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One of the big challenges in robotics is the generalization necessary for
performing unknown tasks in unknown environments on unknown objects. For
us humans, this challenge is simplified by the commonsense knowledge we
can access. For cognitive robotics, representing and acquiring commonsense
knowledge is a relevant problem, so we perform a systematic literature review
to investigate the current state of commonsense knowledge exploitation in
cognitive robotics. For this review, we combine a keyword search on six
search engines with a snowballing search on six related reviews, resulting in
2,048 distinct publications. After applying pre-defined inclusion and exclusion
criteria, we analyse the remaining 52 publications. Our focus lies on the
use cases and domains for which commonsense knowledge is employed,
the commonsense aspects that are considered, the datasets/resources used
as sources for commonsense knowledge and the methods for evaluating
these approaches. Additionally, we discovered a divide in terminology between
research from the knowledge representation and reasoning and the cognitive
robotics community. This divide is investigated by looking at the extensive review
performed by Zech et al. (The International Journal of Robotics Research, 2019,
38, 518–562), with whom we have no overlapping publications despite the
similar goals.
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1 Introduction

Robots have the potential to support us in a number of activities. Recently, there has
been a massive adoption of cost-efficient robots that support us in house cleaning (e.g.,
vacuuming) and gardening (e.g., lawn mowing) activities. Moreover, research in household
robotics has led to robots being able to clean breakfast tables (Kazhoyan et al., 2021), or
prepare drinks (Sung and Jeon, 2020) and pizzas (Joublin et al., 2024). Yet, the ability of
robots to support us in complex everyday tasks is still very limited. In particular, they break
down in open world situations where they are challenged by new and underdetermined
tasks, new environments or new objects about which they lack knowledge (Bronfman et al.,
2021; Ding et al., 2023).

This gap between underdetermined tasks and the robot body motion that accomplishes
the task has to be bridged through the robot’s knowledge and its reasoning capabilities.
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This challenge is the core of the research field of cognitive robotics,
where knowledge representation and reasoning techniques are
employed to support “autonomous robot [s] in a dynamic and
incompletely known world” (Levesque and Lakemeyer, 2008, p.
869). A substantial part of these techniques and capabilities used
to increase the robustness of cognitive robots in everyday tasks
concerns the robot’s commonsense knowledge (CSK).This knowledge
has the benefit of “enhancing the quality of the plans […] as
well as avoiding human involvement when making decisions”
(Pradeepani et al., 2022, p. 159) and allows them “to ask and retrieve
the right answers from available knowledge” (Salinas Pinacho et al.,
2018, p. 132).

As the name suggests, CSK in humans is understood as
“information that people usually take for granted and, hence,
normally leave unstated” (Cambria et al., 2012, p. 3582), which
increases the difficulty for automatic acquisition and deployment.
Regarding the cognitive robotics domain, we follow the definition
provided by Gupta and Kochenderfer (2004), which focuses on
knowledge about human desires, physics, and causality, as well
as knowledge about objects with their locations, properties and
relationships. In general, knowledge about human desires correlates
to the concept of Intuitive Psychology from Lake et al. (2017),
with which an agent understands that other agents have a mental
state similar to their own which they can express and interpret
to understand their intentions and goals. Both knowledge about
physics and knowledge about causality are covered by the concept of
Intuitive Physics, also fromLake et al. (2017).This type of knowledge
is focused on primitive physical concepts like the calculation of
physically possible trajectories or the tracking of objects over time.
With causality, also the knowledge about physical connections
between objects and actions is covered. So, for example, CSK
focused on causality would help a robot to understand the (physical)
consequences of moving an object.

As a general example, consider a cognitive robot tasked with the
preparation of a bowl of cereals for breakfast, a task that a human
could perform without explicit planning. However, many of the
implicitly known aspects for the human are challenges for the robot,
since it needs to know that “a bowl of cereal” implies the use of milk
orwhat constitutes a container to be used as the bowl orwhere to find
the cereal in its environment. Without CSK that provides answers to
these challenges, the robot would, e.g., search the whole kitchen for
milk instead of starting with the most probable location (the fridge)
or it would not understand that a found container could be used as
the bowl.

By equipping cognitive robots with CSK, their robustness
when interacting in open worlds is increased. However, the
application of the concept of CSK to the cognitive robotics
domain has received relatively limited research attention. There
are no surveys or comparable studies performed to analyze the
coverage of CSK for cognitive robotics. Since cognitive robotics
are increasingly breaching into human domains, we perform a
systematic literature review providing researchers and practitioners
alike with an overview for CSK in cognitive robotics. For this
literature review, we follow the principles and guidelines provided
by Kitchenham and Charters (2007), Okoli (2015) and Page et al.
(2021). To increase repeatability and traceability of our review, we
track our progress in a review protocol and collect all intermediate

results. All of these additional resources are available in our
GitHub repository1.

To guide our research, we formulate the following four research
questions, focusing on different aspects of CSK. Our motivation
for these questions stems from the need to comprehensively
understand the landscape of CSK utilization in cognitive robotics
research. By addressing these research questions, we aim to uncover
insights into the various use cases, specific aspects considered (or
overlooked) in CSK application, the prevalent datasets or resources
in the field, and the diverse methods employed for assessing
these approaches. This comprehensive examination is crucial in
shaping our understanding of the current state and potential future
directions of CSK integration in cognitive robotics.

RQ1 For which use cases has the use of CSK been considered in
cognitive robotics research?

RQ2 Which aspects of CSK have been considered?Which aspects of
CSK have received less consideration?

RQ3 Which datasets or resources aremainly considered in cognitive
robotics as a source for CSK?

RQ4 What methods are employed to assess the approaches? Which
CSK datasets or resources are utilized in these evaluations?

To summarize our results, concerning RQ1 we find that most
use cases occur in the household domain and focus on objects
and their relations to the environment. This is corroborated by
our results pertaining to RQ2, which we address by looking
at what sorts of questions CSK is called upon to answer. We
found that the most common CSK questions seek to connect an
object to a specific location in its environment. Other important
questions focus on object similarity, object affordances and tool
substitution. Here, affordances describe possible ways for an agent
to interact with the environment Bornstein and Gibson (1980). In
general, questions focusing on objects are much more dominant
than questions about interacting with humans or about physics or
causality of actions. Concerning RQ3, we find that while specific
sources such as ConceptNet (Speer et al., 2017) (Open-)Cyc (Lenat,
1995) or OMICS (Gupta and Kochenderfer, 2004) are used multiple
times, there is no one single source that is employed in all or
most CSK use cases. Regarding the evaluation method and data
covered by RQ4, we found that most approaches either evaluate
using a Case Study or an Experiment, predominantly in a simulated
environment. Unfortunately, most of the evaluation data is not
available online.

During our search for suitable publications, wewere surprised to
notice a lack of publications that focus on well established keywords
like affordance learning. After manually analyzing this gap using
another, similar review by Zech et al. (2019)–with which we have
no overlapping publications–we hypothesize that the reason is a
divide in terminology between research in the cognitive robotics
community and in the knowledge representation and reasoning
community. We further explore this divide and propose possible
bridges to close this gap.

1 https://github.com/ag-sc/Robot-Commonsense-Review
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2 Related work

Commonsense and intuitive physics reasoning problems were
driving forces for knowledge representation and reasoning in
early stages of AI research (McCarthy, 1959; 1977; Schank and
Abelson, 1975; Minsky, 1981; Hayes, 1990). This line of research
was presented in textbooks (Davis, 1990; 2008a; Mueller, 2014) and
further developedwithin its own research community (Davis, 2008a;
b; Levesque et al., 2012; Davis and Marcus, 2015). In current AI
research, CSK is used for question-answering (Talmor et al., 2019;
Nguyen et al., 2021), knowledge base creation (Tandon et al., 2017),
text interpretation (Bisk et al., 2020; Puri et al., 2023) and visual
recognition (Zellers et al., 2019), to name a few.

While a large fraction of research problems were motivated
through intuitive physics and physical agency, they were not
sufficiently leveraged in cognitive robotics research. Another
characteristic of CSK and reasoning is its hybrid nature.
Commonsense reasoning includes a large number of specialized
methods for prospection (Szpunar et al., 2014), part-based
reasoning (Tenorth and Beetz, 2017), mental simulation (Hesslow,
2012), imagistic reasoning (Nanay, 2021), planning (Ghallab et al.,
2016), and safe human-robot collaboration (Conti et al., 2022),
which were investigated individually without being linked to the
more general concept of commonsense. In addition, representations
of actions as they are investigated in natural language processing,
such as FrameNet (Baker et al., 1998), are of key importance for
robotic commonsense (Vernon, 2022). Furthermore, robot cognitive
architectures contribute to robot commonsense by focusing on
cognitive capabilities (Vernon, 2014; Vernon, 2022).

Regarding previous reviews on the topic of commonsense
knowledge in cognitive robotics, as far as we know, no direct
previous publications exists. However, works by Paulius and Sun
(2019) and Sun and Zhang (2019) survey general knowledge
representation techniques employed for different domains and
scenarios.Thework byPaulius and Sun (2019) focuses on knowledge
representation and its connection to learning techniques applied
in service robots, covering general high-level as well as specialized
representations. Similarly, Sun and Zhang (2019) reviews three types
of knowledge representations for task planning in robotics: semantic
networks, rules and logical knowledge representation.

The survey conducted by Thosar et al. (2018) focuses on
different knowledge bases that are employed by service robots
manipulating household objects. These knowledge bases are
compared regarding their knowledge acquisition and representation
as well as themechanisms used for inference and symbol grounding.
Another review by Buchgeher et al. (2021) that focuses on a specific
type of knowledge representation, looks into the usage of knowledge
graphs for industrial manufacturing and production systems. The
authors analyse application scenarios, graph characteristics and
meta information about the surveyed research publications.

Reviews by Olivares-Alarcos et al. (2019) and Manzoor et al.
(2021) focus on ontology-based approaches for knowledge
representation. The review conducted by Olivares-Alarcos et al.
(2019) surveys the cognitive capabilities supported by different
ontologies, and compares them using a proposed classification
schema based on the underlying ontology language and hierarchy
as well as the application domain of the ontology. The review by
Manzoor et al. (2021), on the other hand, focuses specifically on

the household, hospital, and industry domains, looking for concrete
scenarios where the ontologies have been applied on real robots.

Lastly, the literature review by Zech et al. (2019) focuses on
the concept of actions in the cognitive robotics domain by looking
at their representation and providing a possible taxonomy for
their classification. Based on the classification of 152 publications,
the authors summarize open research challenges for increasing
the maturity and usability of action representations. This review
exemplifies the divide mentioned in Section 1 regarding the
terminology used by researchers with a (cognitive) robotics
background and researchers in the knowledge representation
and reasoning domain, since some concepts covered by their
taxonomy are semantically equivalent to concepts from the
knowledge representation and reasoning domain without being
explicitly connected.

The reviews and surveys presented here differ in the knowledge
representation approach covered, the application domain, and
whether the review is structured in a systematic way. The topic
of commonsense knowledge itself is not covered by any of these
reviews. Due to the importance of commonsense knowledge for
cognitive robotics, we investigate its application domain, data
sources, evaluation methods and commonsense aspects in a
systematic way.

3 Methodology for searching relevant
publications

To find publications suitable for answering our research
questions RQ1–RQ4, we follow a structured, pre-defined procedure
as proposed by Kitchenham and Charters (2007), Okoli (2015) and
Page et al. (2021). To enhance the repeatability of our review, we
create a review protocol containing additional information about the
search as well as an overview of intermediate results.The protocol, as
well as all additional artifacts, are available in our GitHub repository.

3.1 Applied search procedure

To find publications suitable for answering our four research
questions, we combine a keyword-based database search with a
snowballing search on related surveys. The general procedure used,
along with the quantity of publications identified and screened in
each step, is visually summarized in Figure 1.

For the database search we defined the following four keywords
before we started the search:

K1: “knowledge-enabled robot” OR “knowledge-based robot” OR
“knowledge-driven robot”

K2: “knowledge processing”ANDrobotANDquestionANDNOT
interaction AND NOT hardware

K3: “common sense knowledge” AND robot AND NOT
interaction AND NOT hardware

K4: “common sense” AND (“robot cognition” OR “cognitive
robot”)

We used each of these four keywords on the following six search
engines/databases: Google Scholar, IEEE Xplore, Scopus, Web of
Science, Science Direct and the ACM Digital Library. Through the
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FIGURE 1
Visualizing our step-by-step search procedure and the number of publications found and analyzed in each step. This visualization was created with
Haddaway et al. (2022).

combination of our keywords with these six sources, we found 1,652
publications.

Since we are not the first researchers to perform a literature
review in the domain of knowledge representation and reasoning
for cognitive robotics, we also decided to incorporate the results
of previous published reviews. For this, we follow the guidelines
by Wohlin (2014) for performing a snowballing search to gather
publications that were either already covered by the reviews
introduced in Section 2 or that cite these reviews. By collecting the
in- and outgoing references of the reviews by Thosar et al. (2018),

Olivares-Alarcos et al. (2019), Paulius and Sun (2019), Sun and
Zhang (2019), Buchgeher et al. (2021) andManzoor et al. (2021), we
included 724 additional publications.

Combining the results of both search techniques yielded 328
duplicates, which we removed. We then analyzed the remaining
publications regarding theirmetadata and removed 576 publications
that did not fit the inclusion criteria described in Section 3.2. Next,
we screened the 1,472 remaining publications in two steps, first
looking only at their title, and then also covering their abstract.
During these steps, we decided whether to include a publication
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using further steps based on the inclusion criteria specified in
Section 3.2. This led us to exclude 951 publications based on their
title and 441 based on their abstract, leaving us with 80 publications,
which we read completely.

Of these 80 publications, one was not accessible in a full
version, prompting us to exclude it as well. Of the remaining
79 publications, 27 were excluded based on the exclusion criteria
described in Section 3.2, leaving us with 52 publications, which we
analyzed to answer our research questions. A brief summary of these
publications can be found in our review protocol.

3.2 Inclusion and exclusion criteria

To enhance the repeatability of our search, we define our
inclusion and exclusion criteria before we start the search, as
suggested by Kitchenham and Charters (2007). For the inclusion
criteria, we differentiate between criteria regarding a publication’s
metadata and its content. Regarding the metadata, we only include
publications that were published in our investigated time frame of
11 years (i.e., between 2012 and 2022). For most of our data sources,
these criteria were already applied during the search through explicit
filters. Additionally, only papers that are written in English and thus
understandable by the broad scientific community are included.
Regarding the scientific quality, we focus only on publications that
are peer-reviewed, excluding patents, books, presentations, technical
reports and theses of any kind. Regarding the content, we analyze
the title of the publication and its abstract in two separate steps
to determine whether it contains a possible answer to any of our
research questions. So, we include publications that discuss the
application of CSK through a robot to a specific scenario or use case
(RQ1), publications that discuss equipping cognitive robots with the
possibility to answer certain CSK questions (RQ2), or that introduce
or employ a (novel) source for collecting the necessary CSK (RQ3).
In general, anything the authors employ as a source for gathering
their CSK constitutes as an eligible resource for our analysis. This
can cover texts, ontologies, websites, large language models or other
kinds of data. Lastly, we do not define a specific inclusion criteria
for assessing the evaluation methods and their used data (RQ4),
since we expect all remaining publications to somehow evaluate
their approach.

As we explain in Section 3.1, the exclusion criteria are applied
after the metadata, title and abstract have already been analyzed.
Here, we first exclude publications for which no complete version is
available, thus making a thorough analysis impossible. Additionally,
we exclude any publicationwe read completely but that turns out not
to provide answers to any of our research questions, despite content
in the title or abstract suggesting that it does.

4 Analyzing the usage of
commonsense knowledge

In this section, we analyze the content of the 52 publications
found by the search procedure detailed in Section 3.1 to answer
our four research questions introduced in Section 1. However, we
first examine two aspects of their metadata. First, we examine

the number of publications published for each year in our 11-
year time span, visualized in Figure 2A. We do not find rising or
falling trends in interest in the topic of CSK for cognitive robotics
throughout these years, with a median of five publications per
year. We also examine the venues where these publications were
published. However, only three venues occur more than once:
Intelligent Service Robotics2 (2 occurrences), IEEE International
Conference on Robotics and Automation (ICRA)3 (6 occurrences)
and IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)4 (7 occurrences). For a more general examination,
we summarize the venue type for all publications in Figure 2B. Here,
we find that the majority of publications are conference papers
(∼60%), followed by journal articles (25%), workshoppapers (∼10%)
and lastly book sections (∼5%).

4.1 Use cases and their application domain

Our first research question RQ1 pertains to the use cases for
which the use of CSK has been considered in cognitive robotics
research. When addressing this question, we differentiate between
the concrete use case itself and the domain in which it is embedded.
We look at both independently, since a given use case is not
always embedded in a single domain. For example, the approach by
Wang et al. (2019) focuses on the use case of finding and delivering
a given object in the household domain, whereas Yang et al. (2019)
focuses on the same use case but for the personal care domain.

For the distinction between possible domains and use case,
we rely on the arguments and descriptions presented in each
publication. The found domains are self-explanatory and mostly
reported directly in each publication, so any publication that talks
about the “household environment” counts towards the Household
domain. For the use cases however, we collect their attributes and
goals to distinguish and define the 15 different use cases seen
below. Due to the difference in abstraction between these use cases,
more complex use cases like, e.g., Cooking depend on other, more
simplistic and low-level use cases like localizing or picking up
objects. These dependencies are visualized in Figure 3.

• Cooking (Nyga and Beetz, 2012; Agostini et al., 2015):
Generate and execute a cooking plan based on the current
environment and a requested meal
• Environment Exploration (Pangercic et al., 2012;

Kanjaruek et al., 2015; Jäger et al., 2018; Vassiliades et al., 2020;
Zhang et al., 2021): Interacting with parts of the environment
(objects, doors, cupboards, etc.) to gather (new) knowledge
• Hole Digging (Javed et al., 2016): Dig a hole in the garden
• Intention Inference (Liu et al., 2015; Liu and Zhang, 2016;

De Silva et al., 2022): Identify the intention of a human with a
certain object/command to react fittingly when the command
cannot be executed (e.g., the robot should fetch the human some
juice, which is not available. Why did the human want the juice
and what is a fitting alternative?)

2 www.springer.com/journal/11370

3 www.ieee-ras.org/conferences-workshops/fully-sponsored/icra

4 www.ieee-iros.org
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FIGURE 2
(A): Visualizing the amount of found publications throughout the 10 year time span we restricted the search to. (B): Visualizing the venue type where
the found publications were published.

• Location Detection (Welke et al., 2013): Categorize the
location based on the recognized objects (e.g., the robot detects
milk and juice and concludes that the location is a fridge)
• Navigation (Shylaja et al., 2013; Li et al., 2022): Navigate to a

specific location
• Object Delivery (Lam et al., 2012; Riazuelo et al., 2013;

Mühlbacher and Steinbauer, 2014; Al-Moadhen et al., 2015;
Zhang and Stone, 2015; Wang et al., 2019; Yang et al.,
2019): Finding the requested object and delivering it to a
specific location
• Object Localization (Varadarajan and Vincze, 2012b;

Zhou et al., 2012; Kaiser et al., 2014; Riazuelo et al., 2015;
Jebbara et al., 2018; Daruna et al., 2019; Zhang et al., 2019;
Chernova et al., 2020): Finding a specific object in an
(unknown) environment
• Object Recognition (Daoutis et al., 2012; Pratama et al., 2014;

Kümpel et al., 2020; Chiatti et al., 2022): Recognize a specific
object based on its properties
• Pick and Place (Al-Moadhen et al., 2013; Javia and Cimiano,

2016; Mitrevski et al., 2021): Pick an object up and place it at a
different location
• Reminiscence Therapy (Wu et al., 2019): Asking questions

about provided pictures to get the human to remember
and socialize
• Table Setting (Salinas Pinacho et al., 2018; Haidu and Beetz,

2019): Set the table for a meal scenario (and maybe also clean
up afterwards)
• Tidy Up (Aker et al., 2012; Skulkittiyut et al., 2013): Bring

a specified part of the environment in order by removing
unusual objects
• Tool Substitution (Zhu et al., 2015; Thosar et al., 2020;

2021; Dhanabalachandran et al., 2021; Xin et al., 2022):
Recognizing a specific object as a suitable substitute for a
missing tool
• Warehousing (Ayari et al., 2015; Pradeepani et al., 2022):

Keep track of available objects and their quantity in

an environment to inform a human once an object is
unavailable

During our analysis, we found five different domains where
CSK is applied: the Household and Retail domains, the Gardening
domain, the Personal Care domain, and the Generic domain in
which the robot handles CSK in a way that can be applied
to any other domain. The number of publications that handle
each of these domains is visualized in Figure 4A. As can be
seen, the Household domain is the focus of 50% of the covered
publications, surpassing applications in theGeneric domain (∼33%).
One commonality shared by theHousehold, Personal Care andRetail
domains (∼65% of publications) is that robots operating in these
domains potentially share their workspace with humans, which can
lead to uncertainties in the environment that increase the need for
robots to have and draw on CSK. Other domains where robots do
not typically share their workspace with humans, such as industrial
and manufacturing domains that tend to allow for better known
and more deterministic environments, were not found during our
analysis, despite the inclusion of approaches from these domains
through the snowballing search on the reviews by Buchgeher et al.
(2021) and Manzoor et al. (2021).

In addition to examining the application domain, we also
investigate the specific use case with which each approach is
concerned in Figure 4B. Here we distinguish between approaches
that focus solely on a specific use case (e.g., Salinas Pinacho et al.
(2018) focuses on the Table Setting use case) and approaches where
a specific use case is used as an example or proof-of-concept to
demonstrate the viability of the approach being proposed (e.g.,
Jebbara et al. (2018) use the Object Localization scenario to prove
the applicability of their CSK extraction technique for the cognitive
robotics domain). Roughly 46% of the analyzed publications (24 out
of 52) focus on the use case they examine, whereas ∼46% use it only
as an example application.The remaining four publications (Tenorth
and Beetz, 2013; Beetz et al., 2018; Jakob et al., 2020; Beßler et al.,
2022) have no specific use case, instead describing techniques
intended to be generally applicable to theHousehold domain.
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FIGURE 3
Visualizing the dependencies between the 15 different use cases. The four use cases in the darker rectangles are the low-level use cases that do not
depend on any other use case.

FIGURE 4
(A): Visualizing the different domains in which the approaches operate. (B): Visualizing the different use cases the approaches work on using CSK. We
differentiate between publications that focus on their chosen use case or that use it as a proof-of-concept. A full explanation for each use case can be
found in our review protocol.

In general, use cases that focus on objects, and on their
locations, affordances and relationships (Object Localization, Object
Delivery, Tool Substitution, Object Recognition, Pick and Place,
Warehousing and Location Detection) make up the majority of use
cases, occurring in 30 out of 52 publications (∼58%). Concrete
household tasks like Cooking, Tidying up and Table Setting, which
internally rely on the aforementioned object-focused use cases,
are only covered in six publications (∼12%). As we mentioned
before, the majority of domains covered in our survey focus on
environments that are shared by robots and humans. However, only
four of the publications we analyzed cover direct interaction with
humans through two use cases (Intention Inference andReminiscence
Therapy) (∼8%).

4.2 (Un-)Answerable questions about
commonsense knowledge

This section discusses the different commonsense questions for
which the approaches discussed in the publications we analyzed can
provide an answer (seeRQ2).We gather these questions by analyzing
the goals and capabilities of the approaches, keeping in mind the
definition of CSK from Gupta and Kochenderfer (2004) provided in
Section 1.This resulted in 25 different questions, whichwe separated
into three categories: a) Objects, their properties and relations (e.g.,
How can an object be transported/grasped?), b) Intuitive psychology
and human interaction (e.g., What are the intentions a human could
have with a certain object?) and c) Intuitive physics and causality
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FIGURE 5
Visualizing the CSK questions and how many publications can provide an answer with their approach. Questions are split in three categories: (A)
objects, their properties and relations, (B) intuitive psychology and human interaction or (C) intuitive physics and causality.

(e.g., What is the outcome of my current action?). We provide a visual
summary of the 25 questions, their categories and the number of
publications in which the discussed approach provides or proposes
an answer in Figure 5A. The complete list of approaches that can
answer each question is provided in the review protocol.

In general, the majority of questions, 15 out of 25 (60%),
focus on objects, object properties and object relations. Looking
at the number of approaches providing an answer, we discovered
that 47 out of the 52 approaches (∼90%) can provide an answer
to any question from this category. This heavy focus on objects
is also represented in the most researched CSK questions, since
eight out of the nine most answered questions in Figure 5B
revolve around objects. Questions regarding intuitive psychology
and human interaction are focused on in 14 out of 52 publications
(∼27%). However, these 12 publications concern themselves only
with four different questions (16%). The remaining six questions
all have to do with intuitive physics and causality (24%). However,
only eight out of 52 publications try to achieve an answer to any
questions in this category (∼15%), a given publication often being
the only approach that tries to answer the questions with which it is
concerned (e.g., Shylaja et al. (2013) is the only approach answering
the question What aspects of my environment are changing?).

Based on the aforementioned definition of CSK from Gupta
and Kochenderfer (2004), we can provide some example questions
that none of the 52 approaches analyzed are capable of answering.
As we already observed, knowledge about intuitive physics and
about intuitive psychology are not as well covered as knowledge
about objects (see Figure 5A). Possible questions in these areas
could be How can I (proactively) support the human in reaching
their goals? or How do I handle objects based on their state
of matter?. In addition to the more general object knowledge
covered under the definition of Gupta and Kochenderfer (2004),
more specific object properties only relevant for a specific
use case/scenario are also investigated. This task-specific object
knowledge is covered for the most frequently occurring use cases

like Object Localization/Delivery or Tool Substitution. However, for
more complex use cases like Cooking or Table Setting the necessary
object knowledge to answer questions like How does this ingredient
need to be processed to make it consumable? or What is a suitable
table setup for a specific meal? are not covered.

It should be noted that it is possible that approaches outside
of our analyzed set do cover some of these questions. However,
our systematic approach lets us conclude that any such publication
either does not apply its approach in the cognitive robotics domain
or does not relate these questions to the keyword commonsense
knowledge. We will talk about this divide in terminology in more
detail in Section 5.

4.3 Sources for commonsense knowledge

To answer RQ3, we analyze the different knowledge sources
employed by the analyzed publications. An overview of the 30
sources found and their properties can be examined in Table 1. To
evaluate their relevance for the domain of cognitive robotics, we
count the number of publications in which they occur. Additionally,
we categorize them based on their type according to the criteria
described by Hitzler et al. (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).
Lastly, we check whether the source is still available and can be
downloaded and used.

Before analyzing the usage of these publications, we provide a
quick overview over their capabilities:

• ConceptNet (Speer et al., 2017): ConceptNet is a semantic,
multilingual network describing concepts through words and
their commonsense relationships to each other. The necessary
knowledge is collected through crowd-sourced resources,
games with a purpose and resources created by experts.
• OMICS (Gupta and Kochenderfer, 2004): The Open Mind

Indoor Common Sense Project is a collection of CSK for
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TABLE 1 The 30 CSK sources employed by the 52 analyzed publications. Abbreviations in the Type column stand for Structured (S), Semi-Structured
(SS), Unstructured (U) and Human (H) (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).

Source # Type Avail Used by

ConceptNet Speer et al. (2017) 8 S ✓ Vassiliades et al. (2020); Aker et al. (2012)
Skulkittiyut et al. (2013); Zhang et al. (2019)
Jakob et al. (2020); Wu et al. (2019)
Chernova et al. (2020); Kümpel et al. (2020)

Humans 7 H ✗ Ayari et al. (2015); De Silva et al. (2022)
Haidu and Beetz. (2019); Lam et al. (2012)
Liu and Zhang. (2016); Jakob et al. (2020)
Nyga and Beetz. (2012)

Manually encoded 7 H ✗ Zhang and Stone. (2015); Yang et al. (2019)
Beßler et al. (2022); Xin et al. (2022)
Chiatti et al. (2022); Mitrevski et al. (2021)
Dhanabalachandran et al. (2021)

OMICS
Gupta and Kochenderfer (2004)

6 SS ✗ Al-Moadhen et al. (2013); Al-Moadhen et al. (2015)
Riazuelo et al. (2013); Riazuelo et al. (2015); Zhou et al.
(2012)
Nyga and Beetz. (2012)

(Open-)Cyc Lenat. (1995) 5 S ✓ Al-Moadhen et al. (2013); Al-Moadhen et al. (2015)
Tenorth and Beetz. (2013); Daoutis et al. (2012)
Mühlbacher and Steinbauer. (2014)

Perception/Sensors 5 U ✗ Ayari et al. (2015); Kanjaruek et al. (2015)
Thosar et al. (2020); Thosar et al. (2021); Jäger et al. (2018)

WordNet Miller. (1995) 5 S ✓ Vassiliades et al. (2020); Kanjaruek et al. (2015)
Skulkittiyut et al. (2013); Chernova et al. (2020)
Nyga and Beetz. (2012)

Experience/Memories 4 H ✗ Shylaja et al. (2013); Pratama et al. (2014)
Salinas Pinacho et al. (2018); Beetz et al. (2018)

Not mentioned 3 - ✗ Javed et al. (2016); Wang et al. (2019)
Pangercic et al. (2012)

DBpedia Bizer et al. (2009) 2 S ✓ Jebbara et al. (2018); Vassiliades et al. (2020)

Google Books Corpus
Goldberg and Orwant (2013)

2 U ✓ Kaiser et al. (2014); Welke et al. (2013)

Google Search Engine 2 U ✓ Skulkittiyut et al. (2013); Zhou et al. (2012)

WikiHowa 1 U ✓ Liu et al. (2015); Nyga and Beetz. (2012)

AfNet Varadarajan and Vincze. (2012a) 1 S ✓ Varadarajan and Vincze. (2012b)

AI2Thor Kolve et al. (2017) 1 SS ✓ Daruna et al. (2019)

BKN Lam et al. (2011) 1 S ✓ Lam et al. (2012)

BERT Devlin et al. (2019) 1 U ✓ Pradeepani et al. (2022)

Bing Image Searchb 1 U ✓ Zhou et al. (2012)

Ehow Recipesc 1 U ✓ Kaiser et al. (2014)

FrameNet Baker et al. (1999) 1 S ✓ Nyga and Beetz. (2012)

KnowRob Tenorth and Beetz. (2013) 1 S ✓ Javia and Cimiano. (2016)

LabelMe Torralba et al. (2010) 1 SS ✓ Zhang et al. (2019)

Matterport3D Chang et al. (2017) 1 SS ✓ Li et al. (2022)

(Continued on the following page)
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TABLE 1 (Continued) The 30 CSK sources employed by the 52 analyzed publications. Abbreviations in the Type column stand for Structured (S),
Semi-Structured (SS), Unstructured (U) and Human (H) (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).

Source # Type Avail Used by

ShapeNet Chang et al. (2015) 1 S ✓ Chiatti et al. (2022)

TTU Dataset Zhu et al. (2015) 1 SS ✓ Zhu et al. (2015)

Unspecified Text 1 U ✗ Agostini et al. (2015)

Unspecified Images 1 U ✗ Xin et al. (2022)

Unspecified Videos 1 U ✗ Zhang et al. (2021)

VirtualHome Puig et al. (2018) 1 SS ✓ Vassiliades et al. (2020)

WikiDatad 1 S ✓ Kümpel et al. (2020)

awww.wikihow.com
bwww.bing.com/visualsearch
cwww.ehow.com
dwww.wikidata.org

robots acting in the indoor domain (homes and offices). It
collects knowledge in the form of statements, where each
statement connects an object with an adjective describing either
a property or the current object state.
• (Open-)Cyc (Lenat, 1995): Cyc provides users with a

foundational/top-level ontology describing objects and actions
through rules and assertions written by domain experts.
OpenCyc and ResearchCyc describe two releases of this
knowledge base that each contain a subset of all assertions.
• WordNet (Miller, 1995): WordNet provides a lexical database of

the English language, where words are grouped into so-called
synsets based on their semantics. Synsets are hierarchically
structured using hyper- and hyponym relations as a
foundation.
• DBpedia (Bizer et al., 2009): This project aims to extract

structured information from Wikipedia by representing each
entity through a unique identifier and its relationship to
other entities.
• Google Books Corpus (Goldberg and Orwant, 2013): This

corpus contains text from ∼3.5million English books published
between 1,520 and 2008. In addition, the authors provide a
dataset containing all syntactic n-grams that can be extracted.
• AfNet (Varadarajan and Vincze, 2012a): The Affordance

Network is a database containing structural and material
affordances for common household objects. It is commonly
employed for recognizing objects through their affordances.
• AI2Thor (Kolve et al., 2017): This dataset contains 3D indoor

scenes that support many types of interaction for simulated
robots. It consists of photo-realistic objects and scenes that can
be procedurally generated.
• BKN (Lam et al., 2011): The Basic-Level Knowledge Network

combines knowledge from children’s books, ConceptNet
(Speer et al., 2017), and Google’s Web 1T 5-g corpus (Brants
and Franz, 2006) in a knowledge base covering objects and
activities. The focus of this knowledge base lies in providing
answers to Where, What, and How questions.

• BERT (Devlin et al., 2019): Bidirectional Encoder
Representations from Transformers describes a family of large
language models that are pre-trained on a corpus of unlabeled
text and can be fine-tuned to fit the purpose of the task.
• FrameNet (Baker et al., 1998): Lexical database of concepts

embedded in their semantic frame to better understand the
concept’s meaning.
• KnowRob (Tenorth and Beetz, 2013): This knowledge

processing system is employed for automated robots and
formulates decisions a robot can make as inference tasks that
can be answered by virtual knowledge bases (KBs). These KBs
combine word meaning from WordNet (Miller, 1995) with
OpenCyc (Lenat, 1995), gather object information from online
shops and contain observed human behavior.
• LabelMe (Torralba et al., 2010): This database contains

annotated images focusing on objects, scenes and their spatial
connection.The annotations were provided by volunteers using
an online annotation tool. Through this tool, the database
accumulated over 400,000 annotations.
• Matterport3D (Chang et al., 2017): Matterport3D is a large-

scale dataset containing panoramic views made up of different
images and taken in different buildings. Additional annotations
describe information about camera poses and semantic
segmentation.
• ShapeNet (Chang et al., 2015): This is a richly annotated, large-

scale dataset containing 3D models for different household
objects collected from public repositories and other existing
datasets. The objects are categorized on the basis of their
corresponding synset in WordNet (Miller, 1995).
• TTU Dataset (Zhu et al., 2015): The Tool and Tool-Use dataset

is used for evaluating the recognition of tools and task-oriented
objects by providing a collection of static 3D objects. These
objects are combined with a set of human demonstrations
regarding their usage.
• VirtualHome (Puig et al., 2018): The VirtualHome simulator

uses a crowd-sourced knowledge base of household tasks,
represented through a name and a list of instructions. These
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FIGURE 6
(A): Visualizing the number of different sources used by each publication. Across all 52 publications, 30 different CSK sources were employed. (B):
Visualizing the types of sources (Hitzler et al., 2010, Ch. 8.2, pp. 310-317), their amount and the number of their occurrences throughout the 52
different publications.

instructions are translated into program code that is executed
in a simulated 3D environment by virtual agents.

In general, we do not find one source that is predominantly used.
Even ConceptNet (Speer et al., 2017), which has the most usage in
our data, is only employed by roughly 15% of publications. Similarly,
17 out of the 30 sources (∼57%) we found are only employed by a
single publication, which demonstrates that most publications use
specialized sources for the specific scenarios they work in rather
than relying on a single, more general source. However, even when
we focus on a specific use case we do not find a single source on
which all approaches rely.This is underlined by the summary of CSK
sources per use case provided in Table 2. As described in that table,
there is no source that is used more than two times for a specific
use case, with most sources occurring only once per use case. This
demonstrates that none of the 28 sources provides data specific for a
single use case but all of them focus on aspects relevant for different
use cases.

In addition to looking at which sources are employed, we also
count the number of sources each publication relies on. Here we
found that themajority of publications (33 out of 52, ∼63%) relies on
a single source for extracting its CSK. Only 16 publications (∼31%)
combine two or more sources, either to cover a broader scope of
CSK (e.g., Kümpel et al., 2020) or to increase the quality of the data
extracted (e.g., Vassiliades et al., 2020). The described results are
visualized in Figure 6A.

Regarding the type of source, we count the number of sources
per type and the number of publications employing this type
in Figure 6B. Only three sources (∼11%) depend on knowledge
provided by human domain experts. However, these sources are
applied in 35% of publications. The same amount of structured
as well as unstructured sources (10 out of 30, ∼ 33%) are used
according to our data. However, the ten structured sources are
employed the most by the publications (∼38%). In general, the
high reliance on structured sources is a positive development,
since sources of this type are formalized to enhance machine
readability.

Despite four approaches that extract CSK fromunstructured text
(Welke et al., 2013; Kaiser et al., 2014; Agostini et al., 2015; Liu et al.,
2015) using NLP techniques, only the approach by Pradeepani et al.
(2022) employs a large language model (Devlin et al., 2019) as its
data source. Since research on large language models is a rather new
domain, approaches that connect them with robots are still scarce
(e.g., Ahn et al., 2022) and not yet focused onCSK.This supports the
recommendation formulated by Wray et al. (2021) that there needs
to be further research to increase the suitability of these models for
the cognitive robotics domain.

Lastly, we briefly want to touch on additional sources that are
not employed for the extraction of CSK for cognitive robotics.
In a recent survey on CSK sources by Ilievski et al. (2021a), 22
different resources were collected and evaluated. However, only
four sources found by our analysis overlap with these resources
from their study (ConceptNet, WordNet, FrameNet and Wikidata),
making up only 15 of the 75 CSK source usages (20%). So the
remaining 18 sources have yet to be applied to the cognitive
robotics domain.

4.4 Evaluation methods and benchmarking

To answer our last research question and investigate which
methods and which datasets are used by the 52 collected approaches
during their evaluation, we adapt the evaluation method taxonomy
presented by Konersmann et al. (2022) for the software architecture
domain. In general, not all methods are applicable to the cognitive
robotics domain. In our data, we found Motivating Examples
(Technical) Experiments and Case Studies. Additionally, we add the
methodModel Evaluation for approaches that evaluate anMLmodel
without connecting it to a simulated or real-world robot. For the
two most common methods, Experiments and Case Studies, we
additionally differentiate whether they are performed in the real-
world using a real robot or if the robot is simulated and operates
in a simulated environment.

The resulting occurrences can be examined in Figure 7. In
general, the majority of approaches (∼62%) are evaluated using
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TABLE 2 Summary of the 15 use cases we found and the sources that
are employed to gather commonsense knowledge for the specific use
case. The Hole Digging use case is omitted since it is only discussed in a
single publication that does not mention a source (Javed et al., 2016).

Use case Employed sources

Object
Localization

ConceptNet (2x), OMICS (2x),
AI2Thor, AfNet, Bing Image Search
DBpedia, Ehow Recipes, Google
Books Corpus, Google Search
Engine
LabelMe, WordNet

Object
Delivery

(Open-)Cyc (2x), OMICS (2x),
BKN, Humans

Environment
Exploration

Perception/Sensors (2x), WordNet
(2x), ConceptNet, DBpedia
Unspecified Videos, VirtualHome

Tool
Substitution

Perception/Sensors (2x), TTU
Dataset, Unspecified Images

Intention
Inference

Humans (2x), WikiHow

Object
Recognition

(Open-)Cyc, ConceptNet,
Experience/Memories, ShapeNet,
WikiData

Navigation Experience/Memories,
Matterport3D

Pick and
Place

(Open-)Cyc, KnowRob, OMICS

Table Setting Experience/Memories, Humans

Tidy Up ConceptNet (2x), Google Search
Engine, WordNet

Warehousing BERT, Humans, Perception/Sensors

Cooking FrameNet, Humans, OMICS,
Unspecified Text, WikiHow,
WordNet

Location
Detection

Google Books Corpus

Reminiscence
Therapy

ConceptNet

a quantitative experiment, with most of these approaches being
done in a simulated environment (∼63%). Generally, simulation
environments are used in 50% of publications whereas evaluation
on a real robot is performed in only ∼37% of publications.

In addition to the evaluationmethod,we also gather information
regarding the data that was used for the evaluation, as well as
its availability. Here, we find that 32 out of the 52 publications
(∼62%) did not publish the data used for the evaluation, and four
publications (∼8%) did not use any data for their evaluation. In the
16 remaining publications, only two datasets, are used more than
once. AI2Thor (Kolve et al., 2017) is used in Daruna et al. (2019);
Li et al. (2022) and Al-Moadhen et al. (Al-Moadhen et al., 2013; Al-
Moadhen et al., 2015) both use the same basic example household,

described in either publication. Except for two employed datasets, all
of the employed datasets are still available either online or by being
directly provided in the publication.

These findings notwithstanding, we recognize that in the
cognitive robotics domain, a correct execution of the desired task
without the occurrence of unwanted side effects can be regarded
as a proper and successful evaluation of an approach Vernon et al.
(2022). Since the execution environment and the robot programs
are often very specific to the lab where they are programmed, there
are additional challenges that come with making them publicly
accessible (Gu et al., 2023). However, there are certain aspects of
CSK for the cognitive robotics domain where benchmarking makes
sense. For example, the main question from Section 4.2 What is the
expected location for an object? is often evaluated by comparing the
(automatically) generated locations to a gold standard.However, this
gold standard is often not taken from a publicly available dataset,
but is instead created by the authors. In general, we observe a lack of
benchmarks for domain-specific CSK questions like this.

5 Discussion

Our analysis of the selected publications has revealed interesting
limitations and gaps in the way commonsense knowledge is
currently used in cognitive robotics research. First of all, while there
are many potential use case and applications where commonsense
knowledge might support generalization, our analysis has revealed
a strong focus on use cases related to acquiring knowledge about
objects in order to support things such as object localization and
delivery, tool substitutions or pick and place.

This focus on object knowledge is understandable as knowledge
about objects to a large extent comprises of static knowledge
related to the properties and characteristics of objects, which lend
itself to being modeled using the state-of-the-art graph-based
knowledge representation language that can straightforwardly
model (relational) knowledge about objects using edges or triples.
Modeling knowledge about events, their logical and causal
structures requires more complex representational paradigms.
Further, there are less commonsense knowledge sources containing
event knowledge compared to data sources containing (relational)
knowledge about concepts and/or objects.

Regarding the sources of commonsense knowledge used, we
observe quite a diversity and spread with many different sources
being used. This shows that the field seems to be in an experimental
state, testing different resources, without clear best practices having
emerged. There seem to be no integrative resources that contain all
sorts of relevant knowledge so that in the future we can expect that
no source will fit all purposes and that robotic systems will have to
rely on a combination of sources for different tasks and purposes.

In terms of evaluation and domains, we observe a clear focus
on service robotics scenarios and household applications in contrast
to the application of robotic systems in industry or production. The
explanation for this seems quite natural: industrial settings have less
variance and require that the same task is executed over and over
with accuracy and precision. In such scenarios there is much less
uncertainty than in scenarios where a robot might be confronted
with new and unknown tasks, objects, situations, etc. As robots
can not be pre-programmed to handle all these situations, flexible
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FIGURE 7
The different evaluation methods in our 52 analyzed publications. For the Case Study and Experiment we differentiate between a simulated or a
real-world environment and robot.

reasoning based on commonsense knowledge seems key to master
the variance and uncertainty characteristics of such more open
environments.

Finally, the lack of focus on physical reasoning and psychological
reasoning in terms of applications is understandable, as these
types of tasks require commonsense knowledge in the sense of
having the ability to simulate physical environments or simulate
others to infer their intentions, goals, etc. The first one requires
accurate physics engines that would allow a robot to make accurate
(forward) predictions.The latter onewould requiremodules tomake
inferences about other agents, a so called computational Theory of
Mind (ToM), the realization of which is a complex and long-term
challenge Lake et al. (2017).

As we have seen above, knowledge about objects plays a central
role. This is clearly related to the notion of affordances that is
studied in cognitive robotics literature, as surveyed by Min et al.
(2016). In these approaches, the affordances for the environment
and its objects are learned, mostly by using machine learning-
based methods on images or videos. What is striking here is that
there seems to be a terminological gap in the way the semantic
technology or knowledge representation community conceptualize
object knowledge and how it is represented. While the semantic
tech and KR communities often focus on (static) object knowledge,
the cog. rob community focuses on perceptually grounded and
action-related knowledge, thus using the concept of ‘affordances’
that indicate an action potential.

To further examine this divide in terminology, we examine
the classification performed by Zech et al. (2019) in their review,
which we introduced in Section 2. Despite focusing on actions
and their possible representation in the cognitive robotics domain,
their classification does not connect to keywords associated with
the knowledge representation and reasoning community such as

ontology. Similarly, there are concepts that are handled in Zech
et al.‘s classification, but with a different focus/level of detail than
in the publications we analyzed. As an example, we look at the
concept of affordance. In the classification schema proposed by
Zech et al., an affordance is given as an example of an exteroceptive
stimuli, which is a stimuli generated in the external environment
to provide interaction possibilities (Zech et al., 2019). In our
analyzed publications, an affordance is defined as either 1) “a
relation of an action/activity/intention and a specific object used
to predict the next action/activity” (Liu et al., 2015, p. 1962) or 2)
“the relational context holding between several objects that play
different roles” (Beßler et al., 2022, p. 8). If we compare these three
characterizations of affordance, we see that the one by Zech et al.
focuses on the immediate application of this concept for robotic
action execution, whereas definitions 1) and 2) focus more on the
knowledge that an affordance can provide the robot to support,
e.g., the planning of future steps or an understanding of the
semantic similarities between different objects and actions. Another
example is the concept of intuitive physics, which we introduced
as one part of the definition for CSK in Section 1. This concept
has no direct representation in the classification schema by Zech
et al., despite its relevance for a successful action execution. The
closest concept is effect associativity, which analyses whether a
representation covers predicting the effect of an action based on its
description.

The generalization of task execution knowledge is an important
problem in current cognitive robotics research. To allow robots
to be employed in domains shared with humans, robots need
to be able to handle underspecified commands for manipulating
unknown objects in an unknown way in a dynamic environment.
Publications like the ones covered by our review and by Zech et al.
(2019) are all trying to solve aspects of this generalization problem,
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despite coming fromdifferent research communities and often using
different tools and approaches. This difference is underlined by the
fact that there is no overlap between the 52 publications included in
our study and the 152 publications included in Zech et al. (2019).
In the future, more collaboration is needed to bridge this divide
between the two communities, if we are to successfully tackle the
task generalization problem.

6 Threats to validity

In general, we integrate different countermeasures into our
process by following the general process for systematic literature
reviews by Kitchenham and Charters (2007). However, there still
remain some biases that we can not completely prevent. To address
these threats, we examine selection,measurement and exclusion bias
as well as repeatability separately.

Selection Bias: We have selection bias since the insights we
gained through the paper analysis depend on the subset of papers
we chose. Despite including all 52 publications we deemed suitable
for answering our research questions, this inclusion is still based
on pre-defined inclusion and exclusion criteria. These were not
chosen randomly but derived from our research questions and the
search procedure recommendations from Kitchenham andCharters
(2007); Okoli (2015); Page et al. (2021).

Measurement Bias: Another problem is measurement bias,
since the screening of the search publications was carried out by
one of the authors. As a countermeasure, we pre-defined the set
of inclusion and exclusion criteria before beginning the search.
However, the filtering is still prone to human errors.

Exclusion Bias: Another possible problem stems from the
exclusion of potentially interesting publications. By starting
our systematic search with recent review papers in cognitive
robotics, we have introduced this bias as research in AI, cognitive
science, language processing, and cognitive robotics is still not
sufficiently connected.

To counter this threat, we pre-defined the criteria we use for
including and excluding publications.They are chosen to be as fitting
for our research questions as possible and to not hinder the quality
of our results. Additionally, no adjustments were made during the
screening process. This prevents the exclusion of publications that
were initially chosen but then excluded due to a failure to fit results
during the analysis.

Repeatability: As the name suggests, threats to this validity
describe problems encountered when other researchers try to
emulate and repeat this evaluation. To allow for the repetition of
the case study, we document all decisions, such as the inclusion and
exclusion criteria, the keywords and search engines, in our review
protocol. Additionally, all artefacts we created during our review
are available in the aforementionedGitHub repository. However, the
repeatability of our study is also limited due to the fact that only one
person was responsible for screening the search results.

7 Conclusion and future work

In this article, we have investigated the coverage of CSK in the
cognitive robotics domain by evaluating the use cases and domains

for which CSK is used, the aspects of CSK that are addressed, the
sources employed for gathering the necessary CSK and the method
of evaluation. For this purpose, we performed a systematic literature
review using a keyword search on six search engines combined
with a snowballing search on six related reviews. The resulting
2,048 publications were screened and filtered, which left us with 52
publications deemed suitable for answering our research questions.

By reviewing these 52 publications, we found that most use
cases occur in the household domain and focus on objects and
their relations to the environment, especially their location.This was
corroborated by looking at what sorts of questions CSK are called
upon to answer. We found that the most common CSK questions
seek to connect an object to a specific location in its environment.
Other important questions focus on object similarity, object
affordances and tool substitution. Generally, questions focusing on
objects are much more dominant than questions about interacting
with humans or about physics or causality of actions. Regarding the
employed sources, we found that specific sources like ConceptNet
(Speer et al., 2017) (Open-)Cyc (Lenat, 1995) or OMICS (Gupta
and Kochenderfer, 2004) are used in multiple publications but
there is not one single source that covers all relevant aspects of
CSK. Similarly, there are often multiple sources used to answer the
same CSK questions. Regarding the evaluation performed in these
publications, we also found that there are few resources used as data
and most of the publications do not publish their evaluation data.
This lack of available benchmarks and datasets is surprising since
most the publications are evaluated using either a case study or an
experiment, which both are mostly performed in simulation, thus
leading to a high amount of data necessary for a successful execution.
However, only a small amount of publication publish this data.

This review’s limitations stem from the threats to validity
described in Section 6. In general, we counteract most threats
by following the guidelines in Kitchenham and Charters (2007);
Okoli (2015); Page et al. (2021) and documenting our decisions and
intermediate steps in the reviewprotocol. The main limitation is the
data analysis, which was manually performed by a single person.

Lastly, in our discussion of the review by Zech et al. (2019) we
emphasized a terminological gap that exist between communities,
the knowledge representation community on the one hand
and cognitive robotics community on the other hand. These
terminological differences need to be bridged towards developing
an interdisciplinary research community that synergistically brings
together the different aspects of commonsense and makes them
actionable in robot control systems.

In the future, focus should lie on the evaluation and
benchmarking of commonsense aspects for the cognitive robotics
domain, as we explored in Section 4.4. For this, we want to
investigate the applicability of commonsense reasoning benchmarks
(e.g., CommonsenseQA Talmor et al. (2019)) for the cognitive
robotics domain by evaluating their coverage of the relevant aspects
we presented in Section 4.2. Additionally, as we explained in
Section 4.3, there are different CSK datasets and resources from
the survey by Ilievski et al. (2021a), who have yet to be applied to
the cognitive robotics domain. This also includes new resources
that have been published since the aforementioned study, like the
CommonSense Knowledge Graph (CSKG) (Ilievski et al., 2021b)
or Ascent++ (Nguyen et al., 2022). Finally, considerable focus
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should be put on creating the aforementioned interdisciplinary
research community.
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