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Accurate texture classification empowers robots to improve their perception
and comprehension of the environment, enabling informed decision-making
and appropriate responses to diverse materials and surfaces. Still, there are
challenges for texture classification regarding the vast amount of time series data
generated from robots’ sensors. For instance, robots are anticipated to leverage
human feedback during interactions with the environment, particularly in cases
of misclassification or uncertainty. With the diversity of objects and textures in
daily activities, Active Learning (AL) can be employed to minimize the number
of samples the robot needs to request from humans, streamlining the learning
process. In the present work, we use AL to select the most informative samples
for annotation, thus reducing the human labeling effort required to achieve
high performance for classifying textures. We also use a sliding window strategy
for extracting features from the sensor’s time series used in our experiments.
Our multi-class dataset (e.g., 12 textures) challenges traditional AL strategies
since standard techniques cannot control the number of instances per class
selected to be labeled. Therefore, we propose a novel class-balancing instance
selection algorithm that we integrate with standard AL strategies. Moreover, we
evaluate the effect of sliding windows of two-time intervals (3 and 6 s) on our
AL Strategies. Finally, we analyze in our experiments the performance of AL
strategies, with and without the balancing algorithm, regarding f1-score, and
positive effects are observed in terms of performance when using our proposed
data pipeline. Our results show that the training data can be reduced to 70%
using an AL strategy regardless of the machine learning model and reach, and
in many cases, surpass a baseline performance. Finally, exploring the textures
with a 6-s window achieves the best performance, and using either Extra Trees
produces an average f1-score of 90.21% in the texture classification data set.

KEYWORDS

tactile sensing, texture classification, active learning, class imbalancement, time series,
temporal features

1 Introduction

Tactile perception in robots refers to their capability to detect and comprehend physical
contact, pressure, and vibration information using dedicated sensors integrated into their
bodies or end-effectors. Robots can use tactile sensing to augment their perception and
interaction capabilities, enabling them to perform tasks with increased precision. Effective
tactile perception allows the estimation of crucial information about the surrounding
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environment in various scenarios, especially under reflection,
cluttered environments, challenging light conditions, and occlusion.
When relying solely on vision, robots can only identify familiar
surface materials and cannot estimate their physical properties
independently (Luo et al., 2017). Robots can comprehend and
actively engage with their surroundings when receiving static and
dynamic sensory information during tactile sensing (Sankar et al.,
2021). Tactile perception empowers robots to adapt their joints,
links and reactions based on tactile feedback, resulting in improved
manipulation, object recognition, and social interactions. Tactile
sensing works harmoniously with other sensing modalities like
vision and proximity sensing, creating a comprehensive and versatile
robot perception system.

Touch is a vital modality while sensing the physical engagement
of robots with their environments (Li et al., 2020). Luo et al. (2017)
pointed out the importance of utilizing the sense of touch to
discernmaterial properties, as it allows robots to determine essential
characteristics such as surface texture (friction coefficients and
roughness) and compliance, which play a vital role in object
manipulation. On the other hand, fine textures need to be slid across
a surface to produce micro-vibrations that may then be analyzed
and categorized. Luo et al. (2017) emphasized the significance of
incorporating the sense of touch to perceive material properties.
This capability enables robots to discern essential characteristics
like surface texture, including friction coefficients and roughness,
and compliance, which are crucial for effective object manipulation.
Moreover, tactile-enabled manipulation can improve robot tasks
when incorporating exploratory strategies. When analyzing and
categorizing fine textures, the robot needs to slide across a surface,
producing micro-vibrations that can be analyzed and categorized.

Tactile sensors such as capacitive (Taunyazov et al.,
2019; Pagoli et al., 2022), magnetic sensors (Yan et al., 2022;
Bhirangi et al., 2021), have been developed for robots to recognize
their environment better. In De Oliveira et al. (2015a), the profile
of a surface was recognized by dynamic touch using a robotic
finger. The motor and inertial measurement unit (IMU) feedback
provided was passed through a neural network to classify shapes.
The authors of Lederman and Klatzky (1987) pointed out six
different exploratory movements to identify the properties of an
object. Authors of de Oliveira et al. (2015b) proposed a data-driven
analysis for shape discrimination tasks using a robotic finger that
performs the sliding movement. Lima et al. (2020) developed an
experiment with a sliding tactile-enabled robotic fingertip to explore
textures dynamically. The robotic fingertip’s design contains a
multimodal tactile sensor that makes contact with the surface.Then,
supervised machine learning models were used on this collected
data to classify textures. Due to the nature of several textures
to have essential features in different directions, this work was
further developed in Lima et al. (2021) by doing a two-dimensional
exploration of surfaces. Here, the authors also investigated the
classification accuracy of machine learning models on tactile data
from a multimodal sensing module in a dynamic exploration
environment at three different velocities. Von Drigalski et al. (2017)
also classified texture on the data collected by a 3-axis force tactile
sensor attached to a robot’s gripper. Huang and Wu (2021) classified
texture collected by a tactile sensor using a convolutional neural
network.Gao et al. (2020) used the BioTac sensor and auto-encoders
to improve material Classification Performance. While achieving

good results, the sensor used in this work does not measure
non-normal forces and changes in exploration direction, which
represents a significant difference from the sensor employed in our
study. Similarly, the iCub RoboSkin in Xu et al. (2013) incorporates
a non-compliant fixture, introducing substantial differences in the
data characteristics compared to the information we target using the
current dataset. Numerous studies have focused on gathering more
detailed tactile data for recognizing texture, resulting in abundant
data for performing experiments in tactile sensing. Also, the data
in those works are the means of teaching the robots to recognize
textures. Thus, a sufficiently labeled dataset is required for texture
classification using machine learning models.

The effectiveness of a classification model heavily depends
on the data used for training. In Billard and Kragic (2019), the
authors state that robotic manipulation using machine learning in
unstructured environments is computationally expensive and time-
consuming. However, despite the advantages of having abundant
data in tactile sensing, the rapidly increasing volume of data also
brings specific challenges and drawbacks that require attention. In
particular, the scarcity of annotated training data has become a
significant challenge for supervised learning techniques since they
rely on well-annotated data for effective training. Labeling a large
amount of data is costly and time-consuming and often necessitates
the expertise of domain specialists (Júnior et al., 2017). To address
this challenge, researchers have introduced the concept of Active
Learning (AL) (Settles, 2009; Löffler and Mutschler, 2022). AL offers
a solution by enabling the model to actively select and acquire the
most informative data points for annotation, thus reducing the need
for large amounts of labeled data.The core concept of AL is that if the
learning algorithm can choose the data from which it learns, it will
perform better with less training data (Settles, 2009). In scenarios
where the strategy asks an expert for labels, different kinds of query
strategies pave the way for deciding which instances are the most
informative to be labeled. There have been many proposed ways of
formulating such query strategies in the literature (Settles, 2009).
Among the query strategies, Uncertainty (UNC) sampling is the
simplest and most commonly used (Lewis and Gale, 1994). The AL
system queries the expert to label themost informative instance (i.e.,
the instance(s) that a machine learning model is most uncertain
about its class) in UNC. There are numerous metrics to calculate
uncertainty, some of which are Least Confident (Settles and Craven,
2008), Margin Sampling (Settles, 2009), and Entropy (Shannon,
1948). Another popular query strategy is Query By Committee
(QBC) (Settles, 2009). This AL strategy selects the most informative
data points for labeling by querying regions in the input space where
the models in a committee disagree. Moreover, to implement QBC,
a measure of disagreement among the committee members must be
established to identify the data points where themodels disagree and
are uncertain (Settles, 2009). Finally, the Expected Model Change
(EMC) (Freytag et al., 2014) strategy, which predicts the influence of
an unlabeled example on futuremodel decisions and if the unlabeled
example is likely to change future decisions of themodel when being
labeled, it is regarded as an informative sample.

Over the last decade, studies have started incorporating AL
strategies into robotics, realizing the necessity and importance
of well-annotated data to teach the robots better. In Stanton
(2018), a robot conducts unsupervised discovery to get the data
it needs in dynamic settings where labeled datasets are absent.
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The authors of Taylor et al. (2021) termed AL a process in which
agents make decisions to collect the most relevant data to achieve
the desired learning objective. They also pointed out that usually
informative samples are sparse and believed AL could fetch those
samples to the robots for training, thus reducing the labeling cost
and time. Chao et al. (2010) discussed that AL is a transparent
approach to machine learning as the algorithm queries an expert
that provides information about areas of uncertainty in the
underlying model. In their research, they implemented AL on the
Simon robot and found potential improvement in the learning
process’s accuracy and efficiency. AL has also been used for robotic
grasping. For instance, in Wei et al. (2023), authors developed a
Discriminative Active Learning (DAL) framework, evaluated real-
world grasping datasets, and performed better with less annotated
data. Moreover, they showed model trained with fewer data selected
by this AL framework could handle the task of real-world grasp
detection.Another frameworkwas suggested for recognizing objects
and concept acquisition in Gkatzia and Belvedere (2021). This
framework’s combination of few-shot learning and AL reduced the
need for robot data annotation. In their study, (Sheikh et al., 2020)
addressed AL in the context of semantic segmentation to reduce
the human labeling effort of image data obtained from a mobile
robot. Their strategies resulted in achieving higher accuracy with
a reduced number of samples. To enhance object detection with
limited annotated data, the authors of Xu et al. (2020) focused on
exploiting canonical views through an active sampling approach
named OLIVE. This method selects optimal viewpoints for learning
using a goodness-of-view (GOV) metric, combining model-based
object detection consistency and informativeness of canonical visual
features. Samples chosen by OLIVE, along with data augmentation,
are used to train a faster R-CNN for object detection. It is crucial
to underscore that including data augmentation in their pipeline
introduces an additional processing cost. While such a strategy
effectively alleviates the burden of labeling data, it necessitates
higher-cost robotic hardware for optimal performance. Their study
validates the principle of active sampling in the context of robot
learning for object detection, and it aligns with our goal of
minimizing annotated data required for robot training. In contrast
to OLIVE, which uses the GOV metric, we utilize traditional
AL strategies, namely, UNC, QBC, and EMC, along with their
uncertainty metrics to identify informative samples. This reduces
the labeled data requirement and, like OLIVE, enhances training
efficiency, improving texture recognition performance. Notably, the
additional processing entailed by data augmentation in OLIVE is
not present in our pipeline, rendering our strategy better suited
for scenarios where lower-cost robotic hardware and less complex
models are preferred.

Our work focuses on the potential significance of Active
Learning (AL) in tactile sensing for texture recognition,
particularly in the context of future robotic manipulation in
unstructured environments. Recent studies (Cui and Trinkle, 2021;
Ravichandar et al., 2020) highlight the significance of learning from
demonstration (LfD) as the paradigm in which robots acquire new
skills by imitating an expert. In addition, labeling objects from
daily activities with the help of a human specialist will become
fundamental for integrating robotic manipulation in unstructured
environments, such as homes, universities, hotels, and hospitals. In
this work, we have utilized AL to enhance the texture classification

process by considerably reducing the training size of machine
learning models.

Additionally, the data obtained from tactile sensors consists
of time series, resulting in a large dataset to be processed. The
volume of the collected data increases with the frequency at which
it is collected, making tactile data more complex and increasing
the labeling cost. It is worth mentioning that there have been
previous studies where AL has been successfully applied to time
series data. In Wu and Ortiz (2021), AL has performed better using
fewer samples on real and synthetic time series datasets. Authors in
He et al. (2015) used AL to get adequate, reliable, annotated training
data for multivariate time series classification. Often, time series
data have a very imbalanced data distribution. This may result in
bias in the AL strategies while selecting the most informative data
points and, thus, in the whole training process. He et al. (2015) have
addressed the need to balance the training data among different
classes while performing the classification task and believe this
affects the model’s generalization. Moreover, while analyzing or
classifying time series, temporal features play an essential role.
Wang et al. (2014) have pointed out how rarely the time variable’s
effect is considered. Their study shows that by using more temporal
information, the partitioning method results in greater forecasting
accuracy for sensor inputs at the feature extraction stage, and the
data should be segmented into smaller segments at the feature
extraction stage for sensor inputs. For the recognition task, the
authors in Ma et al. (2020) mentioned that when the window size
is too short, some actions may be split into numerous consecutive
windows, activating the recognition task too frequently without
producing high recognition results. According to Jaén-Vargas et al.
(2022), it is not always necessary to have large sliding windows to
achieve higher performance. In the current paper, we aimed for a
tradeoff between the information required for recognition and the
cost of processing.

This study investigates the effects of using AL strategies for
texture classification using tactile sensing. We envision a future
where automated systems operate in uncertain and unstructured
environments, lacking access to reliable analytic models or extensive
historical datasets. In such scenarios, active learning anddata-driven
control could become paramount. In practical scenarios, a robot
capable of obtaining labels from a specialist could apply active
learning strategies to select themost informative samples and obtain
precise information to update its world model. However, without
such a strategy, the sheer volume of data queries might render
it unfeasible for a human specialist to assist the robotic platform
effectively.

Due to the multi-class classification (12 classes) nature of
our problem, we propose a class-balancing instance selection
algorithm to address the imbalance issues that may arise from
standard AL strategies when selecting instances for labeling. This
algorithm is integrated into standard AL strategies (UNC, QBC and
EMC) to improve the performance of texture classification models,
allowing them to achieve competitive or superior performance with
fewer training instances when compared to a baseline using the
entire dataset. Additionally, we use a sliding window approach to
extract features from time-series data. We compare the effects of
temporal features using two different window sizes, aiming to reduce
further the training data size for robots’ texture classification tasks.
In summary, our proposed strategy combines a sliding window
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strategy, time-series feature extraction, and active learning with a
class-balancing instance selection algorithm to reduce the number
of training instances for classifying textureswith supervised learning
models. Our research significantly contributes to tactile texture
recognition and robotic exploration in unstructured environments.
We introduce a pipeline for data pre-processing and novel
class-balancing technique within the context of active learning,
addressing the challenge of imbalanced datasets in tactile texture
classification. Our approach enhances classification performance
and demonstrates the potential for robots to adapt and learn
efficiently from limited human supervision, paving the way for
future autonomous robotic manipulation in diverse and uncertain
real-world settings.

2 Materials and methods

The entire pipeline developed in this work is presented in
Figure 1. First, in step 1, the data used in this work was collected
through exploratory movements of a tactile sensor-equipped
robotics finger. The data is available in (Monteiro Rocha Lima et al.,
2023; Lima et al., 2023), and the experimental setup is explained
in Section 2.1. The time series data is subsequently partitioned
into more manageable temporal windows in step 2. Extracting an
array of statistical attributes from these shorter windows generates
the features and processed tactile data for our machine-learning
models in step 3. After, we use AL strategies to rank instances based
on how informative they are for requesting labels (step 4), and
the top-ranked instances are selected by the AL strategy (step 5).
Subsequently, these instances are attributed their appropriate labels,
as already encoded in the processed data, and are consequently
included in the annotated data pool (step 5). Then, we build a
machine-learning model with the instances in the labeled pool (step
6) and classify all instances in the processed tactile data pool (step 7).
As the pipeline unfolds iteratively, steps 4 through 7 are recurrently
executed until a predefined upper limit of instances is achieved,
which is constrained by a pre-established budget (i.e., a maximal
budget). Ultimately, our approach’s outcome is a machine learning
model trained by an AL strategy and a maximal budget smaller than
the total number of instances available in the original dataset. All
essential processes described in Figure 1 of the entire pipeline are
detailed in the following subsections.

2.1 Experimental setup and texture data
collection

In this study, we used the tactile data available in
(Monteiro Rocha Lima et al., 2023; Lima et al., 2023), which was
collected from a robotics finger from a previous study by Lima et al.
(2021) and represents step 1 in Figure 1. The fingertip of the
robotic finger was equipped with a fixed miniaturized tactile sensor,
which was developed by De Oliveira et al. (2017). This miniaturized
sensor was also used in a previous study by Lima et al. (2020). The
scaled-down version of this module is depicted in Figure 2.

Different from (Lima et al., 2020), the tactile sensing module
used in this study has a rounded profile and flexible materials
that enable exploratory motions, resembling the shape of a human

fingertip. During experiments, the sensor was securely held in place
by an articulated robotic finger mounted on a plastic base. The
rounded form of the fingertip aims for a more straightforward
exploration of 2D textures. The module incorporates a Magnetic,
Angular Rate, and Gravity (MARG) system with nine degrees of
freedom, providing valuable information about the exploration
vibrations. Additionally, the module features a base-mounted
barometer that captures deep-pressure data. Even though this
unique sensor setup also allows us to record the module’s
deformation, in the present work, we focus on classifying textures
based on the pressure data from the barometer. Figure 3 shows the
sensing module holder intended to mimic the index finger’s natural
probing.Themotor housing serves as a permanent representation of
the intermediate phalange. The motor axis is used to represent the
intermediate-distal joint, and the tactile module holder is used to
describe the distal phalange. The distal phalange moves to bring the
sensor module into touch with the surface as the intermediate-distal
joint rotates.

The data (Monteiro Rocha Lima et al., 2023; Lima et al., 2023)
used here contain readings of 12 textures as shown in Figure 4. More
details regarding the textures are available in Lima et al. (2021). The
surface containing the textures was explored in a square orientation
(i.e., exploring X and Y directions), as depicted in Figure 3. Each
experimental trial involved completing a square for each texture,
with 100 experimental runs conducted at three different velocities
(30, 35, and 40 mm/s). The dynamic exploration began by lowering
the fingertip until it made contact with the textured surface. A
small torque was applied to the fingertip to ensure consistent
contact throughout the experiment. An empirically chosen pressure
threshold determined when the fingertip torque would end. The
total run time for each experiment was 12 s, with 3 s required to
travel each side of the square. The dataset uses a unique compliant
multi-modal tactile sensor comprising a deep pressure sensor and
inertial measurements, which provides the interesting ability to
detect micro-vibrations and changes in pressure non-normal to the
surface while changing directions, as performed in this dataset,
which is expected from robots exploring daily textures. More details
regarding the experimental setup and data collection approach can
be found in Lima et al. (2021).

2.2 Data preprocessing and feature
extraction

Based on the findings of Lima et al. (2021), the barometer feature
achieved the best classification results, exhibiting 100% accuracy
for most texture classification cases. Therefore, we decided to rely
solely on the barometer sensor to conduct our experiments to
investigate dimensionality reduction. For our work, we utilized
1,200 samples (corresponding to 12 textures) collected solely using
the barometer at a velocity of 30 mm/s. Each sample contains
data collected at 350 Hz while exploring the respective textures.
Subsequently, we applied our preprocessing pipeline to these raw
samples. The pipeline involves using an overlapping sliding window
with a configurable window size, where the overlap was set to
50% of the window size. We believe setting higher overlapping
thresholds could result in excessively similar examples within the
sequence, potentially reducing diversity in the training set and
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FIGURE 1
The pipeline for tactile data used for texture classification. 1) Data collection from exploratory movements; 2) time series data is partitioned into
temporal; 3) statistical attributes extraction; 4) using AL strategies to rank instances; 5) the AL strategy selects top-ranked instances; Machine-learning
model built with the instances in the labeled pool; 7) classify all instances in the processed tactile data pool.

FIGURE 2
Multi-modal bio-inspired sensor and MARG frames of reference
(Lima et al., 2021).

increasing the processing time required to transform readings into
machine-learning-ready examples. The consequence of such higher
overlapping thresholds is that it could pose challenges in resource-
constrained environments.We experimentedwith twowindow sizes

FIGURE 3
XY-recorder setup with a texture under exploration (Lima et al., 2021).

(3 and 6 s) to explore the impact of temporal features on our texture
classification task. The values of 3 and 6 s used in this work were
set mainly because of the setup of how the data was collected. A
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FIGURE 4
The set of textures explored in the dataset (Lima et al., 2021).

sliding window of 3 s corresponds to 25% exploration, while 6 s
corresponds to 50% exploration. In the experiments, we aim to
capture distinct dimensions of exploration within these time slices,
and extending the exploration beyond 6 s would lead the module
to revisit dimensions already explored in the initial 3 s, resulting in
redundant data collection For each window, the pipeline generates
a scaled instance (i.e., a MinMax scaler with values ranging from
0 to 1) comprising 11 statistical features, including mean, median,
variance, skewness, standard deviation, quantiles (10, 25, 76, 90),
min, and max. In this way, a resultant statistical features data frame
is generated for each time window on which the machine learning
models are trained.

This generation of features uses the window strategy depicted
in Figure 5 and described below. Given as input a time window of
6 s and an overlap of 3 s, the first instance i1 generated from one
experiment would start on time t = 0 and end time t = 6. From all
the barometer data collected from this time window, we extract
the 11 statistical features and add such features to a data frame,
storing the texture label of that particular instance. For the second
instance of the same experiment with a texture, wemove thewindow
by 3 s (i.e., start on time t = 3 and end time t = 9) and repeat the
process of extracting features and adding a label to the texture. This
entire procedure is repeated until the end of each experiment with
the textures. Such an approach generated two datasets, one for a
3 s window with 50% overlap consisting of 6,718 instances, and
another for a 6 s window with 50% overlap and 2,878 instances. The

processed data (step 3) referred to in this subsection is the processed
tactile data discussed in Figure 1.

2.3 Active learning strategies and
class-balancement instance selection
algorithm

AL strategies aim to select themost uncertain instances classified
by a model to be labeled by an expert so that the model can learn
better with less data. Our research compares three standard AL
approaches: Uncertainty sampling (UNC) (Settles, 2009), Query
by Committee (QBC) with bagging (Settles, 2009), and Expected
Model Change (EMC). The UNC strategy selects for labeling the
most informative instances from an unlabeled data pool in an
iterative manner. It measures the model’s uncertainty about its
predictions using metrics such as entropy, margin sampling, or least
confident predictions. The labeled data is then used to improve the
model through training updates. QBC with Bagging is an active
learning strategy combining QBC with a bagging ensemble. It
generates diversemodels using bootstrapped sampling and identifies
uncertain instances by assessing disagreement among the committee
of models. These instances with a high degree of uncertainty are
labeled, and the ensemble is continually updated with the new
labeled data. The EMC strategy identifies instances expected to
induce the maximum positive change in the model’s performance
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FIGURE 5
Window-based statistical features extraction for the 6 s with 3 s overlap.

when labeled. This approach estimates the potential improvement
by evaluating the impact of each unlabeled instance on the model’s
behavior, and the instance with the highest expected positive change
is selected for labeling.

In our experiments, we split 80% of our processed data as a
training set and 20% into a test set for validation purposes. In
our AL strategy, the training set is used as an unlabelled pool
(i.e., the Processed Tactile Data in Figure 1) from which the most
uncertain labeled instances are queried for being labeled. The labels
are extracted from the raw data obtained by the robotic arm with
tactile sensors, and therefore, we do not involve a user annotating the
data in our experiments. Once an instance is labeled, it is added to
the pool of labeled data on which a machine-learning model can be
trained. As AL is an iterative process, we fix a maximum annotation
budget (i.e., a maximum number of instances that can be queried
throughout the process) and a step size that defines the number
of instances to be labeled at each batched query we make on the
unlabeled pool. The whole experiment was controlled and repeated
20 times. We used 20 seed values for experimental reproducibility.
The seed generation procedure used the decimals of π selected
four by four (i.e., seed1 = 1415, seed2 = 9265, etc.). Such a decision
avoids an arbitrary choice of seeds. At the first iteration of the AL
strategies, instances are queried randomly (step 4 in Figure 1). After
we obtain the first subset of labeled training data, and then the AL
strategy is executed (step 5 in Figure 1), ranking and selecting the
most informative instances to be labeled. For UNC, we used Least
Confidence (Settles and Craven, 2008) as a metric for evaluating the
uncertainty of instances defined in Eq. 1. Using Eq. 1 will query the
instances with the lowest confidence and the highest uncertainty for
getting labeled. Here, y* is the most likely class label assigned by a
machine learning model.

ϕLC (x) = 1− P(y*|x;θ) (1)

While implementing QBC with bagging, we have created a
committee with base models trained on different subsets of labeled
data using bagging. The committee of models collectively predicts

the labels for unlabeled instances or candidate samples. Each model
in the committee provides its prediction for each instance, and the
level of disagreement among the committee members is measured
to assess the uncertainty or informativeness of each candidate
sample. For our case, we have used vote entropy, shown in Eq. (2),
to calculate the disagreement among the committee members.
Using Eq. (2), the most informative samples were queried from
the unlabelled pool and added to the labeled pool for training. In
Equation (2), V (yt,m) is the number of votes a particular label m
receives from the committee of classifiers.

ϕVE (x) = − 1
T

T

∑
t=1

N

∑
n=1

V(yt,n)
C

log V(yt,n)
C

(2)

We instantiated the Expected Model Change (EMC) through
Eq. (3), which quantifies the performance differential resulting from
incorporating an unlabeled instance. This instance is assigned a
potential label that maximizes the expected impact on performance.
In Equation (3), x is the instance to be evaluated, yi are all
labels possible in a given data set, and M is a performance
metric. This work used the f1-score as our performance metric to
calculate the EMC.

ϕMC (x) = max
{yi∈[l1,lk]}
(M(x,yi) −M) (3)

This paper presents a novel class-balancing instance selection
algorithm that effectively addresses the class imbalance issue in the
data. The main objective is to query the unlabeled instance pool
in a manner that ensures a balanced representation of classes in
the labeled data. This approach aims to prevent bias in the model’s
classification performance, which may occur when certain classes
have a disproportionate number of instances selected by an active
learning (AL) strategy. The core idea behind our algorithm is to
modify the class frequencies in the training set by inverting their
occurrences. Consequently, we prioritize selecting more instances
from classes with fewer instances in the training set while reducing
the number of instances chosen from classes with more instances.
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To illustrate, consider a problem with four classes, where the
instance frequencies in the training set from an AL strategy are
f_class1 = 0.4, f_class2 = 0.15, f_class3 = 0.2, and f_class4 = 0.25. In
the next round of instance selection to be labeled by an expert, we
would invert these frequencies, leading to the selection of 15% of
instances from class 1, 40% from class 2, 25% from class 3, and 20%
from class 4. By employing this strategy, we endeavor to achieve a
balanced training set. However, it is essential to acknowledge that
perfect balance cannot be guaranteed, given uncertainties associated
with the class label of the selected instance, which the expert
will ultimately resolve. In summary, our proposed class-balancing
instance selection algorithm offers a promising approach to address
a class imbalance in active learning, mitigating potential bias and
enhancing the overall classification performance by striving for a
more equitable representation of classes in the training data.

A pseudo-code of our strategy is given in Algorithm 1. In
summary, the method selectively adjusts the class frequencies to
emphasize classes with lower representation while reducing the
prevalence of classes with higher representation. This process
enhances the balance in class distribution, which is crucial for the
better performance of various machine-learning algorithms. In line
1, the algorithm starts by computing the frequency of each class
in the training data. The bincount () function is used to count the
occurrences of unique labels in current_train_y, resulting in an array
named freq. In line 2, the frequency values obtained in the first
step are normalized to a range between 0 and 1. Each frequency
value is divided by the number of examples in the training set
(len (current_train_y)) to yield a new array named norm_freq. To
achieve an inverted probability distribution, the norm_freq array
is sorted in descending order using the sort () function, and the
[::− 1] slicing is applied to reverse the order of the sorted array.
The resulting array is named sorted_freq (line 3). Next, to determine
the mapping that would invert the probabilities, an auxiliary array
named sorted_indices is created (line 4). This array stores the indices
that would sort the norm_freq array in ascending order when sorted
twice using the argsort () function. Then, a loop (lines 5–7) is
executed, iterating over each element in sorted_indices. For each
index i, the corresponding value in sorted_freq is assigned to the
inverted_freq list at the position i. After all iterations, the algorithm
has constructed the inverted_freq list, which now contains the
inverted frequency values for each class in the training set that is
returned as the result of the algorithm in line 8. This algorithm was
integrated with both AL strategies, and its impact on AL strategies is
presented in the Results section.

2.4 Classification models and evaluation
metric

In our active learning approach, we can integrate any classifier
as a model to predict the instance classes (step 6 in Figure 1).
For our experiments, we opted for widely-used classifiers available
in the sklearn package, including Decision Trees (Rokach and
Maimon, 2005), Extra Trees (Geurts et al., 2006), XGBoost (Chen
and Guestrin, 2016), and Random Forest (Breiman, 2001). A
decision tree recursively splits the dataset into subsets based on the
most significant feature at each tree level, making decisions until it
reaches a decision at the leaf nodes. A RandomForest is an ensemble

 Input: current_train_y: all label values used in

the current training set

 Output: inverted_freq: The inverted frequency of

the class distribution

1:  freq← bincount(current_train_y)

2:  norm_freq← freq

len(current_train_y)

3:  sorted_freq← sort(norm_freq)[::− 1]

4:  sorted_indices← argsort(argsort(norm_freq))

5:  for i in sorted_indices do

6:   inverted_freq[i] ← sorted_freq[i]

7:  end for

8:  return inverted_freq

Algorithm 1. Compute Inverted Example Frequency

TABLE 1 Models’ hyperparameter settings.

Model Hyperparameters

Decision Tree
split criterion: gini index

minimal samples to split: 2

Extra Trees

split criterion: gini index

minimal samples to split: 2

number of estimators: 100

Random Forest

split criterion: gini index

minimal samples to split: 2

number of estimators: 100

XGBoost

learning rate: 0.3

max depth: 6

number of estimators: 100

model that collects weak learners’ predictions and aggregates their
individual predictions to produce a final and more robust forecast.
The Extra Trees (i.e., Extremely Randomized Trees) model is also
an ensemble algorithm that builds multiple decision trees, but it
introduces additional randomness on the section of the feature
and thresholds in the tree-building process. Finally, the XGBoost
(i.e., Extreme Gradient Boosting) is an ensemble model trained
sequentially and uses the gradient descent optimization technique
to minimize a loss function while adding weak learners to the
ensemble. Throughout our experiments, we used the base version
of these classifiers from the scikit-learn package (Pedregosa et al.,
2011), employing their standard hyperparameters detailed in
Table 1. All ensemble techniques (i.e., Random Forest, Extra Trees,
XGBoost) used a Decision Tree as the weak learner.

This choice ensures the classifiers are utilized in their default
configurations, allowing for fair and consistent comparisons during
our evaluations. By employing these standard classifiers, we aim to
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comprehensively assess their performance in the context of active
learning for texture classification tasks. In this work, we chose
to use shallow models because one of the primary considerations
is that processing efficiency is paramount in the context of
embedded systems. Therefore, using deep models can introduce
significant computational burdens that may not align with the
expected processing capabilities of robotic platforms operating in
unstructured environments.

Our work adopted a different evaluation metric than the
approach used in Lima et al. (2021). Instead of using accuracy,
we utilized the f1-score as our evaluation metric. The choice of
f1-score as the evaluation metric is supported by Sokolova and
Lapalme (2009), where it was highlighted that accuracy, although
commonly used for classification performance evaluation, may
not adequately address class imbalance issues. While our data
may be balanced, our active learning (AL) strategies could still
suffer from the effects of class imbalance while selecting instances
from different classes in its iterative process. Hence, we deemed it
necessary to consider the f1-score as our evaluation metric. Unlike
accuracy, the f1-score considers precision and recall, making it
a more balanced and informative evaluation metric, especially in
scenarios involving imbalanced class distributions. By incorporating
both precision and recall, the f1-score provides a comprehensive
assessment of the classifier’s performance, ensuring a more robust
evaluation of our texture classification task. The models produced
at this step are iteratively trained in the labeled data pool. At
every training cycle (steps 4 to 7 in Figure 1), the number of
labeled data inside the pool is increased and we record the model’s
achieved performances for an in-depth evaluation of our entire
proposed pipeline.

3 Results

In this section, we conduct a comprehensive analysis of the
performance of our AL strategies using four different classifiers,
employing f1-score as the evaluation metric. To establish the
baseline performance of each classifier considered in this work,
we train and test them using repeated (4 times) 5-fold cross-
validation.Thebaseline f1-score values are a reference for comparing
all combinations of machine learningmodels and AL strategies used
in this work since they represent an average performance of the
models using the entire dataset for building a model. It is essential
to point out that the baseline value is not a ceiling value for the
problem discussed in this paper since changing the training data will
likely change the decision surface of a machine learning model and,
as a consequence, there is a possibility of obtaining a better model
than simply using more data to train a model. In this section, we
start by exploring the influence of temporal features in the texture
classification task by comparing the results obtained using different
window sizes (e.g., 3 and 6 s) and window overlaps (e.g., 75%, 50%,
25%). Furthermore, we investigate the impact of our class-balancing
instance selection algorithm on the AL strategies by generating
results both with and without such an algorithm. This comparison
allows us to assess the effect of the class-balancing approach on
the performance of the AL strategies. The Figures in this section
present the number of instances queried for labeling at each Step
(x-axis) against the evaluation metric f1-score values ( y-axis). For

TABLE 2 The total number of instances generated by our sliding window
procedure when using the 11 sliding window size and overlap
combinations.

Sliding window size Overlapping percentage

75% 50% 25%

1 s 53,997 27,598 17,999

3 s 15,599 8,399 5,999

6 s 5,999 3,599 2,400

9 s 2,400 1,200 -

each step in the querying process, we present two box plots. The
blue box plot shows the performance of the AL strategy (e.g., UNC
or QBC) with the class-balancing algorithm, while the red box plot
presents the performance without the algorithm. We apply a sliding
overlapping window with several durations and overlaps on the raw
data to prepare the data for analysis. This preprocessing pipeline
generates processed datasets of statistical features, as discussed in
Section 2.2. The AL strategies are then executed on these processed
datasets, allowing us to examine their effectiveness in texture
classification.

3.1 Sliding window size and overlap
percentage analysis

We start by assessing the influence of the size and duration of the
sliding window. We have tested several combinations of parameter
values to understand how these values affect our experiments.
The sliding window size was tested for 1, 3, 6, and 9 s, as these
values are sufficient to test robots exploring the axis of objects
in one (e.g., 1 and 3 s) or two directions (6 and 9 s). We also
tested overlaps of 75%, 50%, and 25%, aiming at generating more
or less data for the machine learning models and evaluating how
their performances would be affected by those different amounts of
training data. We tested all combinations of these parameter values
(4 sliding window sizes and three overlapping values). A sliding
window of 9 s with an overlap of 25% cannot be obtained in our
experiments since the robot exploration is of at most 12 s, and a
25% overlap would start the next window with 6.75 s and therefore
could not obtain a total window size of 9 s (i.e., starting at 6.75 s
and ending at 15.75 s). Therefore, we test 11 combinations of sliding
window sizes and overlaps. The details of the datasets generated
by all these 11 combinations can be seen in Table 2. Finally, we
have used a repeated (four times) 5-fold cross-validation for all the
machine learning models (e.g., Decision Tree, Extra Trees, Random
Forest, and XGBoost), and the average f1-scores are reported
in Table 3.

The results presented in Table 3 show that a window of 1 s is
insufficient to distinguish the textures. This means that using a
window of 1 s cannot extract meaningful features to classify the
textures since the f1-scores are in a range between 51% and 67%.
Higher performances are achieved when the robot explores the
texture for 3–9 s. It is essential to point out that the objective of our
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TABLE 3 Average f1-score values for all 11 combinations of sliding window sizes and overlaps.

Window sizeOverlap 1 s 3 s 6 s 9 s

75% 50% 25% 75% 50% 25% 75% 50% 25% 75% 50%

Decision Tree 51.21 51.62 55.64 70.78 72.82 75.33 80.90 80.90 79.43 87.82 88.55

Extra Trees 64.73 63.66 67.04 82.99 83.89 84.63 90.64 89.75 88.36 94.40 93.80

Random Forest 64.24 63.66 66.80 82.31 83.18 83.92 89.51 88.83 87.54 92.81 91.03

XGBoost 65.50 64.87 67.41 83.50 84.01 84.29 90.56 89.45 87.56 93.60 92.63

work is to learnwith as little data as possible, andwe relied onTable 2
to decide on the proper values for the window size and overlap. We
discarded 9-s windowsmainly because the number of instances to be
chosen for anAL strategywould be low (i.e., 1,200 to 2,400 instances)
compared with other setups, which could decrease the advantage of
selecting high-yield instances from the unlabeled pool. In addition,
a robot should explore the surface as little as possible to predict the
proper label for the texture and using 9 s would make the robot
explore a direction (i.e., x or y-axis) a second time. It is important
to highlight that higher performance values with longer windows
are expected since the robot would explore them for a longer time
on the surface and have a higher chance of correctly classifying the
texture. Finally, we discarded the overlapping windows of 25% and
75% since the differences between them, when compared to a 50%
window, were not statistically significant for 3 and 6 s windows.
Therefore, we decided to provide a balance between performance
and a reasonable pool of instances to be given to the AL strategies,
which is obtained by using the 50% overlap. As a result of this
experiment, we conclude that using windows of 3 and 6 s with
an overlap of 50% is a reasonable choice (i.e., obtaining higher
performances while maintaining a reasonable pool of instances
for the AL strategies) of parameters for the data set used in our
experiments and, therefore, we use this result to proceedwith ourAL
strategies analysis.

3.2 Uncertainty sampling strategy on 3 and
6 s windows

In this experiment, we adopted the uncertainty sampling (UNC)
strategy to minimize the number of instances requiring expert
annotation and to enhance texture classification performance.
Figure 6 illustrates the results obtained using awindow size of 3 s and
an overlap of 50%. All classifiers using the UNC strategymanaged to
achieve and surpass their respective baseline f1-score values within
an annotation budget of approximately 5880 out of a total of 8,399
instances (equivalent to 70% of the data). This finding suggests that
we could reduce the training set for these classifiers by 30% while
achieving comparable or even improved performance compared to
utilizing the entire dataset for training. Notably, for the ExtraTrees,
Random Forest, and XGBoost classifiers, the total budget could be
reduced to only 3,920 instances (equivalent to 47% of the data) to
achieve baseline performance. It is also noticeable thatUNCwith the
class-balancement algorithm performed similarly to the standard

UNC algorithm, and therefore, no substantial gains were observed
by using our class-balance instance selection algorithm.

In Figure 7, we present the results obtained using the uncertainty
sampling (UNC) strategy with a window size of 6 s. For this
configuration, all classification models achieved performance
exceeding the baseline with an annotation budget of 2016 instances
(equivalent to 56% of the total 3,599 instances in the dataset).
This finding indicates that a substantial reduction of 44% in
instances is possible when employing the UNC strategy to train
machine learning models in this texture classification task without
compromising performance. Again, in the case of Extra Trees,
RandomForest, andXGBoost a further reduction for 1,176 instances
(33% of all training data) is enough to surpass the baseline,
indicating a reduction of 67% of the training data is possible and
still achieve the baseline value. Furthermore, when combined with
the class-balancing instance selection algorithm, we observed that
theUNC strategy demonstrated performance similar to the standard
UNC algorithm. This suggests that no significant improvements
were achieved by balancing the selection of the next round of
instances when using UNC as the active learning strategy.

3.3 QBC strategy on 3 and 6 s windows

In the case of the QBC strategy, all classification models
reach at least their baseline score for a window of 3 s, as shown
in Figure 8 with a budget of 5880 instances from a total of
8,399 instances (70% of the entire data set). It is essential to
observe from the experiments depicted in Figure 8 that the class-
balancing algorithm indeed increased the performance of the
QBC strategy compared to the standard QBC implementation,
mainly in the early cycles of the QBC strategy. For a window
of 6 s (Figure 9), the QBC strategy reaches at least the baseline
performance with 1,512 instances (42%, out of the 3,599 total) for
all classification models using the class-balancing algorithm. This
represents a reduction of 58% in the training data used to achieve
at least a similar performance. Moreover, a distinction is noticed
between the QBC strategy with and without the balancement
technique in its initial cycles, as the class-balancement algorithm
shows considerable improvements compared to the standard QBC
strategy at most steps evaluated in this experiment. Finally, it is
essential to point out that using QBC, a window of 6 s, and the
balancing strategy surpasses all baseline models’ performances for
this setup.
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FIGURE 6
F1-score plots of the uncertainty sampling strategy for the 3-s window.

3.4 EMC strategy on 3 and 6 s windows

In the case of the EMC strategy, all classification models reach
at least their baseline score for a window of 3 s, as shown in
Figure 10 with a budget of 5880 instances from a total of 8,399
instances (70% of the entire data set). It is essential to observe
from the experiments depicted in Figure 10 that the class-balancing
algorithm indeed increased the performance of the EMC strategy
compared to the standard EMC implementation, mainly in the
early cycles of the EMC strategy. For a window of 6 s (Figure 11),
the EMC strategy reaches at least the baseline performance with

2,016 instances (56%, out of the 3,599 total) for all classification
models using the class-balancing algorithm. This represents a
reduction of 44% in the training data used to achieve at least a
similar performance. Similarly to the QBC strategy, a distinction
is noticed between the EMC strategy with and without the
balancement technique in its initial cycles, as the class-balancement
algorithm shows improvements compared to the standard EMC
strategy at most steps evaluated in this experiment. Finally, it is
essential to point out that using EMC, a window of 6 s, and the
balancing strategy surpasses all baseline models’ performances for
this setup.
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FIGURE 7
F1-score plots of the uncertainty sampling strategy for the 6-s window.

3.5 Comparing window sizes and active
learning strategies performances

In this experiment, first, we evaluate the statistical significance
of the difference between the window sizes (3 and 6 s) permodel and
AL strategy. Here, the objective is to ensure that the differences are
statistically significant to affirm that one window size is better than
the other for our problem. Therefore, we created Table 4 as follows.
We used all experiments with the class-balanced strategy for both
UNC and QBC, for all models and window sizes with the maximal
budgets of 5880 (represents a total of 70% of the processed data
using our pipeline) for 3 s windows and 2,520 (represents a total
of 70% of the processed data using our pipeline) for 6 s windows.

These budget values were chosen to ensure all combinations of AL
strategies and machine-learning models could have enough data to
at least reach the baseline performance and, therefore, have a more
fair comparison between all combinations. We averaged all these
experiments and also reported the standard deviations.

As seen in Table 4, using a window of 6 s always surpasses
a window of 3 s regardless of the machine learning models and
AL strategy adopted, with average f1-score differences at most 8%.
We conducted a Wilcoxon signed rank test between each model’s
average for a 3 and 6-s window and per AL strategy first. We verified
that all these averages are indeed statistically significantly different
for the window sizes of 3 and 6 s per AL strategy as the p-values were
all below the threshold (i.e., with p− value < 0.05, we reject the null

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1281060
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Das et al. 10.3389/frobt.2024.1281060

FIGURE 8
F1-score plots of the query by committee strategy for the 3-s window.

hypothesis that those averages come from the same distribution).
Therefore, we can affirm that using a window size of 6 s is the best
choice for our problem for all AL strategies.

Using Table 4, we also verified which combination of a machine
learning model, 6-s window, and AL strategy (using the balanced
strategy) would perform best in our problem. As seen in Table 4,
an Extra Tree trained with Uncertainty Sampling and a 6-s window
reached a 90.25% f1-score, and therefore, it is the best result
achieved. We executed a Wilcoxon signed rank again, comparing
this best average value with all other combinations of the 6-s window
and AL strategy (using the balancing strategy), and the statistical
values showed that this choice was better than all others. Therefore,
we conclude that Extra Tree trained with Uncertainty Sampling

and the class-balance technique are our problem’s best machine-
learning model choices for our tactile sensing classification problem
for a total budget of 70% of the training data given to our entire
data pipeline.

4 Discussion

In this paper, we tested and improved three standard AL
strategies for a texture classification task. To the best of our
knowledge, this is the first work on using AL for tactile texture
classification. Although we used the same sensor and experimental
process as in Lima et al. (2021), we worked on some limitations
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FIGURE 9
F1-score plots of the query by committee strategy for the 6-s window.

of their methodology. The authors in Lima et al. (2021) had to
undergo an expensive training process as they used 12 s of data
exploration and trained their model on such a massive amount of
data. Despite this significant effort, the training approach seemed
to lack attention to the temporal features that could play a crucial
role in the final outcome as they used each value from the sensor
as a feature.

Ourwork advances existing texture classificationmethodologies
by proposing a novel pipeline for tactile data used for texture
classification. This pipeline includes a time window approach for
extracting features and using AL with a class balancing algorithm.
Therefore, we addressed a significant issue in tactile data for texture
classification: training a high-performance machine learning model

with a limited number of training data. Building such a high-
performance machine learning model has several implications,
including the possibility of deployment of low-complexity models
in low-cost robotic hardware and the time reduction for the
robotic arm exploration for classifying textures using tactile sensors.
Our proposed pipeline achieved competitive and even better
classification performance than an established baseline, with less
annotated data, making the learning process faster and more
efficient. We show that using at most 70% of the data available
is enough to achieve and surpass the baseline performances using
our proposed pipeline and algorithms. Moreover, we considered
the effect of temporal features using our sliding overlapping
windows and extracting the sensors’ data distributions.This gave the
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FIGURE 10
F1-score plots of the expected model change strategy for the 3-s window.

machine learningmodels detailed information regarding the robotic
exploration, improving the performance of machine learning
models learned from the tactile data. The AL strategies applied to
the processed data further reduced the need for labeling training
instances, as they selected only the most valuable ones to be labeled
and given to the classifiers. As observed in the plots for 6-s windows,
the learning process achieved the baseline results faster (with a lower
budget for instances selected) and more efficiently (achieving an
average f1-score of 90.21%) compared to 3-s windows. We believe
that such a result was because a window of 6 s in the conducted
experiments ensures that the robot explores the texture in the two
axes. Therefore, changes in texture in both axes could be better

characterized by the extracted features. The results also show that
in some of our 3-second-window experiments, the baseline method
outperforms specific active learning configurations, specifically
the Decision Tree with uncertainty sampling and all Query by
Committee (QBC) combinations. We believe this can be attributed
to several key factors. Firstly, the discrepancy in performance
between the baseline and active learning for the 3-s window
experiments can be linked to the unique characteristics of our
dataset and the duration of tactile exploration.Our dataset is tailored
to focus on textures that primarily exhibit variations along the x
and y-axes. A 3-s window, however, typically encompasses only
one dimension of exploration, resulting in limited diversity in the
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FIGURE 11
F1-score plots of the expected model change strategy for the 6-s window.

TABLE 4 f1-score of AL strategies for different windows and models.

Models UNC QBC EMC

Window size Window size Window size

3 s 6 s 3 s 6 s 3 s 6 s

Decision Tree 72.60 ± 1.26 80.67 ± 1.39 72.94 ± 1.00 81.12 ± 1.34 72.81 ± 0.98 80.52 ± 1.14

Extra Tree 84.24 ± 0.71 90.25 ± 0.92 84.21 ± 0.58 90.13 ± 1.03 83.72 ± 0.78 89.71 ± 0.95

Random Forest 83.53 ± 0.79 89.13 ± 1.24 83.44 ± 0.66 89.15 ± 1.09 83.10 ± 0.48 88.86 ± 1.13

XGBoost 83.76 ± 0.86 89.80 ± 1.08 84.02 ± 0.87 89.58 ± 1.46 83.52 ± 0.81 89.48 ± 1.41
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captured data. Consequently, when the entire labeled dataset is
available for model training, simpler models like the Decision Tree
may not perform better due to the absence of all data points.
To optimize labeling efforts, we imposed a maximal budget of
70% for active learning, beyond which further labeling would
yield diminishing returns. In contrast, the more complex models
employed in active learning demonstrate superior performance with
a lower labeling budget. Moreover, the specific approach of bagging
with randomly selected elements employed in QBC for creating the
voting committeemay inadvertently limit diversity in the committee
models, affecting the method’s performance in 3-second-window
experiments. In contrast, our 6-s window experiments demonstrate
a different pattern, with active learning methods consistently
outperforming the baseline. This can be attributed to the extended
exploration duration covering at least two texture dimensions. This
aligns more closely with the inherent characteristics of our dataset
and showcases the efficacy of active learning strategies in scenarios
where exploration durations offer a more comprehensive view of the
tactile data’s complexity.

Furthermore, our balancement algorithm makes our AL
strategies robust to the distribution imbalance from queries
performed by standard AL strategies. The balancing algorithm
showed a marginal effect on the UNC strategy, but it improved the
results for the QBC and EMC strategies, mainly in the early stages
of our process. Finally, combining a standard UNC strategy with
the balancing algorithm and an ExtraTree as the machine learning
model produced the best result for our tactile texture classification
dataset. In conclusion, this work made the process of texture
classification using tactile sensorsmore precise and efficient for real-
world unstructured and dynamic environments by surpassing the
results obtained by previous works.

We intend to expand this work in several directions. First, we
would like to test and adapt our proposed pipeline for different
types of tactile sensors and other sensory data. This approach
would involve understanding how it performs with varying factors
associated with different sensors. Extending this work to other
dynamic real-world environments, such as industrial ones, would
provide insights into the robustness of the pipeline.Thisworkmainly
focused on UNC, QBC, and EMC as active learning strategies.
Future research endeavors include exploring alternative Active
Learning (AL) strategies to assess their potential advantages and
insights within tactile texture classification. Another path we intend
to explore is how AL would perform in scenarios with incomplete
data, such as those caused by partial contact between the tactile
sensor and the examined object. We believe AL has the potential

to select those instances that a model deems more uncertain and,
therefore, learn from them and adapt over time, gradually becoming
proficient in handling such scenarios.
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