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This article introduces a model-based robust control framework for
electrohydraulic soft robots. Themethods presented herein exploit linear system
control theory as it applies to a nonlinear soft robotic system. We employ
dynamic mode decomposition with control (DMDc) to create appropriate linear
models from real-world measurements. We build on the theory by developing
linearmodels in various operational regions of the system to result in a collection
of linear plants used in uncertainty analysis. To complement the uncertainty
analyses, we utilize H∞ (“H Infinity”) synthesis techniques to determine an
optimal controller to meet performance requirements for the nominal plant.
Following this methodology, we demonstrate robust control over a multi-input
multi-output (MIMO) hydraulically amplified self-healing electrostatic (HASEL)-
actuated system. The simplifications in the proposed framework help address
the inherent uncertainties and complexities of compliant robots, providing a
flexible approach for real-time control of soft robotic systems in real-world
applications.
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1 Introduction

Soft robotic systems are under constant development and refinement as they offer
advantages over conventional rigid robotic solutions. With their unrivaled potential
to navigate unstructured environments, enable safe human-robot interactions, and
interact with delicate items, soft robots could offer improvements in various real-world
applications, including advancements in surgical devices, search and rescue efforts,
and industrial automation (Kim et al., 2013; Rus and Tolley, 2015; Majidi, 2019; El-
Atab et al., 2020). Several types of soft actuators have been developed in recent years as
discussed in the survey, El-Atab et al. (2020), including those that rely on electrostatic
actuation (Pelrine et al., 2000; Gu et al., 2017), those that use electrohydraulic actuation
(Acome et al., 2018), those that respond to heat (Du et al., 2023), and those that
are driven by pressure (Walker et al., 2020). A wide range of sensors have recently
been innovated for use in soft systems as detailed in the review paper, Hegde et al.
(2023), including resistive sensors (Bilodeau et al., 2015), capacitive sensors (Nguyen et al.,
2019), optic sensors (Zhao et al., 2016), and magnetic sensors (Sundaram et al., 2023).
While various soft technologies have emerged in recent years, the infrastructure and
standardized framework surrounding model development and controller synthesis for
these systems is deficient. The success of soft robotic systems implemented in the real-
world depends on the realization of effective real-time controllers (Thuruthel et al., 2018).
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Given the proliferation of these individual soft technologies,
it has become increasingly difficult to determine a standardized
process for developing models and control laws for the
conglomerative soft systems. There is tremendous variability just
within the slew of available sensors and actuators. In addition
to the countless soft physical systems that could be conceived,
the individual technologies are still undergoing iterative design
processes, and are not yet ready to bemass produced (Lipson, 2014).
This implies that there is potential formanufacturing inconsistencies
from unit to unit. Additional physical unpredictabilities found
in these systems could be due to the nature of their soft material
properties. After accounting for the manufacturing variability, soft
robotic systems can also possess highly nonlinear dynamics and
nearly infinite degrees of freedom (Thuruthel et al., 2018). While
rigid robots have the luxury of predictability and standardization,
all of the aforementioned variables affect the overall dynamics and
uncertainties associated with soft robots.

This paper presents a novel approach to model and control
soft robotic systems in a structured, repeatable, and robust manner,
accounting for their inherent uncertainties and complexities.
This study demonstrates the first implementation of an H∞
control law on an electrohydraulically-actuated soft robotic system.
Additionally, we build upon previous work in this area by
conducting uncertainty analyses on the closed loop systems to
ensure their robustness. To maintain a feasible controller that works
with various combinations of soft-actuated and soft-sensed robots,
we emphasize the importance and art of simplicity as it relates to
modelling and control design.The notion of simplicity in this article
is three-fold.

First, we rely on data-driven methods to alleviate the burden
of deriving dynamical models via first principles for these complex
systems. Modelling plays a substantial role in any controller
synthesis process, and it is critical that the model obtained is
reasonable and accurate to synthesize an appropriate controller.
Given the current developmental state of soft robots, their
potentially unpredictable mechanical behavior, and their innate
nonlinearities, data driven modelling techiques are efficient tools
for soft system identification. Further, empirical methods eliminate
the need to rederive the complex dynamics from first principles
with each system. Specifically, we discuss the data driven reduced
order modelling system identification technique, dynamic mode
decomposition with control (DMDc) (Proctor et al., 2016).

Our second simplification is to employ linearization as a means
of modelling the nonlinear, possibly infinite dimensional systems.
We desire the linearmodel to be an appropriate approximation of the
robot’s dynamics.While it is important that themodel represents the
real-world system, we exploit a concept from linear system theory
that the linearizing effects created by feedback control allow us to
relax the accuracy of themodels and allow for larger deviations from
steady state (Skogestad and Postlethwaite, 2005). DMDc produces
this desired linear model from empirical data.

Lastly, to complement the linear controller development, we
employ robust control theory that enables us to analyze the system’s
uncertainty and determine the success of the controller across the
system’s operating range. The robustness analysis can be extended
to determine if the system remains stable in the presence of
inconsistencies due to manufacturing processes in addition to the
neglected or unmodelled dynamics. To simplify the numerous

potential sources of error from these systems, we “lump the
uncertainty” into a single complex perturbation (Skogestad and
Postlethwaite, 2005). We demonstrate the simplicity and efficacy of
this generalized framework through the development of a controller
for a nonlinear soft robotic system driven by HASEL actuators.

The system, depicted in Figure 1A, emulates the biceps and
triceps configuration of the upper portion of the human arm
using two antagonist stacks of contracting HASEL actuators.
HASEL actuators are an optimal actuator technology for testing
the presented modelling and controller synthesis framework due
to their precision (Volchko et al., 2022), muscle-like performance
(Rothemund et al., 2021), and fast dynamics (Kellaris et al., 2018;
Mitchell et al., 2019). In this work, Peano-HASEL actuators
were used due to their linear contraction on activation
(Kellaris et al., 2018), which enables bioinspired robotic designs.
While modelling and closed loop efforts have been made in the
world of HASEL actuators (Schunk et al., 2018; Johnson et al.,
2020; Rothemund et al., 2020; Volchko et al., 2022), none of
them have demonstrated the application of robust control
techniques.

The generalized linear system and robust control framework
demonstrated in this paper could facilitate fast real-time control
of soft robotic systems in real-world applications. In particular,
we could apply this framework to electrohydraulic actuators used
to control pumps or valves for fluid metering (Fuaad et al., 2023).
In such systems, it would be important to adopt robust position
control laws to help ensure accurate fluid flow and dosing. This
framework could also be applied to bio-inspired swimming robots
that rely on electrohydraulic actuation (Hess and Musgrave, 2023).
These aquatic systems could benefit from robust control laws that
increase their efficiency and maneuverability in hydrodynamic
exploration of various underwater environments—aiding
in CO2 monitoring and climate change predictions,
for example,.

This paper is comprised of the following sections. Section 2
introduces the theory that is pivotal to the presented framework,
including (2.1) an overview of linear system control theory, (2.2)
multivariable robust control concepts, and (2.3) dynamic mode
decomposition. Section 3 discusses the innerworkings of theHASEL
actuator along with its advantages and relevance to this work.
The subsequent Section 4 describes the experimental benchtop
system, the methods applied, and the resultant performance. Two
subsections describe the modelling and controller implementation
of both the voltage dynamics (4.1) and the displacement
dynamics (4.2). Finally, we conclude with discussion and future
recommendations in Section 5.

2 Theory

This section aims to situate the experimental and applied work
described in Section 4 within the broader framework outlined in
this paper. By providing background information on the theory,
readers can gain perspective on the scope of this methodology,
understand its limitations and potential applications, and further
develop this research for their own studies. The equations described
in this section provide insight and context for the figures and plots
presented in this work.
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FIGURE 1
(A) The benchtop system emulates the upper portion of the human arm, where the antagonist muscles, biceps and triceps, work together to control
the orientation, θ, of the lever arm around the pivot. The experimental setup consists of two stacks of HASEL actuators attached to the lever arm on
either side of the vertical post. Each artificial muscle consists of five 15-pouch Peano-HASEL actuators that contract by δ on actuation. The motion
capture system measures the position of the motion capture rigid bodies placed throughout the system. Rigid bodies were attached to both ends of
each stack of HASELs to measure the contraction of the actuator, δ. Another rigid body was secured to the lever arm, to capture the orientation of the
system, θ. (B) This diagram describes the signals sent within the system and controlled in this work. The lowest level signals, charge (c), are sent
through the HASEL electronics. These signals determine the voltages, V, of each individual actuator which directly affects the displacement, δ, of each
actuator. Lastly, the contraction of the actuators works to control or steer the overall orientation, θ, of the lever arm.

2.1 Linear system control theory

At first glance, it may seem unintuitive to apply linear system
control theory to nonlinear soft robotic systems. However, it has
been demonstrated that linear modelling and control techniques
have been successful in enabling real-time control of other nonlinear
dynamical systems working in real-world situations, such as

helicopter flight control (Smerlas et al., 2001) and hydraulic actuator
control (Niksefat and Sepehri, 2001). Implementing feedback
control creates a local linearizing effect in which the linear model
remains valid since the negative feedback loop keeps the system
output near the desired state. This justifies the use of linear models
in control design of nonlinear systems (Skogestad and Postlethwaite,
2005). Additionally, there is a global linearizing effect since the
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reference to output response is approximately linear for stable
closed-loop systems (Skogestad and Postlethwaite, 2005). Many
readily available and intuitive controller synthesis and analysis tools
are designed for linear systems. Linear system theory provides us
with a road map to create feasible control laws that can guarantee
performance requirements, even in the presence of uncertainty.
Further detail on the following overview of this theory can be found
in (Chen, 1984; Skogestad and Postlethwaite, 2005).

Many physical dynamical systems can be described with the
following set of equations:

ẋ (t) = f (x (t) ,u (t)) (1)

y (t) = g (x (t) ,u (t)) (2)

where x represents the state of the system at time, t, u represents the
input to the system, y represents the output of the system, ẋ is the
time derivative of x, and f and g are any nonlinear functions. The
models developed within this research are limited to the scope of
finite linear time-invariant (LTI) models. Thus, this work uses the
following linear description, or state-space form:

ẋ (t) = Ax (t) +Bu (t) (3)

y (t) = Cx (t) +Du (t) , (4)

with signals x ϵ ℝn, u ϵ ℝm, y ϵ ℝl, and ẋ ϵ ℝn. The matrices
A ϵ ℝn×n, B ϵ ℝn×m, C ϵ ℝl×n, and D ϵ ℝl×m correspond to the state,
input, output, and feedthrough matrices, respectively.

While it is convenient to demonstrate performance metrics and
analyze uncertainty in continuous time, it is necessary to collect data
and implement digital controllers in discrete time. We denote the
discrete-time LTI systems as:

xk+1 = Āxk + B̄uk (5)

yk = C̄xk + D̄uk, (6)

where k ϵ ℝ represents a discrete time step, kΔt. Representing
systems in the frequency domain enables quantitative andqualitative
analysis by leveraging analytical tools such as Bode plots and
singular value plots. To translate time domain models into their
frequency domain counterparts, we use the Laplace transform
to shift the model’s dependence from time, t ϵ ℝ, to the
complex frequency-domain parameter, s = α+ jω, where α ϵ ℝ,
j ϵ ℂ, and frequency, ω ϵ ℝ. Throughout this work, we demonstrate
controller synthesis techniques as they apply to both single-
input single-output (SISO) and multi-input multi-output (MIMO)
dynamical systems, which can both be represented by Eqs 3–6.
Using the matrices from Eqs 3, 4, we can describe the plant
transfer function,

G (s) = C(sI−A)−1B+D, (7)

where the identity matrix I ϵ ℝn×n. The goal of controller synthesis
is to systematically design a controller to change the behavior of the
system in order to achieve nominal performance, meaning that the
system satisfies performance specifications for the nominal plant.
Ideally, we would directly tune the closed loop system response,

however this transfer function has a nonlinear dependence on
the controller or an indirect relation with the controller gains.
We instead modify the open loop response and relate this to our
closed loop performance specifications following the loop shaping
methodology described in Åström andMurray (2021).We can apply
this approach using Bode plots to visualize themagnitude and phase
of the open loop transfer function of a system,

L (s) = G (s)K (s) , (8)

as a function of frequency to synthesize a linear controller, K(s), for
the plant,G(s). Loop shaping provides “design knobs” withinK(s) to
make the closed loop system,

T (s) = L (s) (I+ L (s))−1, (9)

meet performance specifications. These design knobs are used to
intuitively manipulate the shape of |L(jω)| as any adjustments to the
controller are directly related to the magnitude of |L(jω)|, which
we can then relate to the closed loop behavior of T(s). While
worst case signal input to output gains for a SISO system can
be represented with conventional input to output Bode plots, it
is important that MIMO system analyses rely on singular value
Bode plots. Since MIMO systems introduce coupling between
system states, maximum singular values, ̄σ, are required to
capture the worst-case signal amplifications.Themaximum singular
value of G(s) is:

̄σ (G (jω)) = max
w(ω)≠0

‖z (ω)‖2
‖w (ω)‖2

, (10)

where w(ω) is a sinusoidal input to the system at a given frequency,
ω, z(ω) is the output, and ‖⋅‖2 is the 2-norm:

‖z (ω)‖2 = √∑
i
|zi (ω) |2 = √z1(ω)2 + z2(ω)2 +⋯+ zn(ω)2 (11)

The signal gains captured by these singular values correspond
directly to the H∞ norm of the system, which is the maximum
singular value over all frequencies,

‖G (s)‖∞ ≜ sup
ω
̄σ (G (jω)) . (12)

The H∞ norm can be used to quantify the magnitude of transfer
functions that describe the performance of a system. These transfer
functions include the “sensitivity,” S, the product KS, and the
“complementary sensitivity,” T. In controller synthesis, S,

S (s) = (I+G (s)K (s))−1, (13)

describes the closed loop response from reference signals, w1, to
control error signals, ̃z1 and informs regulation of system response
with respect to reference signals, w1, and low frequency external
disturbances, w3. We modify S to optimize for reference tracking,
transient behavior, and steady state error. We use the closed loop
transfer function KS,

KS (s) = K (s) (I+G (s)K (s))−1, (14)

to describe the control output signal, ̃z2, in response to the reference
signals. KS provides us with an idea of the control effort required
of the system. Lastly, T (Eq. 9) describes the closed loop response
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from output disturbance signals, w2, to system output, ̃z3. This
transmission helps us understand the system’s robustness and
sensitivity to noise. Optimizing these transfer functions based on the
H∞ norm translates into minimizing the peak singular values over
the frequency range relevant to the control problem.

In order to formulate this optimization problem, the system
must be restructured such that all the input signals, w, are grouped
together as the input to a single MIMO transfer function, N,
demonstrated in Figure 2C, which produces the combined outputs
of the system, ̃z. Weights are applied to the outputs to result in z1, z2,
and z3 and provide “tuning knobs” for controller synthesis. Then N
can be optimized.This problem formulation can be applied to almost
any linear system (Skogestad and Postlethwaite, 2005).

Individual input signalsw1,w2,w3 can be collected into a vector-
valued signal, w, represented in the generalized block diagram in
Figure 2C. Similarly, weighted outputs z1, z2, and z3 can be collected
and represented as exogenous output signal, z, as the output of the
generalized plant model, P (Figure 2C). This generalized depiction
represents the open loop plant, P, broken at each of these signals.
The presented framework uses this formulation to determine a
controller, K, that provides a control signal, u, based on the error
signal, v, to minimize the effect of the input signals, w, on the
weighted output signals, z. The plant, P, can be divided into

P = [
P11 P12
P21 P22

], (15)

where

z = P11w+ P12u (16)

v = P21w+ P22u (17)

and P11, P12, P21, P22 are compatible with the dimensions of
their respective column vectors, u, v, w, and z. The H∞ weighted
sensitivity process begins with selecting the weighted transfer
functions, Wp, Wu and WT, depicted in Figure 2E. These weights
work to emphasize different frequency portions of the closed loop
transfer functions, S, KS, and T, with respect to one another. They
provide “tuning knobs” which can be visualizedwith their respective
singular value plots. The terms in the performance weight, Wp(s) =
diag(wpi

), can be chosen as

wpi (s) =
(s/M1/n +ω∗b )

n

(s+ω∗b A
1/n)n
, (18)

where real scalars M, ω⋆b , and A are selected to tune the system’s
transient response, including rise time and overshoot, its bandwidth,
and its steady state error, respectively. The overall shape of this
transfer function also affects tracking and disturbance rejection and
can be further tuned by adjusting the scalar, n. Initial elements wui
inWu are selected such that

wui (s) =
s

s+ωb
, (19)

whereωb is approximately the desired closed loop bandwidth. Lastly,
elements in WT are adjusted so that wTi

≪ 1 at low frequencies
and wTi

≫ 1 at high frequencies to reduce sensitivity to noise and
uncertainty. These signals are depicted in the outer loop dynamics
block diagram (Figure 2E).

After adjusting the weighting functions, we can find the optimal
H∞ controller by closing the lower portion of the generalized plant
diagram to form the lower linear fractional transformation,N, using
the segmented generalized plant, P,

N = P11 + P12K(I− P22K)−1P21. (20)

N can be denoted as the stack of sensitivities with their
corresponding weights,

N = [[[

[

WpS
WuKS
WTT

]]]

]

, (21)

such that we can minimize its H∞ norm,

γmin =min
K
‖N (K (s))‖∞, (22)

where γmin ϵ ℝ. Using MATLAB’s Robust Control toolbox, we
can solve for this optimization to result in the optimal H∞
controller, K(s). Further details of this process are described in
the methods section. This mixed-sensitivity controller synthesis
approach simultaneously optimizes for the three transfer functions
in N:WpS,WuKS, andWTT. While we want the resultant γmin to be
less than 1 to mathematically satisfy the closed loop specifications,
the specifications are rough guidelines for our desired performance,
and thus, we iterate our control design within the H∞ optimization
framework in order to balance design tradeoffs, as suggested in
(Skogestad and Postlethwaite, 2005). Therefore, we treat the terms
in these weighting functions as tuning knobs until we achieve
satisfactory system performance. While this section provides an
overview of the linear system theory essential to the proposed
controller synthesis framework, it is crucial to assess the error arising
from such linear assumptions in developing models and controllers
for nonlinear soft robotic systems.

2.2 Robust control theory

Robust control theory promotes the development of controllers
that are effective in real world applications due to its ability to
assess system properties such as stability and performance in the
presence of system uncertainty. Within the robust control domain,
we focus our work on robust stability. Robust stability signifies
that all plants in a set of possible plants remain stable with the
implementation of a selected controller. The uncertainty discussed
in this section regards the variation from a set of possible plants to
the nominal system model. Stability of a system is critical in real-
world implementation and means that for a bounded input signal,
the internal signals remain bounded. This translates to the system
converging to equilibrium over time. Robust control theory has
been applied to a multitude of fields including aerospace systems,
chemical processes, power networks and fluidic systems (Dullerud
and Paganini, 2013). However, it is not yet prevalent in the field of
soft robotics.

Robust control techniques could be beneficial and
complementary to the field of soft robotics, due to the uncertainty
that can be attributed to various aspects of soft robots. For example,
system uncertainties could include unmodelled or neglected
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FIGURE 2
(A) The HASEL actuators were secured from the pivot at distances b = 33 mm along the lever arm and h1 = 393 mm and h2 = 387.3 mm from above. The
actuator length, l = 393 mm, was measured between its two anchor points. The angle desired, θREF, was prescribed about the pivot of the lever arm,
θINIT. (B) The experimental setup consisted of seven OptiTrack Prime13W motion capture cameras surrounding the system to track the retroreflective
markers. All other reflective items were mitigated. The HASEL electronics were located on the same platform as the mechanism. They were connected
to the wall outlet for power and the Linux computer for ROS. (C) The generalized block diagram can be applicable to nearly any linear control problem.
It contains the nominal plant, P, the controller, K, and plant uncertainty, Δ. This diagram depicts the basis of H∞ controller synthesis and μ-analysis
approaches. The signals represented in this diagram include the plant input signals, w, the plant output signals, z̃, the weighted output signals, z, the
control output signal, u, and the system output signal, y. The weighting functions WP, WU, WT are wrapped up in the block, P. Upon choosing a
controller K to minimize the effects of w on z, the lower half of this generalized block diagram can be folded into the lower LFT to create the resultant
block N. Following the controller synthesis, the upper half of these diagrams that include the uncertainty input and output signals, wu and zu,
respectively, are used to assess the effect of the uncertainty on the closed loop system. (D) The inner loop dynamics block diagram depicts all of the
signals and transfer functions needed to implement the voltage controller. This SISO loop incorporated a multiplicative model for uncertainty, which is
represented with WI and ΔI. The voltage controller, KV, compared the voltage measured by the voltage monitor, HV, to the reference voltage, VREF, to
create a signal, c, that was sent to the HASEL electronics, GV, which then provided a voltage to the actuators, V, to cause the actuators to contract, Gδ,
and affect the overall system displacement, δ. This loop was closed at 1,000 Hz on the microcontroller. (E) The cascade control scheme is
demonstrated through this block diagram. All of the inner loop dynamics were accounted for within the transfer function, G, denoted with the blue
dashed line, corresponding to the blue dashed line in (D). The reference orientation, θREF, was sent through the function, f(θ), to result in the reference
displacements, δREF, which was compared to the current estimated actuator displacements, δ, to result in the displacement errors, δERR. All of the
signals in and out of P were recognized in the system, including the reference signal, w1, the output disturbance, w2, and the weighted outputs, z1, z2,
and z3. All performance weightings are also depicted as WP, WU, and WT. The displacement controller is highlighted in red. The outer loop controller
was closed at 200 Hz. Following the color coding, this diagram can be rearranged into the structure provided in the generalized block diagram (C).
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dynamics. Given that soft robots can have nearly infinite dimensions
(infinite degrees of freedom), it is important to account for the
error arising from the missing dimensions as our model must be
finite dimensional. In addition to a reduction in dimensionality, the
controller synthesis techniques discussed require a linear model of
the nonlinear plant, introducing further inaccuracies.This source of
model uncertainty can also be accounted for by using robust control
techniques.

In addition to the innately complex dynamics of soft robots that
will be neglected in the models, there may also be uncertainties due
to the operating conditions. Given the flexibility and compliance in
these systems, there is room for deviations from expected dynamics
with changes in external factors, such as temperature, humidity
(Liu et al., 2019), and externally applied forces (Rothemund et al.,
2020). There may also be inconsistencies in either the materials
used in making the compliant actuators or the processes used to
develop them.

Provided the many sources of uncertainty present in the field
of soft robotics, it is important to use appropriate measures to
represent such uncertainty and ensure the system remains stable
for all possible plants. This work focuses its uncertainty analyses
on unstructured (complex) uncertainty, rather than parametric
(real) uncertainty. We use Bode plots to model the unstructured
uncertainty in our models with a single frequency-dependent
weighting function. Similarly, the previously discussedH∞ norm 12
will be exploited again to help understand themaximumuncertainty
allowable for the given plants and controllers.

We can lump the various sources of error in themodel dynamics
into a single complex perturbation which will simplify the analysis.
The complex perturbation, denoted Δ, represents any matrix such
that ‖Δ‖∞ ≤ 1 is satisfied and its dimensionality is compatible with
the plant, G. It is important to note that lumping the uncertainty
this way may lead to a conservative uncertainty estimate. There
are various methods of modelling uncertainty to capture how the
true system could vary from the nominal model. In this work,
we use a multiplicative uncertainty model, visualized in the inner
loop dynamics block diagram provided in Figure 2D. This is the
preferred type of lumped uncertainty according to (Skogestad and
Postlethwaite, 2005). The multiplicative weight,WI,

|WI (jω) | ≥ lI (ω)∀ω, (23)

is selected to set an upper bound on the multiplicative
uncertainty, lI,

lI (ω) =max
Gp
|
Gp (jω) −G (jω)

G (jω)
|, (24)

where G is the selected nominal plant, and Gp is the set of possible
plants. Additive uncertainty is demonstrated in the outer loop
dynamics of this work and presented in the block diagram provided
in Figure 2E. Input additive weight uncertainty,WA,

|WA (jω) | ≥ lA (ω)∀ω, (25)

is selected to set an upper bound on the additive uncertainty, lA,

lA (ω) =max
Gp
|Gp (jω) −G (jω) |. (26)

After selecting the weight, WI or WA, to envelope the uncertainty,
we can multiply it with the closed loop transfer function, T, to

analyze the system’s response with uncertainty. Provided |WIT| <
1 or |WAT| < 1 ∀ ω in the frequency range of interest, then the
system has achieved robust stability. To investigate the uncertainty
present within the system and develop a controller for the
nominal plant, we need an appropriate linear representation of
its dynamics.

2.3 Dynamic mode decomposition with
control and the Koopman operator theory

In order to make use of the linear systems and robust control
theory mentioned above, it is important to derive linear models
of the soft system. Dynamic mode decomposition (DMD) can be
used to develop linear models of complex nonlinear dynamical
systems with no knowledge of the plant a priori (Tu et al., 2014).
DMD is an empirical method that is used to linearly approximate
the system’s underlying dynamics. DMDc is an extension of DMD
as it disambiguates between the system’s intrinsic dynamics and
its response to external forcing (Proctor et al., 2016). Soft robots
can benefit from data-driven modelling approaches given that their
dynamics are difficult to derive from first principles. Furthermore,
this empirical system identification tool enables the physical
soft systems to be reconfigured without rederiving mathematical
models each time.

DMDc is closely related to the Koopman operator theory in
that it uses a linear operator to describe highly complex, nonlinear
system dynamics. Given that it is not tractable to work with infinite
dimensionalities, as the Koopman operator entails, we can instead
work with a finite dimensional approximation of it. Therefore,
extensions of DMDc are relevant in the field of soft robotics since
they offer a means of reducing high-dimensional dynamic systems
to tractable low-order linear models. This is possible by extending
the dictionary of observables in the state space to help account
for nonlinearities that appear in the dynamics (Bruder et al., 2021).
Related methods include eDMD, mrDMD, and SINDy, which could
provide more accurate linear models of the nonlinear soft systems.
eDMDworks by increasing the dictionary of observables associated
with the system (Li et al., 2017). While mrDMD combines DMD
with wavelet theory and adjusts time resolutions and windowing
to help account for varied temporal activity within the system
dynamics (Kutz et al., 2016). Lastly, SINDy helps identify a sparse
basis for the dynamical system (Brunton et al., 2016).

The following steps describe how to develop a model using
DMDc (Proctor et al., 2016). First, the inputs and outputs of the
system are selected to be recorded and stacked into the control
snapshot vector, uk, and the state snapshot vector, xk, respectively.
The input signal is varied, and all of the signals are recorded at
each time step, kΔt. The recorded control input and state vectors are
concatenated into matrices,

X = [x1 x2 … xm−1] , (27)

ϒ = [u1 u2 … um−1] , (28)

as well as the state snapshot matrix shifted by Δt,

X′ = [x2 x3 … xm] . (29)
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The matrices, X and ϒ, are concatenated into a single matrix, Ω,
containing all of the recorded information:

Ω = [
X
ϒ
]. (30)

Similarly, the unknown dynamic and control input matrices are
concatenated as well:

Ḡ = [Ā B̄] . (31)

The linear dynamic equation expressed in Eq. 5 can be reformulated
in the scope of the DMDc algorithm as

X′ = ĀX+ B̄ϒ (32)

and rewritten in terms of the stacked matrices,

X′ = ḠΩ. (33)

Then, we perform a pseudoinverse (†) onΩ through a singular value
decomposition (SVD):

Ω ≈ UΣV∗ , (34)

and thus, solve the expression:

Ḡ = X′Ω†. (35)

Substituting the pseudoinverse of Ω into the equation above, we can
evaluate

Ḡ = X′VΣ−1U∗ (36)

and further calculate the approximate dynamic and input matrices,

[Ā B̄] ≈ [X′VΣ−1U∗1 X′VΣ−1U∗2 ] , (37)

with

U∗ = [U∗1 U∗2 ] , (38)

for which U∗1 ϵ ℝn×p and U∗2 ϵ ℝl×p.

3 HASEL actuators

For this work, we used HASEL actuators to operate the
demonstrative soft actuator platform (Figure 1A). These actuators
are ideal to demonstrate controller operation as they can exhibit
high-speed actuation (Kellaris et al., 2018; Johnson et al., 2020) and
precise control (Volchko et al., 2022). In addition, they can be
adapted to many robotic systems due to their versatile design space
which can enable a wide range of morphologies and actuation
modes such as contraction, expansion, bending, and twisting
(Acome et al., 2018; Kellaris et al., 2018; Mitchell et al., 2019).
HASEL actuators operate using an electrohydraulic mechanism;
this mechanism uses principles of both electrostatic and hydraulic
actuation,which enables efficient operation, controllable output, and
high-speed response.

HASEL actuators are comprised of three main components:
polymer film, a liquid dielectric, and conductive electrodes. The

thin polymer film is formed into a shell which is filled with the
liquid dielectric to create an enclosed pouch. Opposing electrodes
are placed on either side of the actuator over a portion of the pouch.
When a voltage (typically several kilovolts) is applied, electrostatic
forces cause the electrodes to progressively “zip” together, displacing
the fluid between the electrodes to a different region in the pouch,
causing shape change of the structure. Due to the inextensible nature
of the polymer film, this causes linear contraction in the actuator
(Kellaris et al., 2018).

Additionally, HASEL actuators are operable outside of a
laboratory and, more specifically, suitable for driving untethered
soft robotic systems, due to their energy and power density, low-
power consumption, and customizability. Although these devices
require a high voltage stimulus, input currents are typically less
than 1 mA, resulting in peak input power of only watts. These
actuators have an inherent catch-state, due to their capacitive energy
storage, wherein an actuated state can be held while consuming
only milliwatts or less of power. HASELs have been shown to
consume 100 times less power than a comparable servo motor
while holding a position (Kellaris et al., 2021). Myriad examples
of miniaturized DC-DC power supplies can be utilized to step-
up battery level voltages to the necessary high voltage inputs,
making these actuators an attractive solution for compact, battery-
powered soft robotic systems (Mitchell et al., 2019; Mitchell et al.,
2022; Wang et al., 2023).

4 Robust control implementation

The benchtop system (Figure 1A), similar to that described in
(Volchko et al., 2022), was designed to imitate the upper portion
of the human arm, where the artificial biceps and triceps muscles
work together to control the orientation of the system’s end effector.
We present an overview of the system signals that are necessary
for the control scheme developed in this work in Figure 1B. Charge
signals, ci, are sent through two channels in the HASEL electronics
to regulate actuator voltage. The voltage state of each channel,
Vi, dictates the length of the corresponding actuator. Lastly, this
contraction, δi, of both muscles determines the overall orientation
of the lever arm, θ.

The dimensions of the system configuration are shown in
Figure 2A, and the experimental setup is depicted in Figure 2B.
The robotic arm consisted of a carbon fiber lever arm attached
to a stationary wooden column using a low friction radial
bearing. The wooden column was anchored to a wooden platform
to secure the system. A stack of five contracting actuators
(Part No. C-5020-15-01-C-CCBC-50-140) were electrically and
mechanically connected in parallel to form the biceps muscle,
and a separate stack of five identical actuators were used for the
triceps muscle. All HASEL actuators were based on the Peano-
HASEL design described in Kellaris et al. (2018) and provided
by Artimus Robotics. Their parameters can be found in the
Supplementary Table S1.

The electronics package to drive actuation was also provided
by Artimus Robotics (Part No. PS2-10-030-02). This power supply
consisted of two independently addressable high voltage amplifiers.
A Teensy 4.0 microcontroller was used to generate control signals,
ci, for the high voltage amplifiers (0–3.3 V pulse width modulated
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signalswith variable duty cycle) aswell as receive analog information
on high voltage output, Vi. We attached rigid bodies to the system
in various locations to track the displacement of the individual
actuators, δi, and the orientation of the lever arm, θ. We 3D printed
the rigid bodies and connected three retroreflective markers to each
one. We secured the rigid bodies onto both ends of the muscles
and attached one to the lever arm. We used seven OptiTrack
motion tracking cameras (Figure 2B) and set the motion capture
data acquisition rate to its maximum of 240 Hz to be streamed
in real time.

The controller design process is comprised of the following
individual procedures: system identification, model validation,
controller synthesis, and uncertainty analysis. This is followed by
controller simulation, implementation, and validation.The electrical
dynamics were assumed to be significantly faster than the physical
dynamics (Rothemund et al., 2020), and thus a cascaded control
approach was used, as shown in Figures 2D,E. Additionally, this
control scheme made the signals easier to isolate in order to analyze
and study them.

The following methods, technologies, and software were used
to execute closed loop control of the system described above.
ROS was used to communicate with the multi-channel high power
supply and the motion capture system, while running the data
collection and controller scripts on a Linux OS. Arduino timer
interrupts and ROS timers regulated the data acquisition and
control rates. ROS data was timestamped in real time with respect
to all ROS topics. All scripts can be found within the linked
repository.

All data collection for the inner loop (Figure 2D) was performed
at 2000 Hz. The control loop for the voltage dynamics was on
board the microcontroller and set to run at 1,000 Hz. However,
the communication protocol used to communicate between the
microcontroller and the Linux machine over USB was limited
to 200 Hz. Communication rates greater than 200 Hz became
inconsistent due to the low priority of USB bulk transfers, which
the Teensy 4.0 serial communication is built on, and therefore,
resulted in instability. Thus, the physical dynamics (Figure 2E) were
analyzedwith a data collection rate of 200 Hz, and the outer loopwas
closed at 200 Hz.

Finally, MATLAB (MathWorks R2023), its robust toolbox, and
its Simulink environment were used for all of the post processing,
data analysis and controller synthesis work.

4.1 Voltage control

The power supply provided by Artimus is fundamentally a
current controlled system, where the duty cycle of the pulse-
width modulation (PWM) signal controls the amount of current
supplied to the actuators. However, a voltage-controlled system
is desirable, since voltage is an easily measured parameter that
provides a direct analog to the physical state of the actuator (as
the actuator performance is proportional to the applied voltage
squared (Kellaris et al., 2018)). Thus, our control approach began
with synthesizing a voltage controller to regulate the output
voltage at each channel by adjusting the duty cycle of the applied
PWM signals.

4.1.1 System identification and model validation
To perform system identification on the inner most loop,

visualized in Figure 2D, we chose to represent the systemwith inputs
of duty cycles of the PWM signals that were sent to the power
supply unit, ci, and output signals of recorded high voltage outputs,
Vi. While working with the nonlinear HASEL-actuated system,
we required that the state of the system during data collection
remained within tight operating ranges to enable linearization at
each “linear regime”. We initially implemented a basic trial and
error PID controller closed around voltage to ensure minimal and
controlled deviations around an operating voltage. This sort of
iterative approach is typical for systems with integral action in their
dynamics and for systems that already haveworking, yet suboptimal,
controllers (Landau and Rolland, 1994). While an initial guess
and check PID controller proved to be sufficient for initial system
identification efforts, it was apparent that the voltage response
varied depending on the system’s operating point. Only 25% of the
maximum duty cycle of PWM signals was used during testing to
ensure the safety of the electronics and eliminate any catastrophic
failures with the HASEL actuators.

To collect data for system identification, the closed loop system
was sent a voltage reference profile around incremental voltage
biases that ranged from 500 V to 5500 V. We selected multiple
voltage biases due to the aforementioned variability in voltage
responses depending on the operating point. The reference voltage
profiles then varied from the initial biases by ± 100 − 400 V.The data
collection process was carried out for both the biceps and triceps
muscles to ensure we accounted for the uncertainty seen across
all voltage dynamics within the system. Data was collected on the
microcontroller at 2000 Hz for 10 seconds at each voltage bias. At the
end of each segment, the voltagewas sent overUSB back to the Linux
machine.The collected data is depicted in Figure 3A divided into 22
segments corresponding to the eleven voltage biases commanded to
each of the muscles.

Before developing the linear models, all signals were normalized
with respect to their maximum values prior to performing DMDc
to help the interpretability of the Bode plots. The voltage signal
was normalized with respect to the estimated maximum voltage of
the power supply at 6000 V and the charge signal was normalized
with respect to the maximum 12-bit resolution PWM signal duty
cycle of 4096. Applying the DMDc algorithm following Eqs 27-38 to
each segment of normalized data resulted in 22 distinct models of
the voltage dynamics in the form Eq. 5. These 22 models represent
the collection of possible plants, Gp, referenced in Eq. 24. As
demonstrated in the singular value plots in Figure 3B, three of
the transfer functions from each actuator resulted in significantly
higher gains. Therefore, the resultant voltage controller synthesis
and analysis was split over two voltage domains, V+ = 2000 −
6,000 V and V− = 0 − 2,000 V, to account for the nonlinear
actuation response caused by an electrostatic pull-in instability
(Acome et al., 2018). The nominal model of the voltage dynamics,
GV, was determined in the frequency domain using an approximated
average of all Bode plots. The eight slower plants from the biceps
corresponding to the V+ range resulted in the nominal transfer
function, GVb

= 70/s, while the corresponding transfer functions of
the triceps actuators resulted in an averaged transfer function of
GVt
= 57/s. For the uncertainty analysis, we used the nominal plant,

GV+(s) = 70/s and synthesized a voltage control law for the muscles
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FIGURE 3
(A) These plots represent all data collected to identify linear models of the voltage dynamics. A reference voltage was sent to the initially implemented
voltage controller to remain within small regions of the operational voltage range. A linear model was identified at every 500 V step from 500 to 5500 V
for both the biceps and triceps muscles. The charge input was recorded and the voltage that followed was recorded. The vertical lines distinguish the
segments of data corresponding to each voltage bias listed at the bottom. Each segment corresponds to 10 s of data collection. (B) The 22 transfer
functions are plotted that were discovered using DMDc on each segment of data in (A). Additionally, an estimate (black dashed line) of the average of
these transfer functions is depicted. The two distinct regions of dynamics are apparent in this figure, where the linear models formed around the
voltage biases 500–1500 V (circled) have a much higher magnitude on the Bode plot than the others. This demonstrated the need to break the system
into two distinct regions and proceed by developing and analyzing one controller for each region. (C) The top plot demonstrates the validation of the
voltage dynamics in the 0–2 kV range where the input and output data (teal) was recorded and compared against the simulated response of all linear
models. The dark red lines denote the models within this range, while the grey lines represent the models in the 2–6 kV range. It is apparent these
models demonstrate little response to the recorded input and appear as a nearly flat line. The bottom plot demonstrates the validation of the voltage
dynamics in the 2–6 kV range where the input and output data (teal) was recorded and compared against the simulated response of all linear models.
However, the linear models from the 0–2 kV range quickly deviated from the initial state and therefore were not plotted alongside.
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within the V+ operating range. We repeated the above steps with
the faster transfer functions to result in a final nominal plant of
GV−(s) = 445/s for voltage dynamics between 0 and 2,000 V. The
plots in Figure 3C demonstrate the validity of these models in both
operating regions of the voltage range. The true response is plotted
alongside the simulated charge input to voltage output data.

4.1.2 Controller synthesis
Following the validation of the models, we used loop shaping

methods to develop a controller for closed loop voltage control
following the process outlined in Åström and Murray (2021). The
Bode plots labelled “Loop Shaping” in Figures 4A,B depict the
transfer function of the nominal plant, G, the controller, K, and
the open loop, L, defined in Eq. 8. These plots demonstrate high
gain at low frequencies to satisfy steady state error and tracking
performance requirements, and low gain at high frequencies
to satisfy disturbance rejection performance requirements.
The crossover frequency approximates the closed loop system
bandwidth, and the phasemargin of the system provides an estimate
of the closed loop overshoot.

The resultant lag controller,KV+, suggests the following nominal
closed loop performance metrics: 1) A steady state error of less than
1%. 2) Tracking performances of up to 1 Hz, 4 Hz, and 10 Hz with
errors less than 3.2%, 10%, and 32% respectively. 3) A closed loop
bandwidth over 35 Hz. 4) 3.1 times noise rejection at 100 Hz and
10 times noise rejection at 200 Hz. 5) A closed loop phase margin
of 64°, corresponding to a maximum overshoot of roughly 7%. The
resultant lag controller is expressed in the continuous time form as:

KV+ (s) =
0.003168s+ 3.981
0.003168s+ 1

.

The resultant lag controller, KV− suggests the following nominal
closed loop performance metrics: 1) A steady state error of less than
1%. 2) Tracking performances of up to 10 Hz, 20 Hz, and 40 Hz with
errors less than 6.4%, 15%, and 32% respectively. 3) A closed loop
bandwidth over 100 Hz. 4) 1.8 times noise rejection at 180 Hz and
3.1 times noise rejection at 300 Hz. 5) A phase margin of 72° which
corresponds to amaximumovershoot of roughly 3.8%.The resultant
lag controller is expressed in the continuous time form as:

KV− (s) =
0.003176s+ 1.995
0.003176s+ 1

.

4.1.3 Uncertainty analysis
Uncertainty analysis methods integrating the lag controller were

used to determine if these controllers would suffice for all possible
plants, Gp, determined from the experimental data. Figures 4A,B
show the uncertainty analyses that were performed to ensure the
controller would work for each linear model developed in the two
operational voltage ranges, V− and V+, respectively. We employ
multiplicative uncertainty following the block diagram for the inner
loop, Figure 2D. The Bode plots for the multiplicative uncertainty
models, lI, calculated using Eq. 24, are shown alongside an
enveloping transfer function, WI, determined following Eq. 23. WI
and the complementary sensitivity T, calculated following Eq. 9, are
used to determine robust stability for the plant and controller. The
weighted transfer function, WIT, must remain below a magnitude
of one to ensure the closed loop system with controller, KV, remains

stable among all uncertainties. The “Weighted Complementary
Sensitivity” plots in Figures 4A,B therefore demonstrate that these
controllers stabilize the full set of possible plants, Gp.

4.1.4 Controller simulation, implementation, and
validation

Before implementing the voltage controller on the physical
system, a simulation was created in the Simulink environment,
with additional measures to ensure that a discrete-time controller
maintained similar performance to the continuous-time controller.
The resulting closed loop simulations can be found in Figures 5A,B.
The new lag compensators were discretized at 1,000 Hz using a
zero-order hold and implemented into the system as

K̄V+ =
z+ 0.07763
z− 0.7293

and

K̄V− =
z− 0.461
z− 0.7299

.

We implemented the gain scheduling approach based on the
scheduling variable, voltage. If the recorded voltage signal was less
than 2,000 V, K̄V− would be used, while if the voltage was 2,000 V
or above, K̄V+ would be used. In addition to the controller, an
anti-windup compensator was added to the system around the
minimum and maximum control outputs corresponding to 25% of
the total PWM duty cycle to ensure the safety of the electronics.
Given that the plant signals were scaled for controller synthesis, we
implemented the controller with appropriately scaled corresponding
signals. Finally, after implementing this controller in the firmware,
we sent 1,000 V step commands to the closed loop system to
validate the previously discussed performance. Performancemetrics
measured from these 0–1 kV and 4–5 kV step responses include
10%–90% rise times of 0.0013 s and 0.0416 s, 2% settling times
of 0.008 and 0.163 s, and lastly overshoots of 22.1% and 0%,
respectively, as shown in Figures 5C,D. As expected, the closed loop
controller results in different performance conditions at differing
voltage levels.

4.2 Position control

After the inner loop voltage controller was implemented, we
synthesized the outer loop displacement controller. The first block,
f(θREF), in the block diagram (Figure 2E), translates the lever arm
orientation into corresponding displacements of the actuators. The
displacement commands, δREF1 , δREF2 were therefore:

δREF1 = √h
2
1 + b

2
1 − 2h1b1 cos (θINIT − θREF) (39)

and

δREF2 = √h
2
2 + b

2
2 − 2h2b2 cos (θINIT + θREF) (40)

with

θINIT = cos−1(
l2 − h21 − b

2
1

−2h1b1
). (41)

All variables are depicted in the system setup in Figure 2A
and describe the system’s initial orientation, θINIT, commanded
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FIGURE 4
(A) The Loop Shaping plot represents the open loop shaping process used to synthesize the voltage controller in the 0–2 kV range. All three transfer
functions are plotted, including the nominal plant, GV, the controller, KV, and the open loop, LV =GVKV. The two shapes plotted correspond to
estimates for the closed loop performance of tracking performance (blue), and disturbance rejection (red). Information about the steady state error,
overshoot, and system bandwidth estimates of the closed loop system are also pictured with the black hash marks. The Multiplicative Uncertainty plot
depicts the modelled uncertainty, lI, which corresponds to the 6 transfer functions encircled in Fig.3B which represent the possible plants, Gp, in the
0–2 kV operating range. The transfer function, WI, is developed and superimposed to create the upper bound on the multiplicative uncertainty, lI, as
|WI(jω)| ≥ lI(ω) ∀ ω. Weighted complementary uncertainty, WIT, is plotted, where T is the complementary sensitivity of the 0–2 kV closed loop system.
The magnitude of this transfer function remains under the value 1, guaranteeing stability for all nonlinearities accounted for with this uncertainty
analysis. The dashed line represents an absolute magnitude of 0.9 which is the upper limit we put on the transfer function, leaving room for other
means of variation and uncertainty in the voltage dynamics loop. (B) The Loop Shaping plot represents the open loop shaping process used to
synthesize the voltage controller in the 2–6 kV range with the same properties as that shown in (A). The Multiplicative Uncertainty plot depicts the
modelled uncertainty, lI, which corresponds to the other 16 transfer functions from Fig.3B which represent the possible plants, Gp, in the 2–6 kV
operational range. Weighted complementary uncertainty, WIT, is plotted, where T is the complementary sensitivity of the 2–6 kV system.

orientation, θREF, distances to biceps muscle anchor points, h1 and
b1, and distances to triceps muscle anchor points, h2 and b2.

4.2.1 System identification and model validation
To begin identifying the dynamics of the MIMO plant, G,

we chose the input signals to our system to be the voltages,

V, of each stack of HASELs and the output signals to be their
respective displacements, δ. Before commanding the step inputs, we
pretensioned the system to ensure that there was no slack in either
the biceps or the triceps actuator to mitigate one source of nonlinear
behavior. To pretension the system, a voltage bias was commanded
to the biceps actuator, and the triceps contracted until a 0.1 mm
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FIGURE 5
(A) The step response of the simulated closed loop system from 0 to 1 kV using the controller, KV−. (B) The step response of the simulated closed loop
system from 4 to 5 kV using the controller, KV+. (C) The step response of the physical closed loop system from 0 to 1 kV which was implemented so the
controller Kv– would be used in the 0−2 kV operational range as it was scheduled based on the system’s state of voltage. (D) The step response of the
physical closed loop system from 4−5 kV which was implemented so the controller KV+ would be used in the 2−6 kV operational range as it was
scheduled based on the system’s state of voltage. The limit set on the anti-windup compensator was 25% of the total charge allowed, and the charge
can be seen hitting this limit in both the simulation (B) and the physical validation.

extension occurred in the biceps. These two voltages were classified
as the bias voltages.

Next, we commanded both muscles with random step inputs
lasting 0.2–1.2 s and ranging in magnitudes of ± 100 − 500 V
around the voltage biases. This system identification data was
recorded at each bias for 10 s of biceps actuation and 10 s of triceps
actuation, and can be observed in Figure 6A.

We normalized all of the signals with respect to their maximum
values to drive the intuition behind the following controller
synthesis and uncertainty analysis procedures. The voltage was
again scaled with respect to the rail voltage of 6,000 V and the
displacement was normalized with respect to its maximum recorded
displacement of 8 mm. Similar to the system identification approach
of the voltage dynamics, we developed linear models following

the DMDc algorithm in Eqs 27-38 from the various base voltages
for the actuator displacement dynamics combining the biceps and
triceps actuation profiles at each corresponding bias. Thus, we
used eight distinct voltage biases to create eight distinct linear
models where the state and input of the system were selected to be
x = [δ1 δ2 δ̇1 δ̇2 V1 V2]

′ andu = [V1 V2]
′, respectively,

where subscripts 1 and 2 refer to the biceps and triceps muscles,
respectively.The actuators’ velocities, δ̇i, were time derivatives of the
collected displacement data smoothed using a Savitzky-Golay filter.

The resultant linear models are depicted in the singular value
plot in Figure 6B. The transfer functions were averaged to result
in the averaged linear model of the system (dashed line). We
selected the DMDc model that most closely followed this average
transfer function as the nominal plant in the following controller
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FIGURE 6
(A) These plots depict the signals collected to identify linear models of the actuator displacement dynamics. The system actuators were offset by a
voltage bias, and two of these eight scenarios are plotted, for which the system is actuated by the biceps (top) and the triceps (bottom). (B) The singular
value plots show all eight linear models developed using DMDc, each corresponding to a voltage bias that was set for data collection. The dashed line
represents an approximate average of all of these transfer functions and was selected as the nominal plant for the controller synthesis and uncertainty
analysis procedures. (C) Simulated step responses demonstrate voltage input to displacement output and validate the nominal models discovered with
DMDc with respect to both biceps (top) and triceps (bottom) actuation.
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synthesis steps. The selected nominal model, Ḡ, discretized at
200 Hz, can be described with the following discrete-time matrices,
following Eqs 5, 6.

Ā =

[[[[[[[[

[

1 0 0.0049 −0.0002 0.0007 −0.0009
0 1 0.0002 0.0052 −0.0019 0.0020
−0.0247 0.0004 0.5308 −0.1366 −4.9321 1.8180
−0.0084 −0.0685 −0.1894 0.6796 3.6924 −5.0657

0 0 0 0 0 0
0.0001 0 0.0002 0.0005 −0.0025 0.0019

]]]]]]]]

]

B̄ =

[[[[[[[[

[

−0.0006 0.0009
0.0019 −0.002
4.9730 −1.8469
−3.6960 5.0963

1 0
0.0025 0.998

]]]]]]]]

]

C̄ = [1 0 0 0 0 0
0 1 0 0 0 0]

D̄ = [0 0
0 0].

We simulated the nominal plant using 20 s of validation data
that was collected at the same voltage biases. This simulated data
is compared with the empirical data in Figure 6C. The system
was validated against both biceps and triceps input data, giving
us confidence to proceed with the control design using the
nominal plant, G.

4.2.2 Controller synthesis
After selecting a nominal plant, G, for the physical dynamics

of the system, we used H∞ synthesis methods described in
Section 2.1 to obtain an optimal controller, Kδ. The closed loop
transfer function plots, S, KS, and T in Figure 7A demonstrate
the transfer functions defined in Eqs 9, 13, 14. The weightings
selected for the transfer functions correspond to system sensitivity
to disturbances, control output response to reference commands,
and the closed loop transfer function from reference signal to
system output. We used the mixed sensitivity synthesis toolkit in
the robust control package in MATLAB. The resulting weighted
transfer functions,

Wp =
[[

[

s2 + 12.31s+ 37.9
s2 + 1.87s+ 0.5831

0

0 s2 + 9.234s+ 21.32
1.5s2 + 3.576s+ 2.132

]]

]

Wu =
[[

[

16s2 + 96s+ 144
s2 + 24s+ 144

0

0 s2 + 36.1s+ 90.25
s2 + 24s+ 144

]]

]

WT = [

[

1.5s+ 3
s+ 3 0

0 1.5s+ 3
s+ 3

]

]
,

were specified to maintain a closed loop bandwidth of 0.8 and
0.6 Hz and provide nearly 0% steady state error in the biceps
muscle. These weightings were adjusted following the approach
outlined in Eqs 18, 19. We allowed for greater steady state error
in the triceps muscle, to ensure that there was room for error
in the measurements used in the geometric functions 39–41. We
limited the control effort by selecting weighting functions, wui ,
above 0 dB to pull down KS. Lastly, we chose WT to remain
at 0 dB and under at higher frequencies to ensure the closed
loop response, T, provided a stable steady state response to the
reference signal.

These specifications resulted in the H∞ controller, K̄δ, using the
MATLAB command [K, CL, GAM] = mixsyn (G, WP, WU, WT),
which applies the calculations from Eqs 20, 21. This controller was
discretized at 200 Hz and is given in the as Supplementary Figure S1,
structured according to Eqs 5, 6 with matrices, Āδ ϵ ℝ12×12,
B̄δ ϵ ℝ

12×2, C̄δ ϵ ℝ
2×12, D̄δ ϵ ℝ

2×2. K̄δ resulted in γmin, defined in
Eq. 22, of 9.894. We desired γmin to be close to a value of one
to indicate that all of performance specifications are met. Initially,
only S and T were weighted to determine a controller resulting in a
closed loop systemwhich resulted in γmin < 1. However, simulation
indicated that this controller required too high of an input voltage
to meet the specifications. Therefore, we included the weighted
closed loop transfer function, WuKS, to reduce the control effort
required of the physical system which resulted in a larger value of
γmin. Figure 7C demonstrates how the controller affects the selected
nominal plant.

4.2.3 Uncertainty analysis
An uncertainty analysis was performed for the actuator

displacement dynamics. However, due to the large uncertainties
induced when attempting to use a multiplicative model for
uncertainty, we resorted to a less restrictive uncertainty analysis,
employing additive model uncertainty. The additive uncertainty
structure can be found in Figure 2E. We calculated the uncertainty
using lA defined in Eq. 26. The singular value plot in Figure 7B
demonstrates the modelled uncertainty, lA, of all possible
plants, GP, (solid lines). Additionally, this plot demonstrates the
weighting, WA (dashed line), determined following Eq. 25, used
to provide an upper limit on the modelled uncertainty. Finally,
to conclude the uncertainty analysis, we plotted the weighted
complementary sensitivity, WAT, in Figure 7D to ensure the
system remained below an absolute magnitude of one to ensure
stability for the span of uncertainty modelled in the frequency
range of interest.

4.2.4 Controller simulation, implementation, and
validation

Prior to implementing the H∞ controller from the synthesis
procedure, we simulated the closed loop system with the nominal
plant in Simulink to ensure the system responded as expected.
Following satisfactory simulation results, we implemented the
controller on the physical system using various ROS nodes
corresponding to the geometric function block, f(θ), as well as the
discretized H∞ controller, K̄δ, which was exported from MATLAB
workspace to ROS files. Upon implementing the controller, we
commanded step inputs to demonstrate the dynamic system
response, shown in Figure 8A. The commanded orientation and
orientation response are included in the top plot (Figure 8A) and
used to assess the overall system performance. It should be noted
that the accuracy of this control scheme relies on the accuracy of
the measurements taken for actuator length, and anchor distances.
Bypassing the function, f(θ) and directly measuring θ would allow
for a more precise closed-loop response. However, we wanted to
remove the dependence on the motion capture system and promote
the implementation of self-sensing of individual actuator stacks for
future work.

In observing a single step response in Figure 8B from this
H∞ controller implementation, we demonstrate the following

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1333837
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Volchko et al. 10.3389/frobt.2024.1333837

FIGURE 7
(A) The mixed synthesis results are shown with the three singular value plots. The top plot compares the resultant system’s sensitivity, S, and compares
it to the inverse of the weighting, WP to help reach performance requirements, such as steady state error and tracking. The middle plot compares the
closed loop transfer function, KS, to the inverse of the weighting, Wu, to help minimize the control efforts from the system. And the last plot compares
the complementary sensitivity, T, to the inverse of WT, to ensure the system does well in the presence of output disturbances, or noise. (B) The additive
uncertainty, lA, is modelled in this singular value plot. The transfer function, WA is developed and superimposed to create the upper bound on the
additive uncertainty, lA, as |WA(jω)| ≥ lA(ω) ∀ ω. (C) The transfer functions plotted correspond to the plant, G, controller, Kδ and open loop, L =GKδ to
demonstrate the resultant “shape” of the system following H∞ controller synthesis. (D) The resultant weighted complementary sensitivity, WAT, is
plotted. For our system to remain stable for all possible plants determined, it is critical that the magnitude of this transfer function remains under the
value 1, which can be observed above 7× 10−2 Hz.

performance metrics. Resultant performance metrics measured
from these step responses include 10%–90% rise times of 0.0877 s,
5% settling times of 0.8373 s, and lastly an overshoot of 24.75%.
Further, we visualize the performance of the inner loop dynamics
as well as the charge signals sent to the system in Figure 8B. These
minimal charge signals demonstrate minimal wear on the system
electronics.

5 Discussion and future directions

This paper outlines a novel framework for synthesizing
robust control laws for soft robotic systems and demonstrates its
implementation. We presented the first multivariableH∞ controller
applied to a HASEL-actuated soft robot. Further, we advanced past
work on similar soft systems by performing uncertainty analyses on
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FIGURE 8
(A) The resultant signals are plotted from implementing the entire cascade controller developed in this work. The system was prescribed three step
commands. The top plot demonstrates the reference orientation signal (dashed) and the recorded orientation (solid). These signals were recorded at
200 Hz. The following plot demonstrates the reference displacement signals that were commanded (dashed) and the recorded displacements (solid) of
the two actuators. The subsequent plot further demonstrates the commanded voltage signal (dashed) and the measured voltage signal (solid). Finally,
at the core of the system, the charge signals were plotted for each of the muscles. While the charge and voltage signals are scaled, the true
measurements for displacement and orientation are plotted to highlight the scale of this work. (B) To truly visualize the response of the system, a single
rising side of one step response is plotted, including all the signals represented in (A). This demonstrates the speed of which the system was able to
achieve steady state along with the other performance metrics noted in this work.

the derived models to ensure the synthesized controllers stabilize
the robot despite their evident nonlinear responses. We recommend
this empirically-based framework as a starting point for similar
soft robots due to its ability to achieve highly-performant closed

loop dynamics as well as exhibit system stability in the presence of
uncertainty.

Specific to the electrohydraulic actuators used in this work,
we employed a cascade control architecture, allowing us to close
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the inner voltage control loop at a higher rate than the outer
position control loop. Therefore, we developed the voltage control
laws first. We determined simplified linear models of the voltage
dynamics across the entire operating range using a data driven
approach known as DMDc. The various models allowed us to
address the variability within the nonlinear system’s full range of
motion. Specifically, we identified two voltage regimes with distinct
behaviors and correspondingly designed two separate lag controllers
using loop shapingmethods.We performed the uncertainty analyses
for each regime by lumping the plant variability within a single
complex perturbation. We implemented feedback control for each
muscle using a gain scheduling procedure which resulted in closed
loop rise times of 0.0013 and 0.0416 s, settling times of 0.008 and
0.163 s, and a stable response across the entire operational range.

To begin synthesizing a position controller, we identified a set
of linear dynamic models to represent the motion of the mechanical
system at different operating points. We selected a nominal model
for each family of plants and employed H∞ controller synthesis
techniques to optimize the nominal closed loop performance for
steady state and system bandwidth. We assessed the outer loop
uncertainty with an additive uncertainty model to ensure stability
across the entire operating range. This control scheme was not
designed to achieve the highest performance possible for the
entire set of plants. Rather, the framework provided a simplified
and systematic control solution that maintained a stable response
throughout the entire range of motion of the mechanism. Even so,
the closed loop system exhibited a rise time of 0.0877 s, and a settling
time of 0.8373 s.

The success of this framework relies on properly selecting a
linear model or set of linear models to represent the system. The
linear models must appropriately estimate the complex dynamics of
each unique system. More accurate models lend themselves to more
appropriately designed controllers and more accurate uncertainty
models.While the DMDc-derivedmodels demonstrated substantial
agreement to the system’s true response, the models did not capture
the higher-frequency dynamics that were present. Extensions
of DMD could better estimate physical system dynamics from
empirical data. Some extensions include extended DMD (eDMD),
multiresolution DMD (mrDMD) and Sparse Identification of
Nonlinear Dynamics (SINDy) (Brunton et al., 2016; Kutz et al.,
2016; Li et al., 2017). We suggest incorporating these methods when
DMDc-derived models are not valid approximations of the physical
plant.

Additionally, it would be advantageous to demonstrate
this control methodology applied outside of a motion capture
environment by utilizing integrated sensory feedback. A key
advantage of HASEL actuators is their ability to simultaneously
act as sensors and actuators (Acome et al., 2018; Ly et al., 2021).
As deformable capacitors, HASEL actuators change capacitance
as they actuate, and this capacitance change can be mapped to a
change in the actuator displacement. Integrating capacitive self-
sensing with the robust control methods elucidated in this work
will broaden applications for electrohydraulic soft-actuated systems
that operate outside of a laboratory environment. The developed
framework can be implemented on untethered electrostatic systems
powered by HASELs or DEAs, like those presented in Mitchell et al.
(2019), Mitchell et al. (2022), Wang et al. (2023), Li et al. (2021)
and Zhang et al. (2018).

These robust methods can extend past modelling a single system
and can be used to determine the uncertainty across a range of
actuators and capture the change in dynamics for a variety of
actuator shapes, sizes, or materials.These robust methods could also
be used to analyze the presence of extrinsic factors, such as loading
or significant temperature changes. Using themethodology outlined
in this article, we could work to understand stability regimes for a
range of soft actuators or their varying environmental settings.

While we address robust stability and closed loop nominal
performance individually, future work could focus on developing
controllers that combine these two aspects to achieve robust
performance of soft systems.

The framework outlined in this paper provides a methodology
for applying linear control theory and robust stability measures to
nonlinear soft robotic systems. Importantly, this method requires
no knowledge of the system a priori. Implementing the measures
of robustness outlined in this controller synthesis framework
enables real-time, stable control of high-speed soft robotic systems,
regardless of their means of sensing and actuation, inherent
nonlinearities, or other uncertainties prevalent in the field of soft
robotics. In order to unleash soft robots into the real world, we need
to develop a generalized control framework that is just as adaptable
and compliant as the physical systems.
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