Lj,ri

is the Kalman gain, x̂l+Lj,ri
is the updated map of the jth landmark, and Pl+

Lj,ri
is the updated

covariance matrix. Additionally,Hl−
Lj,ri

is computed as:

Hl−
Lj,ri
=
∂h(xri(k),xLj,ri(k))

∂xLj,ri(k− 1)
||

|x̂l−Lj,ri(k),x
l
ri(k)

. (16)

For unobserved landmarks, the predicted values are replaced
with the posterior ones; in other words, Pl+

Lj,ri
(k) = Pl−

Lj,ri
(k) and

x̂l+Lj,ri(k) = x̂
l−
Lj,ri
(k).

3.3 Localization (weight computation and
resampling)

In this step, the final localization process is performed through
computation of the particles’ weights and a resampling process. To
this end, the normalized weights are computed as follows:

wl
Lj,ri
(k) =

p(zLj,ri(k)|x̂
l+
Lj,ri
(k),xlri(k))

N

∑
i=1

p(zLj,ri(k)|x̂
l+
Lj,ri
(k),xlri(k))

, (17)

where wl
Lj,ri
(k) is the computed weight for the lth particle

corresponding to the jth landmark and the ith robot, and
p(zLj,ri(k)|x̂

l+
Lj,ri
(k),xlri(k)) refers to the conditional PDF. It is worth

a reminder that, in this paper, the measurement noise vector is a
Gaussian one, and therefore:

p(zLj,ri(k)|x̂
l+
Lj,ri
(k),xlri(k)) = N(ẑ

l+
Lj,ri
(k),Rzij), (18)

where ẑl+Lj,ri(k) is computed in a similar way to Eq. 13, but replacing
x̂l−Lj,ri(k) and ŷl−Lj,ri(k) with x̂l+Lj,ri(k) and ŷl+Lj,ri(k), obtained from the
update step, respectively. Next, the resampling process is performed
using wl

Lj,ri
(k), and finally a set of N equally weighted particles is

generated; these are averaged to produce the final estimate at each
sample time k, x̂Lj,ri(k) and x̂ri(k).

It is worth mentioning that if no measurement is available, the
predicted particles in (7) will be used for particle generation in
the next step; additionally, they are weighted equally for the final
mapping and localization, x̂Lj,ri(k) and x̂ri(k).

4 Coordinate alignment and
map-merging in multi-robot SLAM

As mentioned earlier, two robots, R1 and R2, explore the
environment and perform modified Fast-SLAM as explained in the
previous section. However, localization andmapping are performed
in their corresponding coordinate frames, G1 and G2 respectively,
and each robot is only aware of its own coordinate frame. In order
to merge and fuse the separately provided maps, it is necessary
for the robots to meet each other. Although there exist many
rendezvous approaches to force the robots to meet each other, such
as the one presented in (Roy and Dudek, 2001; De Hoog et al.,
2010; Zaman et al., 2011; Meghjani and Dudek, 2012; Meghjani and
Dudek, 2011), for the sake of simplicity, in this paper it is assumed
that the robots travel in such a way that they can meet each other
at least once during the mission. When the robots meet each other,
it is possible to transform the coordinates. For this purpose, the
proposed method of (Zhou and Roumeliotis, 2006) is employed in
this paper.

To this end, when robots R1 and R2 meet using the
measurements from the installed lidar sensors, the relative angles
between the robots (2θ1;

1θ2) and the distance between the robots (ρ)
aremeasured, where 2θ1 is the angle of the first robot asmeasured by
the second one and 1θ2 is the angle of the second robot measured as
by the first. Using the geometrical method presented in (Zhou and
Roumeliotis, 2006), the rotation matrix, G1PG2

, and the translation
vector, G1PG2

, for transforming a vector in frame G2 to frame G1 are
computed. Readers are referred to (Zhou and Roumeliotis, 2006) for
details of the proposed method. Figure 2 clarifies the geometrical
relationships between the coordinates and the measurements.
Following this, themap created by the second robot can be presented
in G1 as follows, and the two maps are merged.

[x̂lLj,r2(k)]G1

= G1CG2
x̂lLj,r2(k) +

G1PG2
, (19)

where [x̂lLj,r2(k)]G1

refers to the coordinate of a vector in frame G1.
Finally, all the landmarks are presented in frame G1. If a

landmark Lj has been visited by both robots, its corresponding
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map is fused with x̂lLj,r1(k) through simple averaging, and it is
updated to achieve a more precise map. Moreover, similarly, the
trajectory of the second robot can be expressed in G1 as a global
inertial frame.

Similarly, the map created by the first robot is presented in
frame G2 using G2CG1

and G2PG1
, where [x̂lLj,r1(k)]G2

is obtained
as follows:

[x̂lLj,r1(k)]G2

= G2CG1
x̂lLj,r1(k) +

G2PG1
. (20)

Next, [x̂lLj,r1(k)]G2

is fused with x̂lLj,r2(k) to provide more precise
mapping through averaging.

To clarify the proposedmethod, the general proposed algorithm
for multi-robot Fast-SLAM in a dynamic environment is presented
and summarized in Algorithm 1.

5 Simulation results

To evaluate the performance of the proposedmulti-robot SLAM
algorithm in a dynamic environment, a series of simulation studies
were conducted using MATLAB m-file codes; these are reported on
in this section. Two Pioneer P3-DX mobile robots, each equipped
with a lidar sensor, are simulated. Asmentioned earlier in the article,
two moving landmarks are considered and are modeled via their
kinematic models.

As mentioned earlier, robots R1 and R2 explore the environment
and observe the landmarks within it; each of them implements
the SLAM process from its corresponding frame of G1 or G2,
respectively, and makes an independent map of the environment.
The parameters in our simulation are considered as follows:

ωL1 = 0.2rad/ sec ,ωL2 = 0.2rad/ sec ,vL1 = 0.4m/ sec ,
vL2 = 0.6m/ sec ,ω = 0.2rad/ sec ,v = 1m/ sec

All of the sources of noise are considered to be zero-mean
Gaussian noise; the covariance matrices of the process (kinematics)
noise, for both landmarks and robots, are specified as 0.001I3, and
the covariance matrices of the lidar noise are specified as 0.001I2.

Additionally: G2TG1
=
[[[[[

[

0.8142 −0.5806 0 1
0.5806 0.8142 0 −2

0 0 1 0
0 0 0 1

]]]]]

]

,Δt = 0.65 sec

[xR1
(0)]

G1
= [−0.2 −0.5 1.23]T, [xR2

(0)]
G1
= [0 0 2.09]T

[xL1(0)]G1
= [−1.5 −1 1.22]T, [xL2(0)]G1

= [2.5 −1.5 2.09]T

Once the robots meet one another, the transformation matrix
between the two frames G1 and G2 is obtained and the maps can
be fused to obtain a more precise map of the environment and
achieve more precise localization performance. In the case of our
simulation, the robots meet each other at 9.35 s and the estimated
transformation matrix is as follows:

Step 0: Initialization

at each sample time k:

 for each robot ri,i = 1,2:

 for each particle l = 1, ...,N:

 Receive: xlri(k−1)

  Step 1: particle generation: generate particles

according to (7).

   Step 2: Mapping:

   Receive: Pl+
Lj,ri
(k−1), x̂l+

Lj,ri
(k−1).

   for each Lj,j = 1,2:

    • if no measurement is available but the

landmark has been visited do:

     1. predict according to (10), (11) and (12)

     2. let Pl+
Lj,ri
(k) = Pl−

Lj,ri
(k) and x̂l+

Lj,ri
(k) = x̂l−

Lj,ri
(k).

    •endif

    • if measurement zLj,ri(k) is available then:

     • do data association according to (14):

     • if the landmark Lj is visited for the first

time do

      1. initialization according to (8) and (9).

     • elseif the landmark has been visited

previously do

      1. predict according to (10), (11) and (12).

      2. update according (15) and (16).

     •endif

    •endif

  Step 3: Localization:

   • if measurement zLj,ri(k) is available do:

    1. generate particle weights according to (17)

and (18).

    2. perform resampling and generate equally

weighted estimates, resulting in:

      { 1
N
, x̂l+

Lj,ri
(k),xlri(k)}

N

l=1
,

   •endif

   • if no measurement is available do

      { 1
N
, x̂l+

Lj,ri
(k),xlri(k)}

N

l=1
,

   •endif

  Step 4: Coordinate alignment and map merging:

   • if the robot visits another robot do:

    1. compute the rotation matrix, G1C
G2

, and the

translation vector, G1P
G2
.

    2. transform maps in G2 to G1 according to

(19).

    3. transform maps in G1 to G2 according to

(20).

    4. fuse maps as explained in Section 4.

   •endif

Return: x̂Lj,ri(k) and x̂ri(k) through averaging.

Algorithm 1. The general multi-robot Fast-SLAM-based algorithm with moving
landmarks.
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FIGURE 16
Real position of landmark L1 and position estimated by robot R2 in the frame G1 (with different initial conditions).

FIGURE 17
Real position of landmark L2 and position estimated by robot R2 in the frame G1 (with different initial conditions).
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FIGURE 18
Real position of landmark L1 and position estimated by robot R1 in the frame G1 (with different initial conditions).

FIGURE 19
Real position of landmark L2 and position estimated by robot R1 in the frame G1 (with different initial conditions).
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G2TG1
(estimated) =

[[[[[

[

0.8048 −0.5935 0 1.0985
0.5935 0.8048 0 −1.7098

0 0 1 0
0 0 0 1

]]]]]

]

Figures 3, 4 depict the results of the localization of robots R1 and
R2, respectively, in 2D space, expressed in the G1 coordinate frame,
which is selected as the global frame for this paper. Figure 5 depicts
the estimated and real paths of robot R2 in frame G2 to provide a
better illustration of how robot R2 is performing localization in its
own frame G2.

The real and estimated values of xri , yri , and φri , expressed in
frame G1 with respect to time, are depicted in Figures 6, 7 for i = 1
(robot R1) and i = 2 (robot R2), respectively. To show the precision
of the estimation, Figures 8, 9 depict the corresponding errors: that
is, the error between the real and estimated values (exri , eyri , and eφri)
in G1 for i = 1,2.

The results of the mapping in 2D space are shown in Figures 10,
11 for landmarks L1 and L2 obtained fromR1, respectively, expressed
in frame G1; the results obtained from R2 in frame G1 are shown in
Figures 12, 13. It is worth mentioning again that when the robots
meet each other, the maps obtained from R1 and R2 are merged. It is
clear from the figures that the localization and mapping results are
significantly improved after the map-merging process.

To examine the efficiency of the method for the case in which
some of the conditions are altered, the initial conditions were
selected as follows:

[xR1
(0)]

G1
= [0 0 1.23]T, [xR2

(0)]
G1
= [1 0 2.09]T

[xL1(0)]G1
= [−2.5 −2.2 1.22]T, [xL2(0)]G1

= [3 −1 2.09]T

The results of localization of the robots in frame G1 are depicted
in Figures 14, 15, and the results of the mapping are depicted
in Figures 16–19. It is clear from the figures that the algorithm
is successful in simultaneous localization and mapping under
changing initial conditions.

6 Conclusion

In this paper, an efficient algorithm has been presented for a
multi-robot SLAM problem with unknown initial correspondence
in a dynamic environment, using amodified Fast-SLAMmethod. In
our scenario, each robot independently searches the environment,
observes the moving landmarks in the environment using a lidar
sensor, and implements the SLAMalgorithm. In order to distinguish
the moving landmarks, kinematic models are considered for the
landmarks, which led to a modification of the normal Fast-SLAM
method in the form of the addition of a prediction phase to the
method; additionally, data association was performed according to
the predicted measurements obtained from this prediction step.
Although the kinematic models of the landmarks are known within
each robot’s coordinate system, after the first meeting of the
robots, an initialization is embedded in the algorithm to obtain
the current positions of the landmarks, as they are unknown to
the robots.

Since the initial correspondence of the robots is unknown
(or, in other words, each robot performs the mapping from the
perspective of its own coordinate frame), a map-merging procedure
was embedded in the proposed algorithm to fuse the independent
maps of the robots when the robots meet each other. This map-
merging is only possible when the relative transformation matrix
of the robots’ inertial frames is computed, which occurs when the
robotsmeet each other. For this purpose, a geographical approach to
compute this transformation matrix was embedded in the proposed
algorithm.

The performance of the proposed method was evaluated
through simulations in MATLAB. It can be concluded from
the simulation results that although each robot was able
to solve the SLAM problem with an acceptable level of
performance, the accuracy of SLAM was significantly improved
when the robots met each other and map-merging was
performed.

Although the proposed method showed very good performance
in simulations in the MATLAB environment, it will perhaps
encounter some difficulties in a real environment, such as model
mismatches in relation to both the landmarks and the robots due to
noise, and the occurrence of drift, for example, in the inertial sensor
measurements. Additionally, designing a rendezvousmethod for the
robots to force them to visit each other can represent another issue
in a real environment.

Generalization of the proposed method for the general case of a
multi-robot andmulti-landmark system, with more than two robots
and twomoving landmarks, is proposed for futurework. Embedding
some approach to object detection, instead of using the kinematic
models of the landmarks, would also add significant value to this
research.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial, further inquiries can be directed
to the corresponding authors.

Author contributions

HK: Investigation, Methodology, Software, Writing–original
draft. NS-N: Conceptualization, Methodology, Project
administration, Supervision, Validation, Writing–original
draft. AM: Conceptualization, Funding acquisition, Project
administration, Resources, Supervision, Writing–review and
editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported in part by the Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/R02572X/1.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.1291672
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Malakouti-Khah et al. 10.3389/frobt.2023.1291672

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that theywere an editorial boardmember
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Almadhoun, R., Taha, T., Seneviratne, L., and Zweiri, Y. (2019). A survey on multi-
robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 1,
847–924. doi:10.1007/s42452-019-0872-y

Badalkhani, S., andHavangi, R. (2021). Effects of moving landmark’s speed onmulti-
robot simultaneous localization and mapping in dynamic environments. Iran. J. Electr.
Electron. Eng. 17 (1), 1740. doi:10.22068/IJEEE.17.1.1740

Burrell, T., West, C., Monk, S. D., Montezeri, A., and Taylor, C. J. (2018). “Towards a
cooperative robotic system for autonomous pipe cutting in nuclear decommissioning,”
in UKACC 12th International Conference on Control (CONTROL), Sheffield, UK, 5-7
Sept. 2018 (IEEE), 283–288.

Chen, B., Peng, G., He, D., Zhou, C., and Hu, B. (2021). “Visual SLAM based on
dynamic object detection,” in 2021 33rd Chinese Control and Decision Conference
(CCDC), Germany, 22-24 May 2021 (IEEE), 5966–5971.

Debeunne, C., and Vivet, D. (2020). A review of visual-LiDAR fusion based
simultaneous localization and mapping. Sensors 20 (7), 2068. doi:10.3390/
s20072068

De Hoog, J., Cameron, S., and Visser, A. (2010). Selection of rendezvous points for
Multi− robot exploration in dynamic environments.

Godsill, S. (2019). “Particle filtering: the first 25 years and beyond,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), China, 12-17 May 2019 (IEEE), 7760–7764.

Guan, H., Qian, C., Wu, T., Hu, X., Duan, F., and Ye, X. (2023). A dynamic
scene vision SLAMmethod incorporating object detection and object characterization.
Sustainability 15 (4), 3048. doi:10.3390/su15043048

Kretzschmar, H., Grisetti, G., and Stachniss, C. (2010). Lifelong map learning
for graph-based SLAM in static environments. KI-Künstliche Intell. 24, 199–206.
doi:10.1007/s13218-010-0034-2

Li, A., Wang, J., Xu, M., and Chen, Z. (2021). DP-SLAM: a visual SLAM
with moving probability towards dynamic environments. Inf. Sci. 556, 128–142.
doi:10.1016/j.ins.2020.12.019

Liu, H., Liu, G., Tian, G., Xin, S., and Ji, Z. (2019). “Visual SLAM based on dynamic
object removal,” in IEEE International Conference on Robotics and Biomimetics
(ROBIO), New York, 5-9 Dec. 2022 (IEEE), 596–601.

Lluvia, I., Lazkano, E., and Ansuategi, A. (2021). Active mapping and robot
exploration: a survey. Sensors 21 (7), 2445. doi:10.3390/s21072445

Meghjani, M., and Dudek, G. (2011). “Combining multi-robot exploration and
rendezvous,” in Canadian conference on computer and robot vision (USA: IEEE), 80–85.

Meghjani, M., and Dudek, G. (2012). “Multi-robot exploration and rendezvous on
graphs,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, USA,
23-27 Oct. 2022 (IEEE), 5270–5276.

Montazeri, A., Can, A., and Imran, I. H. (2021).Unmanned aerial systems: autonomy,
cognition, and control. Unmanned aerial systems. USA: Academic Press, 47–80.

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). FastSLAM:
a factored solution to the simultaneous localization and mapping problem.
Aaai/iaai 593598. doi:10.5555/777092.777184

Pancham, A., Withey, D., and Bright, G. (2020). Amore: CNN-based moving object
detection and removal towards SLAM in dynamic environments. South Afr. J. Industrial
Eng. 31 (4), 46–58. doi:10.7166/31-4-2180

Romero, V., andCosta, O. (2010). “Mapmerging strategies formulti-robot fastSLAM:
a comparative survey,” in Latin American robotics symposium and intelligent robotics
meeting (America: IEEE), 61–66.

Roy, N., and Dudek, G. (2001). Collaborative robot exploration and rendezvous:
algorithms, performance bounds and observations. Aut. Robots 11, 117–136.
doi:10.1023/a:1011219024159

Sadeghzadeh-Nokhodberiz, N., Can, A., Stolkin, R., and Montazeri, A. (2021).
Dynamics-based modified fast simultaneous localization and mapping for unmanned
aerial vehicles with joint inertial sensor bias and drift estimation. IEEE Access 9,
120247–120260. doi:10.1109/access.2021.3106864

Saeedi, S., Trentini, M., Seto, M., and Li, H. (2016). Multiple‐robot simultaneous
localization and mapping: a review. J. Field Robotics 33 (1), 3–46. doi:10.1002/rob.
21620

Saputra, M. R. U., Markham, A., and Trigoni, N. (2018). Visual SLAM and structure
from motion in dynamic environments: a survey. ACM Comput. Surv. (CSUR) 51 (2),
1–36. doi:10.1145/3177853

Stachniss, C., Leonard, J. J., and Thrun, S. (2016). Simultaneous localization and
mapping. Germany: Springer Handbook of Robotics, 1153–1176.

Theodorou, C., Velisavljevic, V., and Dyo, V. (2022). Visual SLAM for dynamic
environments based on object detection and optical flow for dynamic object removal.
Sensors 22 (19), 7553. doi:10.3390/s22197553

Vidal, F. S., Barcelos, A. d. O. P., and Rosa, P. F. F. (2015). “SLAM solution based
on particle filter with outliers filtering in dynamic environments,” in IEEE 24th
International Symposium on Industrial Electronics (ISIE, USA, 3-5 June 2015 (IEEE),
644–649.

Zaman, S., Slany, W., and Steinbauer, G. (2011). “ROS-based mapping, localization
and autonomous navigation using a Pioneer 3-DX robot and their relevant issues,”
in Saudi international electronics, communications and photonics conference (Germany:
SIECPC), 1–5.

Zhou, X. S., and Roumeliotis, S. I. (2006). Multi-robot SLAM with unknown
initial correspondence: the robot rendezvous case in IEEE/RSJ international
conference on intelligent robots and systems, USA, October 23–27, 2022 (IEEE),
1785–1792.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.1291672
https://doi.org/10.1007/s42452-019-0872-y
https://doi.org/10.22068/IJEEE.17.1.1740
https://doi.org/10.3390/s20072068
https://doi.org/10.3390/s20072068
https://doi.org/10.3390/su15043048
https://doi.org/10.1007/s13218-010-0034-2
https://doi.org/10.1016/j.ins.2020.12.019
https://doi.org/10.3390/s21072445
https://doi.org/10.5555/777092.777184
https://doi.org/10.7166/31-4-2180
https://doi.org/10.1023/a:1011219024159
https://doi.org/10.1109/access.2021.3106864
https://doi.org/10.1002/rob.21620
https://doi.org/10.1002/rob.21620
https://doi.org/10.1145/3177853
https://doi.org/10.3390/s22197553
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 System overview
	2.1 Kinematic model of the robots
	2.2 Kinematic model of the landmarks
	2.3 Lidar measurement model

	3 Modified Fast-SLAM with dynamic landmarks
	3.1 Particle generation
	3.2 Mapping
	3.2.1 EKF for mapping

	3.3 Localization (weight computation and resampling)

	4 Coordinate alignment and map-merging in multi-robot SLAM
	5 Simulation results
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

