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Active upper limb exoskeletons are a potentially powerful tool for neuromotor
rehabilitation. This potential depends on several basic control modes, one of
them being transparency. In this control mode, the exoskeleton must follow the
humanmovement without altering it, which theoretically implies null interaction
efforts. Reaching high, albeit imperfect, levels of transparency requires both
an adequate control method and an in-depth evaluation of the impacts of
the exoskeleton on human movement. The present paper introduces such
an evaluation for three different “transparent” controllers either based on an
identification of the dynamics of the exoskeleton, or on force feedback control
or on their combination. Therefore, these controllers are likely to induce clearly
different levels of transparency by design. The conducted investigations could
allow to better understand how humans adapt to transparent controllers, which
are necessarily imperfect. A group of fourteen participants were subjected to
these three controllers while performing reaching movements in a parasagittal
plane. The subsequent analyses were conducted in terms of interaction efforts,
kinematics, electromyographic signals and ergonomic feedback questionnaires.
Results showed that, when subjected to less performing transparent controllers,
participants strategies tended to induce relatively high interaction efforts, with
higher muscle activity, which resulted in a small sensitivity of kinematic metrics.
In other words, very different residual interaction efforts do not necessarily
induce very different movement kinematics. Such a behavior could be explained
by a natural human tendency to expend effort to preserve their preferred
kinematics, which should be taken into account in future transparent controllers
evaluation.
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human-exoskeleton interaction, transparency, exoskeleton control, force control,
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1 Introduction

Active upper-limb exoskeletons are promising devices
mainly dedicated to robot-assisted rehabilitation (Pons, 2010;
Jarrassé et al., 2014; Proietti et al., 2016; Mehrholz et al., 2020)
and musculoskeletal disorders prevention (de Looze et al., 2016;
Ajoudani et al., 2018; Nussbaum et al., 2019). The possibilities
offered by active exoskeletons in general are also of interest for
the investigation of human motor control theories (Selinger et al.,
2015; Verdel et al., 2023a; b). Several elements have to be taken
into account when dealing with human-exoskeleton interactions,
like the mechanical design of the exoskeleton and the way the
exoskeleton is controlled. One of the most basic behaviors that
active exoskeletons need to provide to fulfill these applications’
requirements is transparency. This control mode consists in
following the human movement without altering it (Pirondini et al.,
2016; Just et al., 2018; Verdel et al., 2021b), which in an ideal case
would result in null interaction efforts. Such a control mode can
serve as a baseline to design other common controllers, typically
weight support for rehabilitation applications (Just et al., 2017; 2020;
Verdel et al., 2022a).

Transparency can be improved through several developments.
First, the exoskeleton’s mechanical design, both in terms of the
transmission (Garrec, 2010; Gopura et al., 2016; Hutter et al., 2018)
and of the human-exoskeleton physical interfaces (Schiele and
van der Helm, 2009; Jarrasse and Morel, 2012; Mallat et al., 2019;
Verdel et al., 2022b; 2023c), is an important factor to minimize
unwanted interaction efforts. The other necessary development to
reach high levels of transparency is the control law definition.
However, testing the degree of transparency of the design-control
pair requires appropriate evaluation metrics that are sensitive to
significant changes in the human behavior.

Several control laws have been proposed to compensate for
a part of or all the exoskeleton’s dynamics, first using open-loop
methods (Jarrasse et al., 2008b; Jarrassé et al., 2010; Jarrasse and
Morel, 2012; Bastide et al., 2018). Although these methods led to a
decrease in velocity (compared to movements performed without
exoskeleton), they still conserved numerous properties of natural
human movement (Bastide et al., 2018; Verdel et al., 2021b). More
advanced methods introduced a force feedback control based on
force/torque (FT) measurements at the level of human-exoskeleton
interaction points (Kim et al., 2012; Just et al., 2018; Verdel et al.,
2021a; 2022b; 2023c), which could also be coupled to hierarchical
optimization (Zimmermann et al., 2019), inertial measurement
units (Zimmermann et al., 2020) or learning based predictions
(Jarrasse et al., 2008a). Nevertheless, few of these studies compared
the performances of different controllers with an extensive method,
as done in Just et al. (2018) between feedforward and disturbance
observer controllers. Therefore, the effects of distinct levels of
transparency on human movement remain unclear. In particular,
the sensitivity of common human movement descriptors such
as kinematics and electromyographic (EMG) signals with regard
to different transparent controllers inducing different interaction
efforts has not, to our knowledge, been investigated per se.

The evaluation of transparency is usually less investigated than
the design of the controller structure. In particular, numerous
studies involve few or no naive human participants (Kim et al.,
2012; Zimmermann et al., 2019; 2020; Verdel et al., 2021b), which

does not necessarily allow to draw definitive conclusions regarding
the effectiveness of the controller and its impact on human
movement. Furthermore, few studies have focused on developing
extensive evaluation methodologies and comparing the relevance
of performance metrics in the literature (Jarrassé et al., 2010;
Pirondini et al., 2016). Finally, these studies did not include
questionnaires to quantify the perceived ergonomics of the
exoskeleton, which is necessary to ensure it is comfortable for
potential users. The present study aims at comparing three
different transparent controllers to movements performed outside
the exoskeleton and between themselves to assess their effects
on complementary performance metrics. In particular, the three
controllers are evaluated in terms of interaction efforts, human
movement kinematics and EMG signals during movements in a
parasagittal plane. Furthermore, ergonomic feedback is collected
from participants to ensure that the objective measurements are in
line with their perception of the exoskeleton. Given a transparent
exoskeleton should not alter natural human movements, the tested
controllers will be compared to human performance outside the
exoskeleton. Overall, we expect that our three controllers will
induce significantly different interaction efforts, which could result
in significantly different alterations of human movement. Therefore,
lower interaction efforts should induce movement parameters
significantly closer to those performed outside the exoskeleton than
higher interaction efforts.

In the following, the employed methods are first described
(Section 2). The design of the tested transparent controllers
are first introduced (Section 2.1), followed by the evaluation
task (Section 2.2) description. Then, materials and evaluation
metrics are detailed (Section 2.3). Results of the evaluation of the
tested transparent controllers are finally described (Section 3) and
discussed (Section 4).

2 Materials and methods

2.1 Transparent controllers

As previously stated, the design of transparent controllers
has already been investigated (Jarrasse et al., 2008a; Kim et al.,
2012; Just et al., 2018; Zimmermann et al., 2019; 2020;
Sommerhalder et al., 2020; Verdel et al., 2021a; b). These previous
works suggest that there are twomain steps to designing a functional
transparent controller. First, an identification of the dynamics of
the exoskeleton can be performed (Section 2.1.1). Second, force-
torque (FT) sensors can be used to compensate for the identification
errors and further minimize interaction efforts (Section 2.1.2). In
the following, three transparent controllers based on either one or a
combination of these two main steps, which should induce clearly
different levels of transparency, are introduced.

2.1.1 Open-loop compensation of dynamics
The compensation of the exoskeleton dynamics is the first

step of the design of a transparent controller (Jarrassé et al.,
2010; Jarrassé et al., 2012; Verdel et al., 2021b). Robot dynamics are
generally formulated as in Eq. 1 (Gong et al., 2000; Siciliano et al.,
2009; Moberg, 2010; Verdel et al., 2021b; 2022a),

M (q) q̈+ C (q, q̇) +G (q) + sign (q̇)μC + μvq̇ = τm (1)
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where q, q̇ and q̈ are respectively the joints position, velocity and
acceleration vectors, M is the inertia matrix, C is the vector of
centrifugal and Coriolis terms, G is the gravity vector, μC and
μv are respectively the Coulomb and viscous friction coefficients
vectors and, finally, τm is the motor torques vector. Usually,
the different parameters, or more accurately their combinations
into base parameters, can be identified with different exciting
trajectories and nonlinear least square methods (Verdel et al.,
2021b). In the present case, only the gravity effects were identified
and compensated, thereby following a common procedure for
this specific exoskeleton (Jarrassé et al., 2010; Jarrassé et al., 2012),
which is due to the complex behavior of its transmission
(Hamon et al., 2010; Verdel et al., 2021b). Furthermore, since this
exoskeleton only includes optical encoders, the joints accelerations
are not directly available. Consequently, the inertia cannot be
fully compensated without knowledge regarding the trajectory.
However, since the experiments were performed in a parasagittal
plane at preferred velocity (see Section 2.2), gravity torques were
predominant compared to the others efforts involved (i.e., friction
and inertia). The open-loop compensation was thus achieved by
generating a feedforward torque τ̂m = G(q).

The identification procedure was composed of 20 static position
maintenance, equally spread in the whole workspace of each
involved joint. Joint positions and corresponding motor currents
were used to identify the gravity torques using the “lsqnonlin”
method of Matlab (MathWorks, Natick, MA, United States). The
identification quality was manually verified by ensuring that the
exoskeleton remained static in any position when unperturbed. This
control mode, uniquely based on the open-loop compensation of
the exoskeleton’s weight, will be referred to as OL in the rest of the
present paper.

2.1.2 Force feedback control
Although some recent exoskeletons include FT sensors

(Just et al., 2018; Zimmermann et al., 2019; 2020), their
introduction at the human-exoskeleton interaction points remains
relatively rare. Such sensors are an asset when it comes to
minimizing interaction forces. Nevertheless, they also increase the
inertia and weight of the segments, which reduces the available
torque and could have unwanted effects on human movement. Our
version of the ABLE exoskeleton includes two FT sensors (one at the
forearm cuff level and one at the arm cuff level). The implemented
force feedback controller for our 2-degrees of freedom experiment
in a parasagittal plane was defined as follows,

τFT (t) = −KpLf e (t) −Ki∫
t

t0
Lf e (s)ds (2)

where τFT was a 2× 1 vector representing the joint torques to apply
at the shoulder and elbow levels respectively, Kp and Ki were 2× 2
diagonal positive definite matrices representing the proportional
and integral control gains respectively, and L was a 2× 2 diagonal
positive definite matrix containing the lever arms between the FT
sensors (i.e., respectively the arm and forearm) and the proximal
joint of the segment (i.e., respectively the shoulder and elbow). In
the parasagittal plane, the lattermatrix is constant because the elbow
(respectively shoulder flexion/extension) joint of the exoskeleton is
only controlled using the forearm (respectively the arm) FT sensor,
which is therefore fixed in the joint frame. However, in the general

4-degrees of freedom case, it is dependent on the joint positions (q)
of the exoskeleton because the FT sensors are not fixed in the joint
frames. The initial (i.e., exoskeleton switch-on) and current times
are represented by t0 and t respectively. Finally, f e = (Fz,A,Fz,FA)

⊤

was the vector of normal forces applied on the human at the arm
and forearm levels respectively, as measured by FT sensors (see
Section 2.2 for the definition of the forces). These normal forces
were the only ones generating admissible torques at the elbow and
shoulder levels in the parasagittal plane.The controller objective was
to track null normal forces to cancel them, which is why there is no
desired force in Eq. 2. Finally, the proportional and integral gains
were manually adjusted prior to the experiments for each joint so
as to be maximized while avoiding instability, which optimizes the
responsiveness of the system. This control mode, uniquely based on
the closed-loop compensation of the normal interaction forces, will
be referred to as CL in the rest of the present paper.

2.1.3 Complete controller
The third transparent controller tested in the present paper is

the combination of the OL and CL controllers, it will be referred to
as OLCL. This controller should improve transparency compared to
the two others by canceling identification errors through FT sensors
and improving the tracking accuracy and reactivity by offsetting
gravity efforts. Its structure is defined in Figure 1.

It is important to note that all the presented controllers
generalize naturally to an arbitrary number of degrees of freedom.

2.2 Evaluation task

Four conditions were included and performed in a random
order during the experimentation.Three conditionswere performed
inside the exoskeleton with the different transparent controllers (i.e.,
OL, CL and OLCL) and one without the exoskeleton (referred to as
NE forNo Exoskeleton), which served as a baseline for comparisons.
As previously described, the human-exoskeleton physical interface
at the forearm included a thermoformed orthosis, which locked the
human wrist. Consequently, during the NE condition, participants
wore a light splint preventing wrist movements to enable fair
comparisons.

The task was composed of reaching movements in a parasagittal
plane towards 5 targets projected on a screen (referred to as
T1–T5, see Figure 2B). Given ABLE is a 4-degrees of freedom
exoskeleton, its internal/external and abduction/adduction
rotations of the shoulder were mechanically blocked. Before
movements, participants held a reference position for 1.5 s, which
was controlled in real timewith the optoelectronic device. Amessage
displayed on the screen informed the participant when the reference
positionwas valid.The reference positionwas: the arm vertical, a 90°
angle with the elbow and the index finger extended. Then a target,
represented by a blue disk, appeared in front of the participant. A
trial was considered valid whenever the participant had pointed at
the target with the arm extended (i.e., the shoulder to wrist distance
was at least 80% of the arm plus forearm length LSW). If the position
was correct, the target turned green and the position was held for
1.5 s. A message displayed on the screen instructed the participants
to remain in the target (see Figure 2A). Each target appeared 8 times,
inducing a total of 40 reaching movements per condition. The target
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FIGURE 1
Structure of the controllers. The OL controller is represented with dashed lines and the CL controller by full lines. The OLCL controller is described by
the complete structure. Ir is the vector of motor currents corresponding to the input torques.

FIGURE 2
Description of the task. (A) Participant inside the target after the movement. The displayed message in French says: “Stay in target:*timer*”. The task is
validated, therefore the target turned green. (B) Scheme describing the task and targets names. The controlled forces are represented and named in
red. LSW is the shoulder to wrist distance when the forearm is fully extended.

projection order was randomized. Movements were performed at
the participant’s preferred velocity. At the end of each condition,
a 2-min break was taken, during which the subject was asked to
answer the previously introduced questionnaire.

2.3 Materials and evaluation metrics
2.3.1 Participants

A total of N = 14 participants (3 females) were involved in
the experiment (mean age 26.33± 2.93 years old, mean height
1.76± 0.05 m, mean weight 72.87± 6.43 kg). Participants were
healthy, right-handed adults without known neurological disorder
or injury that could have impacted the experiment. Participants
gave their written informed consent as required by the Helsinki
declaration. The protocol was approved by the local ethical
committee for research (CER-Paris-Saclay-2021-048).

2.3.2 Recordings and evaluationmetrics
2.3.2.1 ABLE exoskeleton

The evaluation task was performed with the elbow and shoulder
flexion/extension joints of an ABLE upper limb exoskeleton
(Garrec et al., 2008). This exoskeleton includes 4 active joints
(3 joints reproducing the human gleno-humeral joint and 1
reproducing the human elbow flexion/extension) actuated with a
highly backdrivable system designed to maximize transparency
(Garrec, 2010). Participants were connected to the exoskeleton at
the arm and forearm levels by thermoformed orthoses. Two passive
rotations and a passive translation were implemented at the level of
the forearm to minimize unwanted interaction efforts and ensure
a comfortable interaction (Jarrasse and Morel, 2012; Verdel et al.,
2022b; 2023c). The posture of the participant is described in
Figures 2A, B.
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2.3.2.2 Interaction efforts recording and analysis
Interaction efforts were measured by means of two 6-axes FT

sensors (1010 Digital FT, ATI ⓒ, maximum sample rate 7 kHz, used
sample rate 1 kHz) placed at the connections between the human
and the exoskeleton (i.e., at the arm and forearm, as previously
specified). They were segmented based on the hand velocity
computed using the robot joints velocity and common forward
kinematics. The segmentation threshold was fixed at 5% of the peak
velocity of the considered movement as it is a common practice
in human motor control studies (Gentili et al., 2007; Berret et al.,
2008; 2011; Gaveau et al., 2011; Verdel et al., 2021b; 2022a). All
components of the human-exoskeleton interaction efforts were low-
pass filtered (Butterworth, fourth order, cut-off frequency: 5 Hz).

The quality of the transparent controllers was assessed on the
basis of their ability to minimize the amount of residual interaction
efforts. First, a qualitative analysis of the average interaction efforts
across participants and time was performed. Then, a quantitative
analysis was conducted by computing the absolute maximum
and absolute average of the controlled interaction efforts across
participants. These parameters have different consequences with
regard to the potential acceptability of the controllers. Indeed,
the absolute average effort is known to be tied to the long-term
acceptability whereas the absolute maximum effort is known to be
tied to the short-term acceptability and pain at the connection level
(Bessler et al., 2021; Verdel et al., 2023c).

2.3.2.3 Kinematics recording and analysis
Human kinematics were recorded using an optoelectronic

tracking system (10 Oqus 500+ cameras, 100 Hz; Qualisys,
Gothenburg, Sweden). Six 10 mm reflective markers were placed on
the participant’s right upper limb: head of acromion, medial and
lateral epicondyles of the humerus, styloid process of the radius,
head of the metacarpal, head of the proximal and distal phalanges
of the index finger (see Figures 2A, B). Additional reflective markers
were placed on the exoskeleton to help the real time labeling of the
markers (see Figure 2A). The kinematics were assessed on the basis
of the hand trajectory in the task space.

Recorded position data of each marker were low-pass filtered
(Butterworth, fourth order, cut-off frequency: 5 Hz). Velocity
and acceleration were obtained through numerical differentiation.
Movements were segmented using a relative threshold fixed at
5% of the peak velocity of the considered movement as it is a
common practice in human motor control studies (Gentili et al.,
2007; Berret et al., 2008; 2011; Gaveau et al., 2011; Verdel et al.,
2021b; 2022a).

The human movement kinematics were first qualitatively
assessed by computing average trajectories across participants.Then,
they were quantitatively assessed on the basis of movement duration
(MD), curvature, peak velocity (PV, maximum absolute velocity
during movement) and peak acceleration (PA, maximum absolute
acceleration during the acceleration phase). The curvature, which
is a common descriptor of spatial trajectories (Jarrassé et al., 2010),
was defined as the maximum deviation of the trajectory with regard
to a straight line in the task space, which was computed as in Eq. 3,

Curv. = max
t∈[t0,tf]
(
‖IT× x (t)‖
‖IT‖

) (3)

where t0 (respectively tf) was the movement onset (respectively
offset) time, IT was the vector supporting a straight path from the

initial position of the hand in the task space (x0) to the target and x(t)
represented the successive positions of the hand in the task space.

2.3.2.4 Electromyographic recording and analysis
Six EMG sensors (Wave Plus, Wireless EMG, sample rate

2 kHz; Cometa, Bareggio, Italy) were placed on the right upper
limb of participants. The following muscle activities were recorded:
brachioradialis (flexors of the elbow), biceps brachii (flexor of the
elbow and of the shoulder), triceps long (extensor of the elbow
and of the shoulder) and lateral heads (extensor of the elbow),
deltoid anterior (flexor of the shoulder) and deltoid posterior
(extensor of the shoulder). The EMGs were placed according to the
SENIAM recommendations (Hermens et al., 1999). Before placing
the electrodes, the skin was locally shaved and cleaned with a hydro-
alcoholic solution.

EMG signals of each muscle were first band-pass filtered
(Butterworth, fourth order, cut-off frequencies: [20,450] Hz), before
being centered and rectified (Potvin and Brown, 2004). The human
EMG activity levels in the four tested conditions were assessed by
computing the root mean square (RMS) of these pre-processed
EMG signals normalized by the maximum value reached during the
experiment for each muscle separately. Then, the obtained values
were averaged according to the functional muscle groups, following
the categories previously defined: shoulder flexors and extensors and
elbow flexors and extensors.

For visualisation purposes, the envelope of the signals was
obtained by applying a low-pass filter (Butterworth, fifth order, cut-
off frequency: 3 Hz) before normalizing by the maximum value
reached during the experiment.

2.3.2.5 Ergonomic feedback questionnaire
The subjective feeling of participants was evaluated using a

Likert-scale of five items, ranging from 0 (i.e., strongly disagree with
a negative statement and strongly agree with a positive statement)
to 5 (i.e., strongly agree with a negative statement and strongly
disagree with a positive statement) (Likert, 1932). Four statements
were submitted to the participants:

• I felt fatigue in my right arm during the test.
• The task is difficult to achieve.
• It is comfortable to perform the task.
• It is difficult to reach the targets.

As a complement to this questionnaire, the physical effort felt by
the participant was assessed using a CR-10 Borg-scale (Borg, 1998),
ranging from 0 (i.e., resting) to 10 (i.e., maximal). In order to be
comparable to other criterion, the grades reported by participants
were rescaled between 0 and 5. Participants were informed of the
anonymity of the questionnaire. Furthermore, they were asked to
give an immediate answer and informed that there were no right or
wrong choices, which is a common practice to limit the desirability
bias (Patten, 2016).

2.3.2.6 Statistical analyses
All statistical analyses were conducted with custom Python

3.8 scripts using the Pingouin package (Vallat, 2018). Since the
data distribution was not normal [according to Shapiro-Wilk tests
(Shapiro and Wilk, 1965)], nonparametric tests were conducted.
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First, Friedman tests were performed to assess possible main effects
of the condition on the introduced human movement metrics. In
the case of a significant main effect, Wilcoxon-Nemenyi post hoc
comparisons were performed to assess which of the conditions
induced significantly different behaviors. All the significance levels
were set at p < 0.05. For all post hoc comparisons, the effect size was
assessed by computing the Cohen’s D. Reported differences were
considered as sufficiently pronounced in the case of effects of at least
medium size (i.e., D > 0.4), otherwise the result would be flagged
as weak.

3 Results

In this section, the results of the evaluation of the three tested
controllers are described. First, their respective effects on the
controlled interaction efforts (Section 3.1) is introduced. Then, the
corresponding effects on humanmovement kinematics (Section 3.2)
and EMG signals (Section 3.3) are investigated. Finally, the feedback
of participants with regard to the perceived comfort is described
(Section 3.4).

3.1 Interaction efforts

3.1.1 Qualitative analyses
The interaction efforts were first qualitatively assessed with

an overview of their average temporal evolution for the different
controllers and targets. The corresponding results are summarized
in Figure 3 for each of the normal interaction force components.

The temporal evolution of the arm interaction force Fz,A suggests
important differences between the conditions. In particular, Fz,A was
mostly negative and of high magnitude in the OL condition and

mostly negative and of smaller magnitude for the CL condition.
For the OLCL condition, Fz,A was partly negative and then partly
positive, with a lower magnitude than in the OL condition.

The average evolution of the forearm interaction force Fz,FA also
suggests important differences between the conditions. In particular,
the average evolution of Fz,A in the OL and CL conditions globally
exhibited the same shape but wasmore centred around 0 N in theCL
condition. In the OLCL condition, Fz,A was of a smaller magnitude
than in the two other conditions and centred around 0 N.

3.1.2 Quantitative analyses
As previously mentioned, the effects of the controllers on

interaction efforts were quantitatively assessed by computing
the absolute maximum and average values of the normal force
components. These results are summarized in Figure 4 for each
target and each controller separately.

Effects on Fz,A: Both the maximum and average absolute
interaction efforts at the arm level seem to be impacted in the
same manner by the different controllers. Friedman tests revealed
significant main effects of the condition on both of these parameters
(W2 = 0.65, Q = 18, p = 1.10–4 for the maximum and W2 = 0.71,
Q = 19.9, p = 5.10–5 for the average absolute effort). In terms of
maximum absolute Fz,A, OL induced overall higher values than the
other two controllers (in both cases: p < 4.10–14, D > 1.59). Despite
CL inducing systematically higher average maximum absolute Fz,A
than OLCL, no significant difference was found between these
controllers on this parameter. In terms of average absolute Fz,A,
OL induced overall higher values than the other two controllers
(in both cases: p < 7.10–13, D > 1.44). Although CL and OLCL were
not significantly different on this parameter, it is worth mentioning
that the post hoc comparison returned a relatively high effect size
(p = 0.06,D = 0.45), thereby suggesting that the effect could become
significant with a larger sample size. In sum, the OL condition

FIGURE 3
Average evolution of normal interaction efforts during forward movements for each condition (normalized in MD). Shaded areas represent the standard
error across participants. (A) Normal interaction effort at the arm level. (B) Normal interaction effort at the forearm level.
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FIGURE 4
Average parameters computed on the controlled interaction efforts Fz,A and Fz,FA. Error-bars represent the standard error across participants. (A)
Maximum absolute interaction force at the arm level. (B) Average absolute interaction force at the arm level. (C) Maximum absolute interaction force at
the forearm level. (D) Average absolute interaction force at the forearm level.

induced higher interaction forces at the level of the arm than both
theCL andOLCL conditions. Furthermore, despite some differences
on average between CL and OLCL no significant differences were
found on its maximum and average values.

Effects on Fz,FA: Both the maximum and average absolute
interaction effort at the forearm level seem to be impacted in
the same manner by the different controllers. Friedman tests
revealed significant main effects of the condition on both these
parameters (in both cases:W2 = 0.93,Q = 26.1, p = 2.10–6). In terms
of maximum absolute Fz,FA, OL induced significantly higher values
than the other two controllers (in both cases: p < 2.10–15, D > 1.59).
Furthermore, CL induced significantly higher maximum absolute
interaction efforts than OLCL (p = 3.10–23, D = 1.84). In terms of
average absolute Fz,FA, OL induced significantly higher values than
the other two controllers (in both cases: p < 2.10–17, D > 1.88).
Furthermore, CL induced significantly higher maximum absolute
interaction efforts than OLCL (p = 10–23, D = 1.65). In sum, OL
induced the highest interaction forces at the level of the forearm,
followed by CL and, finally, OLCL which induced the lowest
interaction efforts.

3.2 Kinematics

3.2.1 Qualitative analyses
The average trajectories recorded across the population for each

of the 5 targets are represented in Figure 5.
The hand paths described in Figure 5A exhibit several clear

differences between conditions. In particular, the average human

path when reaching to T1 seems to be far more curved in the OL
and CL conditions than in the NE and OLCL conditions. Overall,
the path curvature seems less straight and smooth in the two
former conditions than in the two latter ones, independently of the
target reached.

Velocity (Figure 5B) and acceleration (Figure 5C) profiles seem
to be strongly impacted by the exoskeleton independently of
the control law and for all targets. In particular, the recorded
velocities and accelerations reveal slower movements when wearing
the exoskeleton. Furthermore, the acceleration profiles in the CL
condition exhibit more variability than the other conditions during
the deceleration phase. A finer-grained analysis is described below
with the computation of the previously introduced kinematic
parameters.

3.2.2 Quantitative analyses
The obtained results regarding the kinematic performance

metrics introduced in Section 2.3.2 are summarized in Figure 6,
which presents the average values across participants.

Movement duration (MD): Overall,MD seems to be impacted by
the exoskeleton, independently of the control mode. Nevertheless,
this impact seems to bemore important inOL andCL than inOLCL.
A main effect of the condition was confirmed by a Friedman test
(W3 = 0.77, Q = 32.1, p < 10–6). Wilcoxon-Nemenyi comparisons
confirmed that participants were overall slower in CL than in all
the other conditions (in all cases: p < 4.10–7,D > 0.92). Furthermore,
participants were significantly slower in OL than in NE and OLCL
(in both cases: p < 2.10–3, D > 0.57). Finally, participants were also
slower in OLCL than in NE (p = 0.013,D = 0.42). In sum, the OLCL
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FIGURE 5
Average hand trajectories recorded for each of the targets across participants in each control mode. Shaded areas represent the standard error across
participants. (A) Hand paths in the parasagital plane. (B) Hand velocity profiles, normalized by MD. (C) Hand acceleration profiles, normalized by MD.

controller was shown to induce the smallest movement slowdown
when compared to the OL and CL conditions.

Curvature: All the tested controllers seem to have an effect on
movement curvature. The OL and CL conditions seem to induce
either higher or comparable alterations with regard to NE than
OLCL depending on the aimed target. A Friedman test confirmed
a main effect of the condition (W3 = 0.39, Q = 16.5, p = 9.10–4).
Wilcoxon-Nemenyi comparisons confirmed that trajectories were
overallmore curved inOL andCL thanNE (in both cases: p < 9.10–5,
D > 0.66). A weak effect of the OLCL condition was also observed
(p = 0.03, D = 0.37). In sum, OLCL was the best controller to
conserve the natural human movements curvature.

Peak velocity (PV): The exoskeleton seemed to impact PV for all
the tested controllers.Thismain effect was confirmed by a Friedman
test (W3 = 0.74, Q = 31, p = 9.10–7). The CL condition induced
significantly smaller PV when compared to NE and OLCL (in
both cases: p < 6.10–4, D > 0.55). Furthermore, both OL (p = 4.10–9,
D = 1.14) and OLCL (p = 3.10–7, D = 1) induced smaller PV when
compared to NE. In sum, the exoskeleton clearly impacted PV and
OLCL was slightly less impacting (reduction of: 28%± 3%) than OL
(reduction of: 34%± 3%) and CL (reduction of: 41%± 3%).

Peak acceleration (PA): The exoskeleton seemed to impact
PA for all the tested controllers. This main effect was confirmed
by a Friedman test (W3 = 0.68, Q = 28.4, p = 3.10–6). Overall,
the three tested controllers induced smaller PA than NE (in all

cases: p < 4.10–11, D > 1.2). Consequently, the exoskeleton clearly
impacted PA and OLCL was slightly less impacting (reduction of:
47%± 4%) on average than OL (reduction of: 53%± 4%) and CL
(reduction of: 53%± 4%).

3.3 Impact on EMGs

3.3.1 Qualitative analyses
The average envelopes of EMG signals recorded for a

representative participant and for the target T3 are represented
in Figure 7.

The envelopes described in Figure 7 exhibit clear variations of
EMG amplitudes across conditions. In the OL condition, flexors
activity was higher than in NE and OLCL for the anterior deltoid
and than in NE for the biceps brachii. Furthermore, the lateral
head of the triceps brachii was also more active than in the
NE and OLCL conditions but comparable to the CL condition.
In the CL condition, the envelope of flexors was overall higher
than in all the other conditions. Finally, activities recorded in the
OLCL condition were overall comparable to those recorded in the
NE condition but with increases for the biceps brachii and the
brachioradialis. In what follows, EMG activities are systematically
investigated for all targets and participants through the RMS of
the signals.
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FIGURE 6
Average global and local kinematic parameters. Error-bars represent the standard error across participants. Parameters are computed separately for
each target Ti and each condition. (A) Movement duration (MD). (B) Trajectory curvature. (C) Peak velocity (PV). (D) Peak acceleration (PA).

3.3.2 Quantitative analyses
As previously introduced, the quantitative analyses conducted

on the EMG signals were focused on the RMS, which reflects the
averagemuscle effort expended by participants.The obtained results
are summarized in Figure 8. Overall, EMG activity increased for all
the transparent controllers under investigation despite the reduced
movement velocity.

Shoulder flexors: All the tested controllers had an impact on the
RMS of shoulder flexors. Consistently, a significant main effect of
the condition was found on this parameter (W3 = 0.49, Q = 28.5,
p = 10–4). Overall, CL induced higher levels of muscle activity
than all the other conditions (in all cases: p < 10–4, D > 0.46).
Furthermore, OLCL induced significantlymoremuscle activity than
NE (p = 2.10–3, D = 0.58). Despite higher values with OLCL than
with OL on average, these two controllers were not found to induce
significantly different levels of shoulder flexors EMGactivity. In sum,
OL was the only tested controller that did not increase the level of
muscle activity in shoulder flexorswhen compared to natural human
movements and CL was the worst of the tested controller.

Shoulder extensors: Despite an increase for all targets and tested
controller, no main effect of the condition was found on shoulder
extensors RMS. This is probably due to the fact that all conditions
performed when wearing the exoskeleton induced a relatively
similar increase in this parameter when compared to NE.

Elbow flexors: All the tested controllers seemed to have an
impact on the RMS of elbow flexors. Consistently, a significant main
effect of the condition was found on this parameter (W3 = 0.68,
Q = 28.4, p = 3.10–6). Overall, CL induced higher levels of muscle
activity than all the other conditions (in all cases: p < 10–6,D > 0.92).
Furthermore, bothOL andOLCL induced significantlymoremuscle

activity than NE (in both cases: p < 7.10–4, D > 0.7). Despite higher
values with OLCL than with OL on average, these two controllers
were not found to induce significantly different levels of elbow
flexors EMG activity. In sum, all the tested controllers increased
the elbow flexors EMG activity when compared to natural human
movements, the CL controller inducing the greatest impact.

Elbow extensors: The tested controller seemed to have an impact
on the RMS of elbow extensors. Consistently, a significant main
effect of the condition was found on this parameter (W3 = 0.31,
Q = 12.9, p = 0.005). Furthermore, OL induced higher levels of
muscle activity when compared to NE (p = 0.003,D = 0.47). In sum,
only OL induced a clear increase in the activity of elbow extensors
when compared to natural human movements.

3.4 Ergonomic feedback

The results of the performed investigations regarding the
ergonomic feedback of participants introduced in Section 2.3.2 are
summarized in Figure 9.

Overall, all conditions involving the exoskeleton seem to
increase the grades reported by the participants on all the tested
criteria, which correspond to a decrease in comfort and an increase
in the felt difficulty. Main effects and comparisons were analyzed
separately for each statement submitted to the participants.

Felt fatigue: A main effect of the condition was found on
the reported fatigue (W3 = 0.36, Q = 17,12, p = 7.10–4). Further
comparisons showed that CL and OLCL implied a higher level
of reported fatigue than NE (in both cases: p < 0.011, D > 0.96).
Reported fatigue was not significantly affected by OL when
compared to NE. Furthermore, CL performed significantly worse
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FIGURE 7
Average envelope of the activities of the different muscles (normalized by the maximum reached in the experiment) for a representative participant for
T3. Shaded areas represent the standard error across participants. On each panel, a flexor muscle is represented in blue and an extensor muscle is
represented in green. (A) Anterior and posterior deltoids. (B) Biceps brachii and triceps brachii long head. (C) Brachioradialis and triceps brachii
lateral head.

than OL (p = 0.016, D = 1). In sum, OL was the less impacting in
terms of reported fatigue, followed by OLCL and finally CL.

Difficulty of the task: A main effect of the condition was found
on the reported overall difficulty of the task (W3 = 0.46, Q = 22.23,
p = 6.10–5). Further comparisons showed that all conditions
involving the exoskeleton made the task more difficult when
compared to outside the exoskeleton (in all cases: p < 0.01,D > 1.03).
Furthermore, CL was shown to perform significantly worse than
OLCL on this criterion (p = 0.014, D = 0.99). In sum, all the tested
conditions impacted the felt difficulty, CL being the most impacting
and OLCL being the less impacting on average.

Comfort of the task:A main effect of the condition was found on
the reported comfort in the task realization (W3 = 0.44, Q = 21.23,
p = 9.10–5). Further comparisons showed that the exoskeleton
tended to decrease comfort independently of the condition. Indeed,
all the tested conditions with the exoskeleton were significantly
different of NE (in all cases: p < 8.10–4, D > 1.37), but no significant
difference was found between them.

Accuracy constraint: A main effect of the condition was found
on the felt accuracy constraint (W3 = 0.44, Q = 21.36, p = 9.10–5).
Further comparisons showed that all conditions involving the
exoskeleton increased the felt accuracy constraint when compared
to outside the exoskeleton (in all cases: p < 0.008, D > 1.04). No
significant differences were found between OL, CL and OLCL.

Nevertheless, it is worth mentioning that, on average, CL increased
the reported accuracy constraint when compared to OL and OLCL.

Physical effort: A main effect of the condition was found on the
level of physical effort induced by the task (W3 = 0.59, Q = 28.38,
p = 3.10–6). Further comparisons showed that all conditions
involving the exoskeleton induced higher levels of effort when
compared to outside the exoskeleton (in all cases: p < 0.003,
D > 1.24). The CL condition was also shown to perform worse
than OL for this criterion (p = 0.024, D = 0.91). In sum, CL induced
the highest level of physical effort required to perform the task
and OL and OLCL also increased it when compared to outside the
exoskeleton.

4 Discussion

The present paper evaluated different transparent controllers
and their respective effects on human movement. Transparency
is one of the most basic and important features that should be
provided by exoskeletons. This control mode is both a necessity
in preventing musculoskeletal disorders at work, for instance
during load-carrying tasks (Baser and Konukseven, 2012), and in
exoskeleton-assisted rehabilitation protocols (Pirondini et al., 2016;
Proietti et al., 2016; Zimmermann et al., 2020).The effects of distinct
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FIGURE 8
Average RMS of the activities of the different muscle groups (normalized by the maximum activity reached in the experiment) as a function of the aimed
target. Error-bars represent the standard error across participants. (A) Shoulder flexors. (B) Shoulder extensors. (C) Elbow flexors. (D) Elbow extensors.

FIGURE 9
Average differences in responses to the questionnaire between NE and
other conditions (i.e., OL, CL, OLCL). Error-bars represent the standard
error across participants. Q1: Fatigue. Q2: Overall difficulty of the task.
Q3: Comfort. Q4: Felt accuracy constraint. Q5: Physical effort.

levels of transparency on human movements have not, to our
knowledge, been extensively investigated in the literature. Such
investigations could provide a deeper understanding of how human
participants deal with an imperfect transparency of the exoskeleton,
which is unavoidable in practice. In particular, it could shed light
on the human movement parameters that are most impacted by
the exoskeleton. In the following, we discuss the obtained results in
terms of interaction efforts, kinematics, EMG signals and ergonomic

feedback with our three transparent controllers and outside the
exoskeleton (NE).

The three tested transparent controllers (i.e., OL, CL and OLCL)
were first evaluated on the basis of the residual interaction forces
occurring at the human-exoskeleton interfaces. In particular, it was
shown that the OL controller induced higher interaction forces
at both the arm and forearm interfaces than the CL and OLCL
controllers. Quantitatively, both the maximum and average absolute
interaction forces at the arm level were between two times and
three times higher in OL than in CL and OLCL with peaks
above 20 N. It was also shown that, despite some differences in
their temporal evolution, arm interaction forces were comparable
in terms of magnitude for the CL and OLCL controllers. This
could denote a predominant effect of the arm segment inertia,
which was not fully compensated, on interaction efforts at this
level. Finally, the interaction efforts measured at the forearm level
were clearly lower for the OLCL controller than for the other two.
Quantitatively, both the maximum and average absolute interaction
forces at the forearm level were around ten times lower in OLCL
than in OL and five times lower in OLCL than in CL, with peaks
around 2 N and average values around 1 N. Therefore, in terms
of interaction efforts, the OLCL controller is by far the most
transparent of the three tested controllers. Nevertheless, these results
do not allow to capture all human movement alterations due to each
controller. Indeed, a controller could induce drastic changes of the
kinematic strategy of the user even though it is associated with small
interaction efforts.

In particular, a kinematic analysis is often a necessary step
to clarify these alterations (Jarrassé et al., 2010; Pirondini et al.,
2016; Bastide et al., 2018; Verdel et al., 2021b). Such an analysis first
showed that movements performed with controllers including only
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one of the control components (i.e., open-loop compensation of
gravity OL or interaction forceminimization CL) induced an overall
higher movement duration (MD) and trajectory curvature than the
complete controller OLCL. Then, the controllers were evaluated
in terms of their impact on peak velocity and peak acceleration.
Interestingly, although the OLCL controller tended to limit the
overall movement slowdown when compared to the other two
controllers, the magnitude of the improvement is not as obvious
as expected given the important differences reported in terms of
interaction efforts.This could be explained by recent advances in the
understanding of human movement invigoration via the minimum
time-effort theory. Indeed, recent works showed that participants
can be prone to spend significant amounts of energy, and withstand
high interaction efforts, in order to save time (Verdel et al.,
2023b). Here, participants reduced their speed likely in relation
with the associated effort, as predicted by a time-effort trade-off
(Bastide et al., 2018). Furthermore, they also preserved relatively
straight hand paths towards the targets but performed at lower
velocity, which suggests that humans try to preserve their overall
kinematics as alreadywell-known in reachingmovements perturbed
by velocity dependent force fields (Burdet et al., 2001; Franklin et al.,
2003; Burdet et al., 2006). Moving more quickly could increase
interaction efforts and energy expenditure, such that participants
may have found a compromise in this task. Such a natural tendency
could induce safety risks in terms of the skin condition and the
development of musculoskeletal disorders during a prolonged usage
of the exoskeleton (Bessler et al., 2021). Furthermore, it should be
noted that the relatively noisy acceleration and velocity profiles
observed in CL could be detrimental to accuracy, which is known to
modify movement trajectories and to decrease velocity (Fitts, 1954).
Such constraints aremainly due to the inherent delay induced by the
integral term in the force-feedback control. Indeed, this term tends
to delay the consideration of the participant’s acceleration variations
by the exoskeleton, in particular in the absence of an open-loop
compensation of the exoskeleton’s weight. Finally, these analyses
tend to show that kinematic parameters alone are not sufficient to
assess the differences between several transparent controllers. Such a
result is important because numerous exoskeletons do not embed FT
sensors to evaluate the magnitude of interaction forces (Sugar et al.,
2007; Puchinger et al., 2018; Samper-Escudero et al., 2022), mainly
for economic or compactness reasons.

The analyses conducted on both kinematics and interaction
efforts suggest a better transparency of the OLCL controller.
Nevertheless, it is important to assess the level of required muscle
activity induced by the transparent controllers. In the present paper,
the activity levels were assessed by means of the RMS of the EMG
signals. In the introduced task, the agonist muscles are the shoulder
flexors and the elbow extensors. Overall, CL induced higher levels of
shoulder agonists activity than OL and OLCL, while also inducing
the slowest movements. Furthermore, despite a trend of higher
RMS on average with OLCL than with OL, these two controllers
did not induce significantly different levels of shoulder agonists
activity. Finally, OL induced higher levels of elbow agonists activity
than CL and OLCL. The activity of elbow antagonists (i.e., biceps
brachii and brachioradialis) induced by CL was higher than with
OL and OLCL, while OL and OLCL were comparable. Therefore, it
can be concluded that CL induced higher levels of muscle activity
and for longer periods than OLCL, while OL induced comparable

or higher levels of muscle activity for slightly longer periods than
OLCL. Furthermore, the high activity levels of both agonists and
antagonists in CL is consistent with accuracy constraints, which are
known to induce muscle co-activation (Gribble et al., 2003). Finally,
activity levelswere overall higherwhenwearing the exoskeleton than
in NE. These results are consistent with those previously obtained,
in particular with regard to elbow flexors activity Pirondini et al.
(2016). However, previous experiments also reported modifications
in muscle synergies, which cannot be properly assessed with our
limited number of measured muscles. Our observations, combined
with the relatively small differences observed on kinematics between
the different controllers, are consistent with a compensation of
higher interaction efforts at the price of higher muscle activity. It
must be noted that if a heavy load was carried in the task, we would
probably have found that EMG activity in NE is higher than in any
transparent condition. In our task, it is important to remind that no
loadwas carried by the exoskeleton or the human, and thatwe simply
analyzed nominal arm movements.

Overall, these results show the necessity of combining both
an open-loop compensation of the exoskeleton dynamics and
force feedback control to improve transparency. Nevertheless, these
objective metrics do not allow to conclude about the preferences of
the participants, which is why subjective feelings are an important
information to collect.

Interestingly, the important differences reported on objective
measurements do not seem to induce very different ratings by
the participants. Indeed, although the CL controller performed
significantly worse in all the tested questionnaire parameters,
the differences in ratings are not high. Furthermore, the OL
condition was rated equivalently to the OLCL condition, whereas
it induced the highest interaction efforts between the tested
controllers. In particular, although it was not significant, participants
found the OLCL controller more fatiguing than the OL controller
on average. This is probably due to the limited identification
conducted which induced a stronger resistance to movement onset
in the OL control mode, thereby compensating for a part of the
human gravitational torque during static positionmaintenance.This
compensation, unwanted in transparent mode, might have been
used by participants to limit their energetic expense, in particular
while pointing above their shoulder as for T5. Indeed, such postures
are known to be non ergonomic (McAtamney and Corlett, 1993).
It should be noted that these trends could change during prolonged
usage, which emphasizes the importance of long-term field studies
in the future.

Given all the presented results, future works should focus
on accurately compensating the inertial torques induced by the
exoskeleton. Such compensations need to be performed with
the help of predictive techniques to be efficient (Lamy et al.,
2009), which falls in the field of human intention detection and
prediction. Such predictions could be based on computational
motor control models (Berret et al., 2011), learning techniques
(Jarrasse et al., 2008a), movement primitives (Jamsek et al., 2021;
Gomes et al., 2022) or EMG data (Trigili et al., 2019; Treussart et al.,
2020) for example,. The present work highlights the performances
that can be expected for several transparent controllers, which
can guide a choice of controller depending on the application
and availablematerials. Furthermore, the extensive evaluation
performed allowed a deeper understanding of the alterations of
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human movement produced by the exoskeleton. In particular, it was
shown that human arm’s kinematics and EMG signals alone cannot
properly discriminate between different levels of transparency,
which is due to the human tendency to compensate for the controller
imperfections. Interestingly, the employed evaluation method could
be useful to evaluate other important control modes of exoskeletons,
such as weight compensation (Just et al., 2017; 2020; Verdel et al.,
2022a), which has been recently shown to impact the introduced
parameters in the field of humanmotor control (Verdel et al., 2023a).
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