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Decentralized multi-agent
reinforcement learning based on
best-response policies

Volker Gabler* and Dirk Wollherr

Chair of Automatic Control Engineering, TUM School of Computation, Information and Technology,
Technical University of Munich, Munich, Germany

Introduction: Multi-agent systems are an interdisciplinary research field that
describes the concept of multiple decisive individuals interacting with a usually
partially observable environment. Given the recent advances in single-agent
reinforcement learning, multi-agent reinforcement learning (RL) has gained
tremendous interest in recent years. Most research studies apply a fully
centralized learning scheme to ease the transfer from the single-agent domain
to multi-agent systems.

Methods: In contrast, we claim that a decentralized learning scheme is
preferable for applications in real-world scenarios as this allows deploying a
learning algorithm on an individual robot rather than deploying the algorithm to
a complete fleet of robots. Therefore, this article outlines a novel actor–critic
(AC) approach tailored to cooperative MARL problems in sparsely rewarded
domains. Our approach decouples the MARL problem into a set of distributed
agents that model the other agents as responsive entities. In particular, we
propose using two separate critics per agent to distinguish between the joint
task reward and agent-based costs as commonly applied within multi-robot
planning. On one hand, the agent-based critic intends to decrease agent-
specific costs. On the other hand, each agent intends to optimize the joint team
reward based on the joint task critic. As this critic still depends on the joint action
of all agents, we outline two suitable behavior models based on Stackelberg
games: a game against nature and a dyadic game against each agent. Following
these behavior models, our algorithm allows fully decentralized execution and
training.

Results and Discussion:We evaluate our presented method using the proposed
behaviormodels within a sparsely rewarded simulatedmulti-agent environment.
Although our approach already outperforms the state-of-the-art learners, we
conclude this article by outlining possible extensions of our algorithm that future
research may build upon.

KEYWORDS

multi-agent reinforcement learning, game theory, deep learning, artificial intelligence,
actor–critic algorithm, multi-agent, Stackelberg, decentralized learning schemes,
reinforcement leaning

1 Introduction

Based on recent advances in robotics research over the last few decades, automated
robotic systems have been established in everyday life, even beyond industrial applications.
Nonetheless, it remains tedious and challenging to impart new tasks to robots, especially if
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the environment is stochastic and hard to model. In this context,
applied machine learning (ML), specifically reinforcement learning
(RL), is a promising research field that aims to continuously
improve robotic performance from collected task trial samples. In
particular, the core motivation is to equip robots with the ability
to explore and learn unknown tasks simultaneously without relying
on an accurate model of the environment or the task. Building
upon this, the concept of MARL has raised interest in improving
scalability by executing tasks by a fleet of robots rather than a
single autonomous unit. In order to exploit results from single-
agent RL, a common paradigm in MARL is centralized learning
with decentralized execution. Nonetheless, it is desirable to handle
each robot as an independent individual, such that the learning
phase of aMARL algorithm also scales well. In contrast to simulated
environments, where access to other agents’ policies and observation
is realistic, this assumption is overly restrictive for real robot systems
and adds additional constraints to heterogeneous robot fleets.

Therefore, the contribution of this article is a novel AC
method for cooperative MARL problems in sparsely rewarded
environments. Our MARL algorithm allows fully decoupling
learning among the agents while achieving comparable performance
to current state-of-the-art MARL approaches. This approach uses
the best-response policies of other agents conditioned on each
agent’s policy output. This leverages the need to access the
exact agent policies during centralized learning to achieve a fully
decentralized learning scheme. This decision-theoretic principle
stems from Stackelberg equilibria from game theory and is tailored
to non-zero-sum games in the scope of this article.

Our proposed method incorporates another multi-robot
planning and game theory concept by explicitly differentiating
between interactive task rewards and agent-specific costs, i.e., native
costs. In other words, each agent estimates the performance of the
joint policy with regard to the current task to be learned but also a
cost critic that evaluates agent-specific costs.

In the remainder of this article, we briefly summarize the state-
of-the-art algorithms ofMARL in Section 2, followed by a summary
of the technical foundations of this article and the technical problem
in Section 3. The core concept of our proposed framework is
outlined in Section 4. In order to evaluate the presented method, we
present the collected results of our method compared against state-
of-the-art MARL algorithms in Section 5. Based on these results, we
discuss our algorithm and explicitly sketch conceptualmodifications
of our approach in Section 6. Eventually, we conclude this article in
Section 7.

2 Related work

Even though early applications of RL in robotic systems have
shown promising results (Ng et al., 2004; Kolter and Ng, 2009), it
was the success of outperforming humans in computer games via
deep RL (Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2019)
without suffering from catastrophic interference (McCloskey and
Cohen, 1989) problems that has opened the door for RL applications
within complex, real-world environments. Given the computational
power ofmodern graphics processing units (GPUs), policy gradients
such as the stochastic policy gradient from Sutton et al. (1999a) or
the deterministic policy gradient (PG) from Silver et al. (2014) have

been realized via function approximators such as neural networks
(NNs). A famous example is given as the deep deterministic
policy gradient (DPG) by Lillicrap et al. (2016). DDPG has shown
that deep RL can also be applied on continuous action spaces
such that the applicability of RL within robotic systems has been
boosted drastically ever since. Even though further PG methods
have been developed in order to improve the variance sensitivity
issue, such as trust region policy optimization (Schulman et al.,
2015), proximal policy optimization (Schulman et al., 2017), or
maximum a posteriori policy optimization (Song et al., 2020), the
majority of algorithms relies on an AC architecture, where an
additional critic reduces the variance drastically, such as the soft
actor–critic (SAC) (Haarnoja et al., 2018). As an intense outline of
advances in single-agent RL is beyond the scope of this article, we
encourage the interested reader to available literature survey papers
(Kaelbling et al., 1996; Kober et al., 2013; Arulkumaran et al., 2017).
Building upon the results from single-agent RL, MARL has gained
great interest over the last decades and is thus outlined separately in
the following.

2.1 Multi-agent reinforcement learning

In addition to solving complex Markov decision process (MDP)
problems, the decentralized extension of the Markov game (MG)
has gained attention in the context of MARL (van der Wal, 1980;
Littman, 1994). The naive approach of extending Q-learning to a
set of NA independent learners (Tan, 1993) works well for small-
scale problems or selective applications. Similar to deep RL, initial
results on MARL have been found on discrete action sets, such as
the differentiable inter-agent learning by Foerster et al. (2016) or
the explicit communication learning by Havrylov and Titov (2017);
Mordatch and Abbeel (2017). In general, however, independent
learners violate the Markov assumption (Laurent et al., 2011).

Multi-agent deep deterministic policy gradient (DDPG) is an
extension of DDPG to MARL (Lowe et al., 2017), which also
applies an AC architecture. During training, a centralized critic uses
additional information about the other agents’ states and actions to
approximate the Q-function. Given this centralized critic, each agent
updates a policy that is only conditioned on the local observations
of each agent. Thus, the actor only relies on local observations
during execution. MADDPG has achieved very robust results in
simulated benchmark environments (Mordatch and Abbeel, 2017)
for cooperative and competitive scenarios. Various extensions to
the multi-agent deep deterministic policy gradient (MADDPG)
have been proposed. Li et al. (2019) introduced an extension to
MADDPG that uses the minimax concept of game theory to make
decisions under uncertainty.The idea is to take the best action in the
worst possible case.

As pointed out by Ackermann et al. (2019), the overestimation
bias is also present in MARL. Some initial works have proposed to
bridge concepts from the single-agent domain (van Hasselt, 2010) to
MARL (Sun et al., 2020). Thus, SAC has been adjusted to the multi-
agent domain byWei et al. (2018), for which further extensions have
been outlined, e.g., Zhang et al. (2020) proposed a Lyapunov-based
penalty term to the policy update to stabilize the policy gradient.
As centralized learning inherently suffers from poor scaling, Iqbal
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and Sha (2019) introduced attentionmechanisms in themulti-actor-
attention-critic (MAAC). In order to cope with large-scale MARL,
Sheikh and Bölöni (2020) explicitly differentiated between local and
global rewardmetrics that each agent obtains from the environment.

In contrast to single-agent systems, the critic also suffers from
the non-stationarity of the policies of other agents. This initiated
the research on explicitly modeling the learning behavior of other
agents, such as Foerster et al. (2018). Alternatively, Tian et al. (2019)
proposed tomodel theMARL problem as an inference problem, i.e.,
to estimate the most likely action of the other agents and respond
with the best response (br). Jaques et al. (2019) reversed this idea
by applying counterfactual reasoning and thus incorporating the
mutual influence among agents into the reward of each agent.
They outlined a decentralized version of their algorithm, which
applies behavioral cloning similarly to the decentralized version
of MADDPG.

As a complete survey ofMARL is beyond the scope of this article,
we refer to Zhang et al. (2021), Hernandez-Leal et al. (2020), Yang
and Wang (2020), Hernandez-Leal et al. (2019), and Nguyen et al.
(2020) for a more detailed literature review. In order to illustrate the
relevance of MARL from an application-driven perspective, there
exists a variety of recent examples, such as logistics (Tang et al.,
2021), the Internet of Things (Wu et al., 2021), or motion-planning
for robots (He et al., 2021).

3 Preliminaries

As the methods presented in this article build upon various
findings from the literature, we provide an insight into these
methods. We begin with sketching the notation used in this article,
followed by an initial example in the form of introducing MGs.

3.1 Notation

In order to outline the notation for the remainder of this article,
we use p as an arbitrary placeholder variable. We denote p(i) as
a variable explicitly assigned to agent i, while (p)i∈NA

denotes the
joint team analog of the said variable for all agents. This is most
commonly denoted as p for brevity, while p(−i) denotes all elements
of (p)i∈NA

except pi. Furthermore, we denote the vector as p and
matrices as p, while 1p, 1p×p, 0p, and 0p×p denote identity-
and zero-vectors/matrices. In general, we denote time-variant
variables as pt, while a temporal successor pt+1 is denoted as ′ for
brevity. In the context of stochastic variables, we denote probability
density functions (PDFs) as ℙ[p] and conditionally dependent
PDFs asℙ[p1|p2]. Similarly,𝔼p1∼ρ(p2)[] and𝕍arp1∼ρ(p2)[] symbolize
the expectation and variance of the random variable p1 that
follows a probability distribution function ρ(), which depends
on p2. Eventually, we denote hierarchical systems by denoting
layer k as {k}p.

3.2 Markov game

An MG is an extension of an MDP to the multi-agent domain,
which is fully described by the tuple (A,S ,A,T ,R,γ), where NA

agents A = (A(1),A(2),…,A(NA)) = (A)i∈NA
interact with each other

in a stochastic environment (Shapley, 1952; Shapley, 1953), as shown
in Figure 1.The state s = (s(1),s(2),…,s(NA)) ∈ S of the environment
with state space S is perceived as the individual state observations
s
(i) for each agent. Due to the Markov property, the dynamics
of an MG is given by each individual choosing an action a

(i) ∈
A(i) ⊂A out of an agent-specific action space A(i), thus forming
a joint action a that transitions s to s′ according to a transition
probability function T : = ℙ[s′|s,a], and ℙ[s′|s,a] is the conditional
probability for s′ , given s and a. The individual reward functions
R = (R(i):S(i) ×A(i) ×A(−i) ×S(i)→ℝ)i∈NA

map a transition from s

to s′ , given a, to a numeric value for each agentA(i), which is denoted
as r(i):=R(i)(s(i),a(i),a(−i),s(i)′). Given this, each agentA(i) follows the
stochastic behavior policy a

(i) ∼ π(i)(s(i)) that intends to maximize
the objective for each agent

J (i): =
∞

∑
t=0

γt∫
A
π(a

t
|s

t
)∫

S
T (s

t+1|st,at) r
(i)ds

t+1dat

=
∞

∑
t=0

γt𝔼
a(−i)∼π(−i)(s(i)t )

×[∫
A
π(a(i)t |s

(i)
t )ℙ[a

(−i)]∫
S
T (s

t+1|st,at)r
(i)ds

t+1dat]

, (1)

where the hyperparameter γ ∈ (0,1] is a temporal decay weight
that scales short-term versus long-term impact. In order to solve
Equation 1, the state-value function,

V
(i)
π (s) =

∞

∑
t=0
𝔼at∼ρ(π),(st,st+1)∼ρ(T ,π) [γ

tr(i)|s0] , (2)

the state-action value function,

Q
(i)
π (s,a) = r(i) + γ𝔼s′∼ρ(T ,π) [V

(i)
π (s′)] , (3)

and the advantage function,

A
(i)
π (s,a) = Q

(i)
π (s,a) − V

(i)
π (s) (4)

have been introduced as the multi-agent version of the Bellman
backup operator for MDPs (Bellman, 1957). Given that the agents
follow a fixed and optimal policy π∗ , the dynamic programming
problem eventually solves Equation 1 as the global optimum of the
MG, as shown by Littman (1994). Given the optimal Qπ∗ function,
the optimal policies for each agent can be obtained as the following:

π(i)(s)∗ ← argmax
π(i)

Q
(i)
π∗ (s,a

(−i),a)|
a←π(i)(s)
. (5)

As solving Equation 5 requires each agent to follow an optimal
policy, the definition of a best-response policy is of importance
in MGs.

Definition 3.1: Best response policy
Given a joint policy π(−i) for the neighboring agents of agentA(i),

a policy brπ(i) is called a br to π(−i) if and only if

J (i) (bra(i)← brπ(i)|π(−i)) ≥

J (i) (a(i) ≠ bra(i)|π(−i)) ,

i.e., the agent A(i) cannot improve the individual payoff return J (i)

by deviating from brπ(i) (Shoham and Leyton-Brown, 2008).
Within an MG, the optimal policy requires that the policies of

the individual agents are the br to the policies of the surrounding
agents, leading to the definition of a Nash equilibrium (NE).
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FIGURE 1
Sketch of a general MARL problem, where NA agents interact with
each other in an unknown environment. Each agent has access to the
individual state observation s(i), which can be mapped to an action a(i)

via the policy π(i) in such a manner that the expected individual return
r(i) is maximized.

Definition 3.2: Nash equilibrium
According to Nash (1950), a policy NEπ: = (NEπ)

i∈NA

is a NE
if and only if each agent following NEπi ∈ NEπ results in each
policy being a br policy, according to Definition 3.1. Replacing the
objectives J (i) by the state-action value Q

(i), this requires

Q
(i)
NEπ(i),NEπ(−i) ≥ Q

(i)
̃π(i),NEπ(−i)

Q
(i)
NEπ(i),NEπ(−i) ≥ Q

(i)
NEπ(i),π̃(−i)

with ̃π ≠ NEπ, ∀A(i) ∈ A,∀s ∈ S

,

to hold on the global state space S .
Nonetheless, in real-world problems, neither π∗ nor the value

functions are known. In addition, the environment is characterized
by multiple learners, whose policies and, thus, actions vary over
time and cannot directly be controlled by an individual agent
in an MG. This results in the problem formulation of this
article.

3.3 Multi-agent reinforcement learning
problem

Given a set of agents (A)i∈NA
that try to optimize their individual

accumulated discounted reward, according to Section 3.2, an
optimal policy for each agent has to be found, which fulfills the
following:

• (π← argmaxQπ)i∈NA
according to Equation 5.

• The joint action a = (a← π∗ )i∈NA
is anNEof theMG, according

to Definition 3.2.

We will continue with a short overview of RL methods that
have been established as the current state-of-the-art methods within
single-agent RL and MARL.

3.4 Policy gradient methods

Obtaining an optimal policy πII, parameterized by II, has been
tackled by generating PGs (Sutton et al., 1999b) that estimate the

stochastic gradient over II of a policy, and the policy-loss function is
defined as the following:

∇ΠJ (πΠ) = 𝔼s∼π(s)[
∞

∑
t=0
∇Π logπΠ (at|st) χt], (6)

where χ
t
may, for example, be the single agent version of Equation 3

or Equation 4, i.e., Qπ or Aπ. If one can obtain the gradient ∇aχt
directly, i.e., the action space is continuous and the environment
is stationary, it is also possible to obtain the deterministic policy
gradient (DPG) from Equation 6 as the following:

∇ΠJ (πΠ) = 𝔼s∼D [∇ΠπΠ (a|s) ∇aχ|a←π(s)] , (7)

where the expectation is approximated by drawing samples from
an experience replay buffer D that contains observed environment
transitions. Exemplary DDPG uses χ

t
: = Qπ in order to obtain the

gradient of the state-action value in Equation 7. As it can be seen
in Equations 6 and 7, PGs and DPGs are generally highly sensitive
to the variance of χ

t
. As a consequence, AC methods have been

outlined that add a policy evaluation metric to the policy update of
PG methods.

3.5 Actor–critic methods

As the accumulated reward does generally suffer from high
variance over repeated episodes, AC algorithms simultaneously
estimate Aπ or Qπ alongside the PGs in Equation 6. The deep Q-
network presented by Mnih et al. (2015) uses NNs as function
approximators, thus approximating Qπ by QΘ and †QΘ, parametrized
by Θ, where †Q denotes the target-net of Q. These two function
approximators are then used to learn Qπ via off-policy temporal-
difference learning, which is obtained via iteratively minimizing the
loss function as follows:

LQ (Θ) : =𝔼(s,a,r,s′)∼D [
1
2
(p− QΘ (s,a))

2]

with p =r (s,a,s′) + γ (1− d)†VΘ (s′)
†VΘ (s′) =𝔼a′←π(s′) [

†QΘ (s′ ,a′)]

, (8)

where D is again a replay buffer that stores experienced transitions
from the environment during the exploration process. Each sample
contains the state s, action a, next state s′ , the experienced reward r,
and the termination flag d. The term (1− d) thus ignores the value of
the successor state in the Bellman backup operator in Equation 3 at
the terminal states.

The SAC (Haarnoja et al., 2018) is an extension of the general AC
that approximates the solution of Equation 1 via amaximumentropy
objective by introducing a soft-value function, thus replacing
Equation 2 by the following:

Vπ (s): = 𝔼(st,at,st+1)∼D[
∞

∑
t=0

γt (r (st,at,st+1) + αℍ(π (⋅|st)))]
s0=s
,

(9)

In Eq. 9ℍ(⋅) denotes the policy entropy at a given state and α is a
temperature parameter that weighs the impact of the entropy against
the environment reward. In contrast to Equation 2, this objective
explicitly encourages exploration in regions of high rewards, thus
decreasing the chance of converging to local minima. Furthermore,
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two function approximators are used for the critic as in the twin-
delayed deep deterministic policy gradient (TD3) such that the
target value function in Equation 8 is obtained as the following:

†VΘ (s′) = 𝔼a′∼π(s′) [min
j=1,2
†QΘ,j (s′ ,a′) − α logπΠ (a′|s′)], (10)

In Eq. 10 a is obtained from π(s′), whereas s′ is drawn from D. In
contrast to this, the actual policy loss is obtained by applying the
reparameterization trick as follows:

LSAC
π (Π) : = 𝔼s∼D[

[
min
j=1,2
†QΘ,j (s, fΠ (s,ζ))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

χ

. − α logπΠ ( fΠ (s,ζ) |s)]

]
, (11)

which computes a deterministic function fΠ(s,ζ) that depends on
the state s, policy parameters Π, and independent noise vector ζ
drawn from a fixed distribution, e.g., mean free Gaussian noise. In
contrast to DDPG, this parameterized policy is also squashed via a
tanh function to the bounds of the action space, thus resulting in
valid samples that can be used to generate a stochastic policy for the
stochastic policy gradient update step.

3.6 Multi-agent actor–critic algorithms

The methods mentioned above have been recently extended to
the multi-agent domain.TheMADDPG extends AC with DDPG by
proposing the schematic representation of decentralized execution
in combination with centralized learning. As such, each A(i)

learns an individual (deterministic) policy π: = S(i) ×A(i)↦ [0,1]
while setting χ

t
: = Q(i)(s,a) in Equation 7, which has access to the

observations s
(i), actions a

(i), and policies of all agents such that
Equation 8 can be directly applied to the multi-agent domain. This
requires having access to all policies during learning in order to
calculate the target values of Equation 8. Similar approaches have
been proposed byMAAC and counterfactual multi-agent (COMA)-
PG, which additionally incorporate a baseline value function for the
policy update and thus use the multi-agent advantage function

χ: = A(i) (s,a) = Q(i) (s,a(i),a(−i)) − Vb (s,a(−i)) (12)

for their policy loss declarations. The baseline Vb(s,a(−i)) estimates
the value of a current state and the opponents' current actions such
that optimizing Equation 12 leads to a best-response action of the
agentA(i), according to Definition 3.1. Although COMA substitutes
Equation 12 into Equation 6, MAAC uses SAC, thus inserting
Equation 12 into Equation 11. Furthermore, MAAC improves the
centralized critic by adding an attention mechanism that explicitly
learns which parts of the observations have an actual impact on the
values of the critic.

4 Technical approach

A key challenge for real-world applications in multi-
agent systems is the ability to handle decentralized decisions
asynchronously. Although most MARL approaches allow
decentralized execution, they still rely on centralized learning
(Lowe et al., 2017). This imposes various constraints on the

FIGURE 2
Exemplary step of a two-level hierarchical MARL step where each
low-level step represents an interaction with the environment from
Figure 1. For brevity, only selective nodes and edges are labeled. The
upper layer acts synchronously, such that the observed transition
would qualify for centralized learning for all layers, which is
emphasized via the dashed lines for the upper layer.

overall multi-agent system, e.g., the necessity to have access to all
observations of all agents during learning. Furthermore, real robot
systems are often commanded by a task planner or similar, where
each robot is assigned a dedicated sub-task. Similarly, the upper layer
could be realized via a hierarchical reinforcement learning (HRL)
learner that learns to allocate tasks to each agent in a team-optimal
manner. To visualize the necessity of our algorithm, a two-layered
hierarchical decision framework for a multi-agent system is shown
in Figure 2. The upper layer could either stem from a sub-task
allocator that assigns tasks to each agent or a multi-agent HRL
algorithm. As can be seen from this figure, centralized learning
would not only require synchronous updates along all agents and
layers, but it also would require knowing the current output of the
upper layer of each agent. In order to leverage this constraint, we
propose a novel decentralized MARL concept that builds upon the
concept of best-response policies and separates joint rewards from
internal agent objectives.

4.1 Decentralized MARL based on
Stackelberg equilibria

In order to achieve a decentralized model for MARL problems,
a previous work has evaluated the application of predicting the br
policy to the inferred action of an opponent (Tian et al., 2019) or
assuming overly restrictive access to the environment feedback of
other agents.The latter is always fulfilled for centralized learning. In
order to decouple the decentralized learning procedure, we propose
a similar idea to that of Tian et al. (2019) and instead reformulate
their inference-based policy by modeling the br policy of other
agents. In detail, we apply the concept of Stackelberg equilibria. The
Stackelberg equilibrium evaluates the br of an agent if the opponent
has unveiled the current actions.Therefore, each agent regresses not
only a policy π(i)Π: = S(i)↦A(i), parameterized byΠ, that intends to
optimize the player-individual agent-objective but also a br policy
π(−i)br Ξ: = S

(i) ×A(i)↦A(−i)− parameterized by Ξ − that represents
the reactions of the other agent(s) at each step.

In addition to regressing the br policy of the other agent, we
further claim that it is beneficial to distinguish between joint task
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rewards and individual or native cost terms. In general, we assume
that the individual reward for a cooperative MARL problem is given
in the following form:

J (i) (s,π,s′) =
∞

∑
t=0

γt𝔼[r(i) (s
t
,π,s

t+1) − ĉ
(i)

nat (st,π
(i),s

t+1)] ∈ ℝ,

(13)

Thus, the individual reward in Eq. 13 consists of a joint or
cooperative task reward that depends on the joint action or policy,
as well as an interactive cost component that only affects each player.
Although some existing work assumes to directly have access to
local and global rewards, i.e., to obtain r(s,π,s′) and ̂c (i)

nat directly
(Sheikh and Bölöni, 2020), we propose a model that only has access
to the agent reward and the averaged joint task reward of all agents
tailored toward sparsely rewarded environments. Thus, the cost of
the agents needs to be estimated from this joint reward at each
transition. Thus, we apply the following:

ĉ (i)
nat (s

(i),a,s(i)′) ≈min( 1
NA

NA

∑
j=1
r(j) (s(j),a,s(j)′) −r(i) (s(i),a,s(i)′) ,0)

≈min( 1
NA

NA

∑
j=1
r(j) −r(i),0) where r ∼D(i),

(14)

i.e., we keep the individual agent reward as the joint task reward,
which solely depends on the observation of each agent. In addition,
we propose to regress a non-negative auxiliary cost term that
contains information about local interaction penalties for each agent.
Exploiting the rare occurrence of costs within sparsely rewarded
environments, we estimate the step cost for each agent by the
difference of the average rewards of all agents compared to the
individual agent reward. Having collected empirical data within a
replay buffer D(i) for each agent, the numeric cost is approximated
as a non-negative difference of the average reward values of all agents
without the necessity of explicitly accessing the observations of each
agent. Finally, our br-AC approach approximates the following:

• the (interactive) task critic Q
(i)
int: = S

(i) ×A↦ℝ, which intends
to maximize the accumulated task reward.
• the (native) agent critic Q(i)nat: = S(i) ×A(i)↦ℝ, which intends to
minimize the agent-specific costs.

Therefore, the final goal of each agent is to maximize the
interactive task critic, i.e., optimize the accumulated team reward,
while minimizing the agent-specific cost penalties from the native
agent critic. This concept is similar to the idea of combining RL
rewards while also minimizing a myopic objective by means of
numeric optimization cf. (Englert and Toussaint, 2016). The agent
policies and critics can then be regressed by means of existing AC
methods, such as SAC or TD3. In contrast to the default methods,
the policies need to optimize the joint task critic and the native
agent critic simultaneously. Therefore, the difference between the
two critics provides the final critic that is used for the policy gradient
of the current actor. Eventually, the br policy needs to be updated as
well. In contrast to the agent policy, the native critic is independent
of the br policy and can thus be neglected for the update of the br
policies. As we emphasize on cooperative MARL, the br policies
intend to optimize the joint task-critic as well. Thus, the br policy is

Algorithm 1. Decentralized br policy-based MARL update step for agent i.
Due to the decentralized learning, the update step can be run in a fully
parallelized procedure. For brevity, the exploration is omitted from this
algorithm skeleton.

found by obtaining the gradient of the joint task critic with regard to
the policy of the other agents after applying the current agent policy.
Denoting the cost estimation from Equation 14 as GetCost, a single
update step for agent i is sketched in Algorithm 1. The dedicated
critic losses are denoted as CriticLoss and CostCriticUpdate in
Algorithm 1. The native cost critic is regressed by calculating

p =ĉ (i)
nat + γ (1− d)(max

j=1,2
†Q
(i)
nat,j (s

(i),a(i)′))

a(i)
′
←†π(i)Π (s(i)

′
)

, (15)

in Equation 8. Nonetheless, it has to be noted that Equation 15 uses
the maximum critic value to account for the overestimation bias as
the cost critic intends to minimize the accumulated native costs.
We explicitly do not apply SAC for the cost critic as exploration
should be emphasized on the task to be learned rather than exploring
accumulated costs. In order to regress the joint task critic, a similar
approach to existing AC approaches is followed. Querying a

(i)′

identically to Equation 15, we set

p =r(i) (s(i),a,s(i)′) + γ (1− d)(min
j=1,2
†Q
(i)
int,j (s
(i)′ ,a′) + pSAC)

a(−i)′ ←†π(−i)br Ξ (s
(i)′ ,a(i)′)

pSAC =
{
{
{

−α logπ(i) (a(i)′|s(i)′) foranSACmodel

0 else
,

(16)

in Equation 8.
For brevity, Algorithm 1 only sketches the update, i.e., learning,

step of our proposed multi-agent reinforcement learning (MARL)
approach. During the exploration phase, each agent samples from
their own policy and stores the actions and rewards of the other
agents. In other words, each agent stores a tuple of (s(i),a,r,d,s(i)′ ,)
in the replay bufferD(i) until the end of an episode is reached or the
task is completed. After collecting new data for a fixed number of
episodes, Algorithm 1 is run for a fixed number of episodes.

Eventually, we distinguish between two interaction schemes in
order to model π(−i)Π,br. First, the other agents can be modeled as
an unknown black-box system, usually denoted as a game-against-
naturewithin game theory.Thus, a single policy is tracked as follows:

π(−i)br Ξ: = S
(i) ×A(i)↦ (A)j∈−i, (17)
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which models an interaction with the current agent and the
responsive nature. Our second approach uses a dyadic interaction
scheme and models the br policy of each agent to the current agent
individually via Eq. 18.

π(−i)br Ξ← (π
(j)
brΞ: = S

(i) ×A(i)↦A(j))
j∈−i
. (18)

This requires to regress NA − 1 opponent policies rather than
a single policy in Equation 17. Both policies leverage the effect
of a mutual interaction among the other agents to diminish
combinatorial explosion.

5 Results

In this section, we evaluate the performance of our decentralized
brpolicyMARL frameworkwithin the simulation environment from
Appendix 1. Within this environment, we evaluated our algorithm
against state-of-the-artalgorithmswithinMARL,namely,MADDPG
and multi-agent soft actor–critic (MASAC).

Given our adjusted multi-agent particle environment (MPE) as
outlined in Appendix 1, we ran a decentralized version of TD3
(Ackermann et al., 2019) and the multi-agent version of Haarnoja
(2018) for the joint critic in our algorithm. Given the dyadic and
game-against-nature variants, we use the following notations:

• The state-of-the-art algorithms are directly denoted
as commonly known in the literature, i.e., MADDPG
and MASAC.
• Our extension of TD3 is denoted as br-TD3-dyad/nature.
• Our extension of SAC is denoted as br-SAC-dyad/nature.

As stated above, our main emphasis is set on improving the
performance in sparsely rewarded environments. Furthermore,
we explicitly tailor our approach to continuous action spaces in
cooperative sections.Therefore,weapplied thecooperativecollection
task, according to the parameterization in Appendix 2.

For brevity, we present the evaluation performance of the
individual algorithms based on the average rewards of all agents in
Figure 3. In here, the term evaluation refers to the agents greedily
following their current policies than drawing samples from them.
The collected results show a static version, i.e., using fixed goal
locations, in the lower figure and a non-static version in the upper
figure. In this environment, three agents update their policies over
5,000 exploration episodes. The evaluation is only run every 10th
episode, so the number of evaluation steps is lower than the actual
explorations. In addition, the averaged reward per evaluation run is
logged, which, in return, strongly depends on a randomly sampled
starting state of the agent and the goal locations in the non-
static environment. As a result, the collected data encounter high
noise, which is reduced by smoothing the collected reward values
using a Savitzky–Golay filter (Savitzky and Golay, 1964) and the
implementation by Virtanen et al. (2020).

As it can be seen, our algorithms outperform the current state-
of-the-art algorithms not only in terms of the final performance
but also in terms of convergence speed for both scenarios.
Unsurprisingly, our method performs best in static environments,
requiring reaching static goal locations. In these scenarios, there

is a direct relation between the agent states and the actual value
functions, which leads to an improved learning speed.

For a closer evaluation of our presented algorithms, the per-
agent rewardsmetrics are listed in Table 1. Furthermore, the number
of total successful trials per algorithm during exploration and
evaluation is listed. Exploration is not only run distinctly more
often but also contains double the amount of steps per run. As a
consequence, the number of successful exploration runs is distinctly
higher compared to the evaluation numbers.

Nonetheless, the collected numbers underline that our presented
method outperforms current state-of-the-art methods distinctly,
not only in terms of averaged accumulated rewards, as shown
in Figure 3, but also for each individual agent involved. The
performance increase becomes evident on comparing the success
rates of the algorithms, where MASAC failed completely to find a
successful policy.

Comparing the overall results, the TD3 agents outperformed
not only the state-of-the-art methods but also our SAC variants.
Furthermore, the dyadic setup resulted in improved performance
for all evaluation metrics compared to the game-against-nature
schematic representation. This confirms our initial statement that
it is preferable to handle interactions individually rather than
regressing interaction schemes fully from a NN.

Regarding the standard deviations of our proposed methods, it
also becomes evident that our methods suffer from higher variance
in the accumulated rewards. Even though this may seem like a
disadvantage of our approach compared to the existing algorithms,
it has to be noted that the obtained reward from a successful
episode usually distinctly differs from the reward obtained from an
unsuccessful episode.Therefore, the increased variance is not subject
to our method but a consequence of the increased success rates,
as highlighted in Table 1, where our algorithm achieves distinctly
higher success rates than the existing AC methods.

In summary, it can be stated that our presented algorithm
outperforms the existing methods within our simulated
environments even though they are run fully decentralized.

6 Discussion and technical extensions

Given our presented algorithm, we conclude this article with an
outline of possible extensions in order to further improve the overall
performance.

6.1 Applying best-response policies on
competitive environments

A current drawback of our algorithm is the restriction to
competitive domains. If the agents have access to all reward values
during learning, an additional critic for the objective of the other
agent can be added to the presented algorithm. This results in
applying the gradient step for the br policy not only over the joint
task critic for the current agent but also the agent-specific agent
critic. If this metric is applied, applying the dyadic interaction
scheme from above is strongly recommended as our algorithm
is restricted to optimizing the average reward over all agents
otherwise.
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FIGURE 3
Results of the decentralized br-based algorithms for the cooperative collection task using sparse rewards. The figures present averaged rewards of all
agents over eight learning runs per algorithm and environment. The shaded areas highlight a CI of 70%. The upper figure shows the performance of the
collection task with static goal locations, whereas the environment on the bottom samples new goal locations upon every reset. The x-axis denotes
the evaluation steps, which are run after 10 exploration episodes to evaluate the current performance.

TABLE 1 Detailed performance metrics for evaluated environments. The results of the static environment are listed on the bottom. The values show the
averaged results with the optional standard deviation appended by ±. The terms dyadic and nature are abbreviated by their first letter for brevity.
Similarly, the number of successful trials of the exploration and evaluation runs are denoted as dex and dev.

Static MADDPG MASAC br-TD3-d br-TD3-n br-SAC-d br-SAC-n

r(1) −2.92± 0.38 −2.95± 0.24 −2.54 ± 0.48 −2.55± 0.47 −2.6± 0.43 −2.64± 0.42

r(2) −2.94± 0.4 −2.96± 0.23 −2.54 ± 0.48 −2.57± 0.47 −2.6± 0.43 −2.64± 0.43

r(3) −2.99± 0.44 −2.95± 0.23 −2.54 ± 0.48 −2.55± 0.46 −2.61± 0.44 −2.64± 0.43

dev 3 0 35 31 12 10

dex 86 62 1121 901 256 246

r(1) ✓ −2.89± 0.46 −2.87± 0.3 −2.4 ± 0.51 −2.41± 0.51 −2.5± 0.52 −2.51± 0.53

r(2) ✓ −2.97± 0.5 −2.87± 0.3 −2.42 ± 0.51 −2.44± 0.52 −2.5± 0.52 −2.51± 0.53

r(3) ✓ −2.88± 0.44 −2.87± 0.3 −2.41 ± 0.51 −2.44± 0.52 −2.5± 0.52 −2.52± 0.53

dev ✓ 7 0 50 52 31 41

dex ✓ 289 68 1391 1284 554 481

The best performing values are highlighted in bold.

Another extension is given by modeling non-cooperative
agent(s). In order to model this procedure, it is best to condition
non-cooperative agents on the joint team policy of all cooperative
agents, thus leading to the conditional interaction policy as follows:

π(s) ≈π(−i,−i) (s(i)|a(−i,i),a(i))π(−i,i) (s(i)|a(i)) π(i) (s(i)) , (19)

In Eq. 19 the cooperative policy is denoted as π(−i,i) (s(i)|a(i)) and
the non-cooperative policy is denoted as π(−i,−i) (s(i)|a(−i,i),a(i)).

Alternatively, on-policy-based approaches, such as proximal policy
optimization (PPO) or trust region policy optimization, are
worth an investigation to model the behavior of other agents.
Here, a direct approach is given by conditioning the policy
estimate on the average over all estimators. A more promising
approach would be given by averaging over all agent advantages
and, thus, applying a gradient step. This bears the potential
of stabilizing the estimated opponent models and, thus, the
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overall task-critic updates, which eventually increases the likelihood
of converging to the team-optimal policy. Furthermore, there
is great potential on incorporating the findings of Jaques et al.
(2019) and, thus, not only regressing the agents’ policies but
also directly conditioning the reward of each agent on the
influencing reward.

6.2 Improving convergence behavior by
partially centralized learning

The presented method fully decouples learning by learning
opponent models without applying centralized learning schemes.
This is endangered to leading to divergent agent behavior and thus
converging to suboptimal team-behavior. Therefore, our current
method could be further enhanced by introducing centralized
learning without adding restrictive full observability assumptions.
Rather than sharing the full observations, the individual opponent
policy predictions can be shared during learning such that the
policy gradient can be conditioned on the Kullback–Leibler (KL)-
divergence of the predicted opponent policies.

a(j)← π(j)Π,br (s(i),a(i))

J (π(j)Π,br) = 𝔼s(i),a(i)
[[[[[

[

∇a(−i)Q
(i)
int (s
(i),a)|

a(j)
− 1
NA − 2

NA

∑
k=1
k≠j
k≠i

DKL (π
(j)||π(k))
]]]]]

]

.

(20)

Eventually, a baseline policy, e.g., obtained from behavioral
cloning, can be substituted into Equation 20 to further stabilize
the gradients.

6.3 Multi-robot hierarchical actor critic

Recalling the motivation of our algorithm in Section 4, a
major advantage of our algorithm is the possibility of applying
asynchronous actions. As this directly allows extending AC
for MARL to HRL, we outline a conceptual extension of our
approach tailored to RL tasks with sparse rewards. This extension
relies on a collection of assumptions, which is also assumed in
Levy et al. (2019):

• There exists an agent-specific state space X (i) ∈ S(i), and x
(i) ∈

s
(i) always holds1.
• There exist deterministic mapping functions Fg: = X (i) ×
{p}A(i)↦ {p−1}G(i) ∈ X (i) and F−1g : = X (i) × {p−1}G(i)↦ {p}A(i),
whichmap the actions of the upper layer to the goal space of the
lower layer and vice versa for each agent.
• There exists a deterministic evaluation metric {p}J : = {p}G ×
X (i)↦ [0,1] that evaluates the achievement of a goal {p}g(i),
given the current agent state X (i).

1 Assumption of x(i) ∈ s(i) emphasizes that we do not expect full state

observability and that the intrinsic observations do not provide additional

knowledge to the robotic agents.

This differs from the original assumption by Levy et al. (2019)
because we propose to explicitly distinguish between the internal
agent state x

(i) and the full environment observation s
(i).

We claim that within multi-agent HRL, it is specifically
beneficial to distinguish between internal and external observations.
Therefore, we propose to use structured observations as follows:

s(i): = (x,ye,y(−i))i∈NA

, (21)

In Eq. 21 x
(i) reflects the internal state of an agent, e.g., current

position, velocity, etc., and environmental observations y
(i)
e from

A(i)’s perspective, e.g., images or laser range data, as well as
observations of the other agents y(i)(−i).

Given this representation, we propose a two-layered hierarchy
where the upper layer proposes sub-goals to the lower layer agents.
This lower level is denoted as the environment-layer or {e}p in the
following, while the upper layer is denoted as the team-coordination
layer or{i}p. On the lowest layer, our decentralized MARL approach
based on br policies from Section 4.1 can be applied using a dyadic
interaction scheme.

Therefore, the individual components per agent are given
as follows:

• A joint task critic Q
(i)
int (s
(i),a).

• A native hierarchical critic Q
(i)
nat (x
(i),y(i)e ,g(i)).

• A goal-conditioned action policy for the current agent
π(i) (s(i),g(i)).
• The dyadic br policies (π(j) ((x,ye,y(−i),a)i∈NA

))
j∈−i

.

As the individual agents are provided with a sub-task that
is to be reached by the dedicated agents alone, the hierarchical
native critic preferably drops the dependency on the observation
of other agents. In other words, this native hierarchical critic
evaluates the hierarchically imposed rewards instead of estimating
the current step-cost from the deviation with regard to the average
reward. As a result, the update step of the lower layer follows
Algorithm 1 but replaces the difference in line 9 by an average over
the two critics. Furthermore, the native critic not only evaluates the
environmental task success d but also evaluates if the update step
has accomplished the current sub-goal. As the rest remains identical
to Algorithm 1 and Equations 15 and 16, we omit repeating the
same equations.

In contrast, the upper layer only tracks a single critic as infeasible
sub-goals result in unpredictable task performance. Unfortunately,
the agents do not have access to the goal mapping of other
agents such that it is impossible to directly impose their policies
or higher-level actions in the critic within decentralized settings.
Furthermore, the upper layer usually suffers from asynchronous
decisions, which would require adding the decision epochs to
the critic’s state to allow sampling from the experience buffer.
Therefore, we propose to apply an observation oracle instead
of a br policy,

{i}π(j)br : = (X ×Yenv ×Y (j) ×{i}a)i∈NA

↦ Y (j), (22)

i.e., instead of predicting the agent action on the upper layer, the next
observation is predicted. In case a (partially) centralized learning
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scheme is applied, this observation oracle can also be replaced with
the following:

{i}π(j)br : = (X ×Yenv ×X (j) ×{i}a)i∈NA

↦ X (j), (23)

thus predicting the next internal state of the agent j.
These opponent models from Eqs 22, 23 allow using data
from an experience buffer independent of the higher-level
policies or decision epochs during execution. As a result,
the (interactive) task critic of the upper layers are regressed
from Eqs 24 or 25:

{i}Q
(i)
int: = S

(i) ×A(i) × (Y (i)(j))j∈−i↦ℝ (24)

{i}Q
(i)
int: = s× a

(i) × (X (i)(j) )j∈−i↦ℝ (25)

Although the lower layer is updated similarly toAlgorithm 1, the
lower-layer critic update is given by calculating the following:

p = 1
{i}Tmax

{i}Tmax
∑
n=1

γ
{i}Tmax−nr(i) (st+n,at+n,st+n+1)

+ (1−d)
{{
{{
{

0 ifJ (x(i)′ ,Fg (x
(i),{i}a(i))) ↦ ⊤

−(Tmax − n) if∃ n:J (x(i)t+n+1,Fg (x(i),{i}a(i))) ↦ ⊤
−Tmax else

+ γ(1−d)(min
k=1,2
{i}†Qint,k

(i)(s(i)′ ,{i}a(i)′ , (y(i)(j)
′)

j∈−i
)),

(26)

where {i}Tmax denotes the number of maximum sub-steps for a
hierarchical transition and s′ : = st+{i}Tmax

represents the observation
of agent i after a hierarchical update step. The actions and
observations for the target critic in Equation 26 are obtained via the
proposed policies from Eq. 27

{i}a(i)′ ←{i}†π(i)Π (s(i)′)

(y′ ←{i}†π(j)brΞ (s
(i)′ ,{i}a(i)′))

j∈−i

. (27)

The first term in Equation 26 averages the environmental
reward, while the second adds the hierarchical penalty term
depending on whether the lower layer could achieve the current
action or the respective sub-goal. Eventually, the value function
is approximated via querying the current higher-level policy and
predicting the observations of the other agents.

7 Conclusion

Within this article, we have proposed a novel MARL framework
that allows decentralized learning while differentiating between
agent-based native costs and joint task rewards. In order to regress
the team-optimal policy, each agent not only updates their own
policy but also instead models the team-optimal response by
estimating the br policy of the other agents. We propose to employ
concepts from game theory, namely, either applying dyadic br
policies for each agent pair or representing the collection of other
agents as a game against nature. Even though our method relies
on estimates of the agent-based costs, it outperforms recent state-
of-the-art methods in terms of convergence speed within sparsely
rewarded environments.

Given the promising results collected in simulation, this
article provides a variety of extensions, which bear great

potential for future research. First, an extension to competitive
domains, i.e., zero-sum games, has been sketched by minimizing
instead of maximizing the agent task critic when updating the
other agents’ policies. Second, we outlined that sharing the
predicted br policies can improve the convergence. Eventually,
we sketched an extension of our method to a hierarchical
MARL algorithm as this may allow bootstrapping performance
during learning.

Using such a hierarchical MARL algorithm combined
with structured environment observations bears the additional
advantage of explicitly incorporating available model knowledge.
This allows leveraging the concept of full end-to-end
learning and instead combines MARL with optimization-
based techniques, which remains a rarely covered field
of research.
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Appendix 1

The proposed algorithm has been evaluated on the MPE that
has been extended from previous work (Lowe et al., 2017; Mordatch
and Abbeel, 2017) to fit the scope of this article. The source code
of the benchmark scenarios2 and the presented work3 can be found
online, while the hyper-parameters and further implementation
details leading to the results are listed in Appendix 2.

In order to meet the assumptions stated in Section 4, the
original simulation environment has been adjusted such that the
agents are able to differentiate between internal, external agent-
related, and external environment-based observations. Thus, we
introduce structured observations for our adjusted version of the
MPE. Furthermore, the goal-mapping and evaluation metrics stated
in Section 4 have beenhandcrafted and embedded into the dedicated
environments similar to the original work of Levy et al. (2019). As
claimed in Section 4, our approach tackles cooperative multi-robot
RL tasks, such that only environments with pure continuous action
spaces have been tested. Before outlining the experimental findings
collected, we highlight the adjustments added to the default gym
environment and the MPE.

A.1 Structured observations in the
multi-agent particle environment

In order to ease the implementation of the presented extensions
in Section 6, our adjusted MPE directly allows obtaining the
observation of each agent as s

(i): = (x(i),y(i)e ,y
(i)
(−i)). The MPE is

characterized by NA agents moving in a xy-planar surface by
applying a force on their body center. Thus, each agent is
implemented as a point-mass, where the internal state and action
are defined as

x(i): =

[[[[[[[

[

x(i)

y(i)

̇x(i)

̇y(i)

]]]]]]]

]

a(i): = [

[

f(i)x

f(i)y
]

]
, (28)

where the action is a planar force4 actuated on the individual point-
masses, which then follows the linear point-mass dynamics

x(i)′ : =

[[[[[[[

[

1 0 dt 0

0 1 0 dt

0 0 v 0

0 0 0 v

]]]]]]]

]

[[[[[[[

[

x(i)

y(i)

̇x(i)

̇y(i)

]]]]]]]

]

+

[[[[[[[[

[

0 0

0 0
1
m

0

0 1
m

]]]]]]]]

]

a(i), (29)

2 Source code: https://gitlab.com/vg_tum/multi-agent-gym.git

3 Source code: https://gitlab.com/vg_tum/mahac_rl.git

4 Various implementations available online realize the action input as the

difference of two positive force terms as this eases the comparison

to discrete action spaces, where the result equals learning an optimal

bang–bang controller. As our framework explicitly highlights continuous

applications, we kept this implementation for the comparison to the

state-of-the-art methods but used the interfaces from Eqs 28, 29 for our

method.

TABLE A1 Hyper-parameters for the experimental evaluation and all
evaluated algorithms.

Parameter Value

Batch size 1,024

Polyak value for the target net update 0.95

Decay parameter γ 0.95

Exploration episode length 200

Evaluation episode length 100

Number of episodes 5,000

Number of update steps 5

Update rate every fifth episode

Episode buffer size 1,000

Number of agents NA 3

Polynomial filter order Savitzky and Golay (1964) 3

Filter window size Savitzky and Golay (1964) 31

TABLE A2 Environment parameters for the MPE and cooperative
collection task.

Parameter Value

dt 0.02 s

NA 3

Goal threshold ζg,MPE in Eq. 30 0.02 m

Collision cost 1

v 0.9

m 1kg

vmax 1.0 m/s

Number of collision objects 0

using the mass of the entity m and a damping term v ∈ [0,1] in
free space. Each particle is set to a static size, i.e., a diameter of
0.05 m, which is used for collision checking with other agents or
the environment. In case a particle collides with an object or an
agent, a simple point-mass collision is applied. Even though the
actual observation highly depends on the actual scenario or task to
be solved, all our implementations contain the internal agent state in
the observation of the agents.

As claimed in Section 4, our approach tackles cooperativemulti-
robot RL tasks in sparsely rewarded environments, such that only
environments with pure continuous action spaces have been tested.
In addition to cooperative navigation, we evaluated our approaches
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TABLE A3 Hyper-parameters for each algorithm. In case an entry is left blank, the algorithm does not have this hyper-parameter. The critic-parameters
for our br-based approaches have been chosen identically for the interaction critic and native critic. Similarly, the parameters for the br policies are
identical as the actor policy.

Parameter MADDPG MASAC br-TD3 br-SAC

Size of (hidden) critic layers (64, 64) (64, 64) (64, 64) (64, 64)

Size of (hidden) policy layers (64, 64) (64, 64) (64, 64) (64, 64)

Learning rate critic ιQ 0.01 0.01 0.01 0.01

Learning rate policy ιπ 0.01 0.01 0.01 0.01

Polyak value υ 0.01 0.01 0.01 0.01

α0 0.2 0.2

on the cooperative collection task, in which NA agents are expected
to reach NA goal locations. The reward signal is provided sparsely,
which is expressed as follows:

r(i)←
NA

∑
k=0

{
{
{

0 if visited(gk) ∨ ∃j:∥ x
(j) − gk ∥2 ≤ ζg,MPE

−1 else.
(30)

In addition, each agent is penalized with a direct cost value of
−1 every time a collision with the environment or another agent
is encountered. For both environments, the observations of other
agents y

(i)
e contain a two dimensional distance vector of the agents’

center position, while the observations of the environment y
(i)
(−i)

contain two-dimensional distance vectors to the goal locations and
the objects in the environment.

Appendix 2

The hyper-parameters for the learning procedure that is applied
for all algorithms identically are listed in Table A1.

Similarly, the (physical) parameters for the MPE environment
are listed in Table A2.

Eventually, the hyper-parameters for the individual algorithms
are listed in Table A3. Our br-based policies used identical
parameters for the dyadic and game-against-nature scheme.
Therefore, only one column per algorithm is provided in the table
below. We used Adam (Kingma and Ba, 2015) for the stochastic
gradient descent (SGD)-optimization for all algorithms.

The experimental evidence was collected on two distributed
computers with the following hardware components:

• OS-Kernel:
• (Ubuntu) Linux-5.13.0–44
• (Ubuntu) Linux-4.15.0–187
• Processor:
• Intel(R) Core(TM) i3-7100 CPU @ 3.90 GHz
• AMD RyzenThreadripper 2990WX 32-Core
• Python-version: 3.9.7
• GPU-acceleration: disabled
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Nomenclature

Acronyms

AC actor–critic

br best response

CI confidence interval

COMA counterfactual multi-agent

DDPG deep deterministic policy gradient

DPG deterministic policy gradient

DQN deep Q-network

GPU graphics processing unit

HRL hierarchical reinforcement learning

KL Kullback–Leibler

MAAC multi-actor-attention-critic

MADDPG multi-agent deep deterministic policy gradient

MARL multi-agent reinforcement learning

MASAC multi-agent soft actor–critic

MDP Markov decision process

MG Markov game

ML machine learning

MPE multi-agent particle environment

MPO maximum a posterioripolicy optimization

NE Nash equilibrium

NN neural network

PDF probability density function

PG policy gradient

PPO proximal policy optimization

RL reinforcement learning

SAC soft actor–critic

SGD stochastic gradient descent

TD3 twin-delayed deep deterministic policy gradient

TRPO trust region policy optimization

Notation

p placeholder variable in notation

⊤ Boolean true

: = equal by definition

{k}p hierarchical layer indexing

1p×p identity matrix of dimension p×p

0p×p zero matrix of dimension p×p

P matrix in ℝm×n

ℝ rational numbers

ζ threshold value; indexing defines actual meaning

t current time or temporal indexing variable

Tmax maximum run time (continuous) or the number of
time steps (discrete) in ℝ1

p vector in ℝn

1p identity vector of dimension p

0p zero vector of dimension p

List of Symbols

a action of the agent i

π action assignment policy that maps a state to an
action a

d binary done flag, symbolizing the end of a task

r single step reward return

π(j)br dyadic best-response policy of the agent jto the action
of the agent i

π(−i)br dyadic best-response policy of agent natureto the
action of agent i

x Cartesian x-coordinate in ℝ1

y Cartesian y-coordinate in ℝ1

v damping constant

D data buffer containing experiences usable for RL.

α entropy temperature parameter for SAC

e environment layer index

f force magnitude or scalar force component in ℝ1

Θ function approximation parameterization for a critic

Π function approximation parameterization for a policy
π

Ξ function approximation parameterization for π(j)bror
π(−i)br

i interaction layer index

DKL Kullback–Leibler-divergence of two PDFs

ι learning rate for SGD

m mass of a physical entity

μ mean of a PDF.

NA number of agents

v polyak-averaging weight, e.g., used to update the
target network

A player or (artificial) agent

s state value in a general state space

x fully observable state

y hidden state

γ temporal discount factor

v translational velocity in SE (3)

List of Operators

A advantage function as the difference of Qand Vin ℝ1

T black box success function in ℝ1
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R black box reward function in ℝ1

ρ PDF over a random variable

ℍ entropy of a random variable/PDF in ℝ1

𝔼 expectation of a random variable/distribution

χ general critic function in ℝ1, e.g., V, A,or Q

Fg goal mapping function; maps state/observation to a goal g ∈ G ∈ ℝn

∆

gradient over a function or vector in ℝnor matrix in ℝn×n

L loss function in ℝ1

J general objective function for an optimization problem in ℝ1

ℙ probability of a random variable/distribution

Q Q-function in ℝ1, also known as state-action value function

fΠ deterministic function to apply the reparameterization trick, cf.SAC

T stochastic transition function

V value function in ℝ1

𝕍ar variance of a random variable/distribution𝕍ar ∈ ℝ1
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