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A survey on autonomous
environmental monitoring
approaches: towards unifying
active sensing and reinforcement
learning

David Mansfield and Allahyar Montazeri*

Lancaster University, School of Engineering, Lancaster, United Kingdom

The environmental pollution caused by various sources has escalated the
climate crisis making the need to establish reliable, intelligent, and persistent
environmental monitoring solutions more crucial than ever. Mobile sensing
systems are a popular platform due to their cost-effectiveness and adaptability.
However, in practice, operation environments demand highly intelligent and
robust systems that can cope with an environment’s changing dynamics. To
achieve this reinforcement learning has become a popular tool as it facilitates
the training of intelligent and robust sensing agents that can handle unknown
and extreme conditions. In this paper, a framework that formulates active
sensing as a reinforcement learning problem is proposed. This framework
allows unification with multiple essential environmental monitoring tasks and
algorithms such as coverage, patrolling, source seeking, exploration and search
and rescue. The unified framework represents a step towards bridging the divide
between theoretical advancements in reinforcement learning and real-world
applications in environmental monitoring. A critical review of the literature in
this field is carried out and it is found that despite the potential of reinforcement
learning for environmental active sensing applications there is still a lack of
practical implementation and most work remains in the simulation phase. It
is also noted that despite the consensus that, multi-agent systems are crucial
to fully realize the potential of active sensing there is a lack of research in this
area.

KEYWORDS

reinforcement learning, environmental monitoring, active sensing, deep learning,
robotics, multi-agent

1 Introduction

The fields of Artificial Intelligence (AI) and robotics are accelerating the world
toward its next technological revolution. Advances in both of these fields bring about
new and exciting technologies that can be used to help tackle many of the challenges
we face in life on planet Earth. One of the most pressing issues is climate change for
which environmental monitoring (EM) plays a vital role in understanding and mitigating
the impact of both natural and human activity that contribute to this growing issue.
Before we can implement in situ solutions, we first need a deep understanding of each
specific issue which in many cases requires scientists to collect much more empirical
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data at each site of interest, as in reality, no two sites are exactly the
same. For many natural processes, over which we do not have direct
control, forecasting is an invaluable practice. However, each case is
unique and atmany of the siteswhere forecastingwould be beneficial
researchers do not have enough consistent knowledge or data to
make accurate predictions. A persistent EM system is paramount to
the development of accurate foresight in these situations. However,
traditionalmonitoringmethods are often expensive, slow, dangerous
or inefficient when compared to the full potential of an intelligent
autonomous system.

Simply, EM is the task of making observations of an
environmental phenomenon. In the literature EM is a blanket
term which refers to many different applications such as pollution
monitoring Alvear et al. (2017), boundary tracking Jin and Bertozzi
(2007), search and rescue Waharte and Trigoni (2010), volcanology
James et al. (2020), subterranean mapping Neumann et al. (2014)
and many more similar applications. This paper also touches on
other fields such as agriculture Duckett et al. (2018) and nuclear
decommissioning Martin et al. (2016), wherein EM technology
plays a vital role in various aspects of their operation. In all of
these applications environmental phenomena often occur over large
physical spaces, vary onmassive scales and are largely unpredictable
meaning they require persistent or periodic monitoring. Due to
these complex and changing environments, it is necessary to design
robots that can adapt their behaviour in real-time to fit the evolving
environment according to their sensed data; this process is called
active sensing Yang et al. (2016). In this paper, we discuss the
emerging sub-category of active sensing concerned withmonitoring
environmental phenomena which will be referred to henceforth as
active environmental monitoring (active EM).

Active EM entails complex agent behaviours to achieve diverse
goals, necessitating real-time adaptability and decision-making
capabilities. This behaviour requirement lends itself naturally to
machine learning since hard-coding these required behaviours
can be complex Kober et al. (2013). Reinforcement Learning (RL)
and Deep Reinforcement Learning (DRL) is a branch of machine
learning that involves training agents to make optimal decisions by
interacting with the environment. This process includes trial-and-
error interactions aimed atmaximizing rewards or achieving specific
goals, leading to the development of an optimal policy for decision-
making across various scenarios Mnih et al. (2015). For example, a
system that has to operate in outdoor environments may be subject
to multiple lighting levels, extreme weather conditions, and large
areas of operation. RL has been demonstrated as an effective solution
to allow robots to navigate under such varying conditions Maciel-
Pearson et al. (2019). The increasing popularity of both RL and EM
are demonstrated in Figure 1, evidencing the growing importance
of research and development in both fields. However, not all the
literature that involves EM systems is released under the term
‘environmentalmonitoring’ and standardizing this will help research
accelerate.

In this review paper, a comprehensive overview of the
application of RL to EM problems is provided. Upon reviewing
the literature it was found that there are numerous trends in RL
state representation across different EM applications. For example,
it is common to represent the environment as a grid of coloured
“tiles” that encode information about a spatial area Padrao et al.
(2022); Luis et al. (2020). Accordingly, an alternative classification

of RL algorithms in terms of continuous or discrete state and action
spaces is included. This allows one to pick an algorithm based
on the constraints of common EM problems. It is also shown by
means of a unified formulation that the nature of RL and active
sensing problems are complementary. In the proposed framework,
both problems are described by aDecentralized PartiallyObservable
Markov Decision Process (Dec-POMDP) which facilitates both
single and multi-agent systems. Despite the synergy between these
two problems and the growing body of research in both fields, it is
found that there is a lack of practical implementation, environment-
realistic simulation environments and research into multi-agent
reinforcement learning (MARL) approaches. This paper provides
researchers with a condensed view of common approaches to
the application of RL for active EM and unifies them under a
suitable framework.

2 Reinforcement learning for active
environmental monitoring

2.1 Previous surveys

There are a number of previous surveys covering the application
of RL to robotics throughwhich their compatibility is well discussed.
Kober et al. (2013) is a 2014 survey on the application of RL to
robotic platforms. It gives a comprehensive explanation of how
RL can be used in robotic research and highlights the challenges
in the field. Azar et al. (2021) looks at the application of DRL to
Unmanned Aerial Vehicles (UAVs). The authors note some open
EM applications and their associated problems where RL and DRL
can be Utilized. Lapeyrolerie et al. (2022) discusses how RL is suited
to conservation applications and provides a good background that
helps justify further research and the joining of these two fields.
Canese et al. (2021) reviews the current challenges and applications
of Multi-Agent Reinforcement Learning (MARL), again noting
how developments in these systems would be well suited to EM
problems. Also in the domain of MARL, Zhu et al. (2022) discusses
communication in MARL systems and Oroojlooy and Hajinezhad
(2023) reviews cooperative MARL, offering a novel classification
system for how these systems are designed and trained.While much
of the previous work highlights the potential of robotic platforms
trained with RL for application to EM, they do not discuss the
topic in great detail or highlight the current specific challenges that
EM brings.

Complementary to the previous surveys, this paper brings the
following contributions: RL for robotic platforms is framed as an
active EMproblem, allowing for a clear picture of howRL can benefit
such systems. This is done with a classification of RL by mission
requirements rather than by algorithmic properties which is more
suited for the research into active EM. It is also shown that active
EM problems can be framed as a general active sensing problem
and they are unified with RL problems under a single framework.
In fact, the idea of active environmental monitoring generalizes the
current approaches under a single framework by which state-of-the-
art implementations are presented. A general RL-based active EM
system is visualized in Figure 2. Finally, the challenges of practical
implementation and open questions in the context of active EM
problems are discussed.
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FIGURE 1
Number of publications with ‘RL’ and ‘EM’ in the title. Scraped from Google Scholar Strobel, (2018).

FIGURE 2
A general environmental monitoring problem, showing a model-based deep reinforcement learning trained UAV system.
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FIGURE 3
Deep RL visualized. In standard RL the policy is represented by other
means than a deep neural network.

2.2 Reinforcement learning terminologies

Reinforcement Learning (RL) is the process of training an agent
to learn a policy that picks actions based on an observation of the
environment. Sequences of individual actions should accumulate to
a desired overall behaviour. The environment is represented and
described by a state. Effective state-actions pairs are reinforced
by a reward. The goal of the agent is to maximize the long-term
(collective) reward by updating its policy. The goal of the policy
is essentially to map state-action pairs to rewards, allowing us to
choose the most effective action for a given state. RL can use
various function approximates to represent the policy, including
linear models or decision trees. This paper is also concerned with
DRL. The defining difference between RL and DRL is that the
policy in DRL is represented by a neural network. This is illustrated
in Figure 3.

Different environments and different learning agents permit
different actions. All of the actions that are valid for a given
environment make up the action space. In a given state, the agent
can choose any action in the action space. Actions are chosen either
according to a policy or an exploration strategy. Action spaces can
be continuous or discrete. Continuous action spaces can be used for
tasks such as sending commands directly to robot actuators, whereas
discrete action spaces are generally more abstract and involve more
high-level commands such as, ‘move forward’ or ‘turn around’.
Having an overly complex action space can lead to difficulties in
training and the learning algorithmmay not converge to an optimal
policy. On the other hand, action spaces that are too simple may
result in sub-optimal and limited behaviour.

In general RL and DRL algorithms are divided into model-
based and model-free approaches. Model-based approaches have
direct access to a learned or given model of the environment
whereas model-free agents do not. Model-based techniques give
an agent more information on the next optimal action to take,
meaning that agents can quickly learn policies andmake projections
of future rewards. However, this is only true if the model of
the environment is accurate. In lots of cases, the environments
are complex and predicting them accurately is a difficult task in

and of itself. That being said, model-based algorithms that have
access to a strong environmental model can give state-of-the-art
results and show a substantial improvement in sample efficiency
Silver et al. (2017); Kaiser et al. (2020). However, model mismatch
can have some detrimental consequences. For instance, the agent
may learn to exploit the bias or inaccuracies in the model causing
poor performance in the real-world environment. In cases where a
reliable model is not present then model-free algorithms perform
better Lapeyrolerie et al. (2022). RL algorithms can also be classified
as on-policy where actions are chosen from the same policy used
during evaluation Schulman et al. (2017) or off-policy algorithms
where agents sample their actions from a separate policy Jang et al.
(2019); Lillicrap et al. (2019). Algorithms can also be value-based or
policy gradient-based. Value-based algorithms use a value function
to quantify the ‘goodness’ or value of taking a certain action in a
certain state.Themost well-known family of value-based algorithms
is the Q-learning approach Watkins and Dayan (1992). Instead, in
policy-gradient methods, the agents perform gradient ascent on
the expected reward function to find the optimal policy. There is
a class of RL algorithms called Actor-Critic methods that combine
different aspects of both value-based and policy-gradient-based RL
algorithms.This class of algorithms consist of twomain components:
the actor, which is responsible for taking actions and learning a
policy thatmaximizes reward, and the critic, which is responsible for
estimating the value of taking an action in a given state. This helps
the actor to make more informed decisions. Actor-critic methods
have been used to produce some very promising results Mnih et al.
(2016); Haarnoja et al. (2018).

Generally speaking, various RL and DRL algorithms are
reviewed and discussed in depth in the literature and an
interested reader is referred to these papers for further discussions
Lapeyrolerie et al. (2022); Kober et al. (2013); AlMahamid and
Grolinger (2021). However, in the context of EM, the active sensing
objectives are different for each application and are usually partially
constrained according to the operating environment. Therefore,
it would be more beneficial to classify the algorithms for EM
applications based on their environment and action spaces. For
example, we may need to train an agent to scan a given area.
Depending on the mission objectives, we can decide to either
abstract this area into smaller sub-areas allowing us to use a limited
and discrete state and action space, or we can choose to predict
a continuous model of the region of interest for which we need a
continuous learning environment. A classification of standard and
state-of-the-art RL algorithms used for EM applications is illustrated
in Figure 4.

2.3 Reinforcement learning for
single-agent environmental monitoring
systems

Hard-coding complex and adaptive behaviours for robotic
systems can often be a very difficult task, this is compounded by
the fact that robots also often have non-linear dynamics and operate
in complex environments whilst under considerable amounts of
uncertainties and constraints. Unlike traditional programming
techniques, RL allows engineers to take a more end-to-end
approach when developing control and navigation algorithms. In
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FIGURE 4
RL Classification by environment type AlMahamid and Grolinger (2021).

this approach, the desired behaviour of a learning agent is described
by designing a suitable reward function. The design of this reward
function, a process which is called reward shaping, is much more
high-level than programming the behaviours directly.

Reward functions should describe the goals of a system rather
than specific behaviour. Under a well-designed reward function and
a suitable RL algorithm, an agent can learn to behave optimally. A
general reward function might take the form:

R = Rgoal +Rpenalty, (1)

where Rgoal is a positive scalar that is given to an agent for actions
that are productive to the overall goal of the system and Rpenalty is a
negative scalar that penalizes the robot for undesirable actions that
are counterproductive to the goal. For example, Consider designing
a reward function to teach a robot to follow a line on the x-axis to
reach a goal.

Rgoal =
1
D
+ αvx, (2)

whereD is the distance to the goal, vx is the agent’s velocity in the x-
direction and α is a constant controlling the contribution of velocity
to the reward. HereRgoal rewards the robot for moving towards the
goal at a higher velocity. To accompany this we might have:

Rpenalty = −|y|2 (3)

where y is the robot’s y coordinate. Here, Rpenalty increases with the
square of the distance from the line, and thus encourages the robot
to stay on the x-axis by administering a negative reward (penalty).
Since the overall goal is for the agent to maximize the cumulative
rewards we can incorporate the concept of returnGwhich is the sum
of the discounted rewards from the current time step

G =
∞

∑
k=0

γkRt+k+1. (4)

The discount factor γ influences the agent’s behaviour by balancing
immediate rewards with long-term objectives. As the agent takes
actions it receives rewards; the value of these rewards is responsible
for shaping the policy or value function. It is possible for agents to
find a way to exploit the reward function, where the policy may
converge to undesirable behaviour that never the less returns high
rewards. Furthermore, reward shaping should pay close attention to
both environmental and system-specific constraints such as actuator
saturation or limited power supplies. For instance, small rewards or
penalties might be given to encourage the agent to also minimize
actuator effort. Rgoal also poses a divide by zero error when the agent
has reached the goal. It is common in this case to give the agent a
large conditional reward for completing the mission.

In EM applications not only the complexities of the robot itself,
but also the operating environments are intrinsically challenging.
Furthermore, the missions that the robots are trying to accomplish
can be complex. For instance, if the robot is expected to find the
shortest path, to cover an entire target area, or detect a specific
target in a search and rescue (SAR) operation. While some robots
may be expected to operate in the same region for every mission,
observing the same lake on a daily basis, for example In such
scenarios, while the area may remain the same and known to
the robot, the conditions can vary dramatically across multiple
different time scales. In other applications, such as fire-fighting or
emergency SAR the agents may have to adapt to completely new and
a priori unpredictable environments in every mission. This means
that effective active EM systems should be able to adapt online to a
wide range of conditions and environments. Using RL techniques is
one way bywhichwe can generalise the performance of an agent and
extend the functionality to multiple different environments.

It should also be noted that any real active EM system, that
is put into a real use case scenario, should be designed with great
care towards the energy constraints. This is because the time scale
of these missions can be long undefined prior to the mission start
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and safe refueling locations may be few and far between. For EM
systems to be effective and worthwhile they need to bring long-
term autonomous persistent monitoring to the region of interest
Egerstedt et al. (2018). With current battery technology, the vast
majority of systems will have to stop and recharge. This is a
much bigger issue for some platforms than others, for example,
small autonomous multi-rotor UAVs have a very limited flight
time Azar et al. (2021). This constraint adds additional layers of
complexity for traditional optimization that can be quite simply
added to a reward function in RL, making it easier to consider from
the beginning of the design process, perhaps at the cost of additional
training time.

One EM example where RL and DRL have proved to be
effective is the patrolling problem Luis et al. (2020). In this problem,
the agent must cover an area effectively under time and energy
constraints. Furthermore, this problem can be inhomogeneous
(when some areas of the region of interest may be of more
importance than others). Here the agent must learn to cover the
target area completely while more regularly visiting some areas than
others. In real situations, these areas of high importance will also
change themselves meaning that no area can remain forgotten for
too long as it may have become important as time passes. One can
see the complexity of the problems that active EM can pose and how
RL offers a high-level and intuitive design that leads to the desired
behaviour through trial and error.

One final note on the application of RL to EM is that in
environmental sciences it is standard practice to use simulations for
predictions and research. As a result, there are many sophisticated
and standard simulations which can generate data and model
environmental processes. These simulations could be used to train
RL andDRL agents for active EM.This potentiallymeans developers
of RL systems do not have to build their own simulations which,
due to time and budget restrictions, could potentially over-simplify
the environmental dynamics negatively impacting the performance
of the RL agent. And so there is a potential area of technical
contribution that can be made by porting these simulations to
popular development platforms in robotics like Gazebo which
is used commonly in conjunction with the Robot Operating
System (ROS).

2.4 Reinforcement learning for multi-agent
environmental monitoring systems

So far we have discussed RL in the context of single-agent
systems. However, multi-agent robotic systems or robotic swarms
are ideal solutions to many of the challenges imposed by active
EM. Multi-agent systems are teams of autonomous agents that can
cooperate on theirmovements, sensing and computations to achieve
a common goal. Using multiple agents for active EM improves
performance, time and energy efficiency and allows the system to
cover wider areas. It also can add redundancy as there are multiple
robots performing the same task. Designing multi-agent systems,
with traditional methods, can be challenging as not only does
each individual robot have to be able to perform in a challenging
environment, but also the collective behaviour must also be able to

adapt in real-time to a priori unknown disturbances and avoid inter-
agent collisions and ultimately adaptive behaviour is preferable in
changing environments Busoniu et al. (2008).

In the same way that RL and DRL can be used to encode
complex behaviour onto single agents, multi-agent reinforcement
learning (MARL) can be used to encode the behaviours at the
level of the swarm Kouzeghar et al. (2023). In MARL, the agents
coexist and interact with the same shared environment. In such
scenarios, they must consider how to maximize not only their
individual reward but also a collective reward. When you have
multiple agents in a shared environment their goals might be shared
or opposed. In systems where agents share common goals the
system is known as cooperative while in systems where agents have
opposing interests, the system is called competitive. In systems with
multiple optimization objectives, there may be a mix of competitive
and cooperative behaviours and the reward function should reflect
these goals. Consider the example of a team of factory robots tasked
with cooperatively lifting a block towards a goal. Each agent will
receive an individual reward for its own actions such as approaching
and touching the block. However, we must now also consider the
joint reward, which is a reward that all agents receive for actions that
accomplish the overall system goal: to lift the block. In this case,
the joint reward will be given when the block moves towards the
goal location. While agents may learn to cooperate organically, joint
rewards can also be given to directly encourage cooperation and
shorten training time. In this example, this might be a joint reward
for synchronized lifting actions.

Like the systems themselves, MARL training can either be
centralized or decentralized. In centralized training approaches
agents share experience from previous training episodes. This gives
agents the opportunity to learn fromdata theywould not have access
to during execution Lin et al. (2023). In this case, the agents will
have a richer idea of the operation environment and can learn from
other agent’s policies while in a fully decentralized training, agents
still only learn from their own experience. It is worth noting that
some MARL systems are simply composed of multiple single agents
learning in the same environment but not sharing any training data.

2.5 Limitations of reinforcement learning

As discussed RL and DRL can be used to train robust and
intelligent agents for a variety of important applications. However,
these algorithms are not without their limitations. One of the biggest
limiting factors for RL is that it is very sample-inefficient. Training
agents to operate, even in the simplest system, can take hundreds
of thousands of iterations Li et al. (2023). This is especially limiting
in the field of robotics where agents will be deployed on physical
systems. In many cases, it is near impossible to train agents in
the practical domain. To avoid this issue it is common practice to
develop simulations that mimic the real operation environment and
train the agent there. But here lies another limitation of RL, model
mismatch. This is the difference between the simulation and the
true environment, these differences are always present and since
one cannot simplify the real world, simulations must capture all of
its most important elements. It is conceivable that agents trained
in simulation will converge to an optimal policy but not behave
optimally on the physical system due to this mismatch. This is
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especially important for EM and in much of the literature addressed
in this, paper simulation environments are not comprehensive.
More dynamic solutions are available for robots, for example, in
Feiyu et al. (2024) gazebo is used to train agents or in Liu and
Bai (2021) where a Geographic Information System was used to
generate terrain data. An important step for EM is to bridge the
gap between existing engineering and environmental simulations
and tools allowing researchers to utilize the advantages of both
platforms. Despite these limitations practical results have still been
achieved with constrained simulations but more accurate training
environments often mean better and more reliable results.

The increasing complexity of simulation naturally brings an
increase in training timewith each iteration taking longer to process.
A common critique is that development of RL can be slow since some
agents require days to train. Complex systems also require powerful
computational resources. RL algorithms are also known to be very
sensitive to training parameter values such as learning rate and
discount factor and attempts at training may lead to no solutions.
Tuning these parameters relate to the balance of exploration and
exploitation. This refers to whether an agent should choose to try
a new action in a given state (explore) or take an action which
it knows will bring some reward (exploit). Exploring may shed
light on new, more desirable behaviour, but too much, may lead
to intractable convergence times or no convergence at all. How to
handle this trade-off is still an open question in RL. An incorrect
balance of exploration and exploitation can lead to the singularity
problem which is when the agent’s policy or value function becomes
unbounded or diverges during training.

For some applications of RL, one may encounter the issue of
sparse rewards. The sparse reward problem refers to systems in
which an agentmay only receive rewards in certain scenarios. Like in
collision avoidance, for example, if the agent does notmeet obstacles
often then it may not learn how to avoid them Hu et al. (2023).
Sparse rewards might also be inherent problems of the operation
environment themselves, such as in an underwater environment.
Despite these limitations, RL and DRL are still promising solutions
to real and complex problems, but researchers should be informed
of these issues during development.

2.6 A general framework for active
environmental monitoring problems

The active EM problem can be formulated as a Partially
Observable Markov Decision Process (POMDP). A POMDP is a
mathematical framework used tomodel decision-making problems,
though unlike a normal Markov decision process (MDP) a POMDP
does not assume the agent has access to the true underlying states.
This is a useful practical assumption for real systems as EM robots
have limited information about the underlying target phenomena
and even their own states in practice. Since agents cannot be certain
of the state of the underlying function, they maintain what is called,
a belief state. The agent takes actions based on the current belief
state. Each action moves the agent to a new state and the agent
receives a reward based on this outcome. The goal of an active
sensing agent solving a POMDP is to take actions that provide
the most information and maximize the cumulative reward over
time. One can change how much an agent prioritizes immediate

reward vs. cumulative reward by leveraging a discount factor. It is
common for RL problems to be modelled as an MDP or POMDP
in the literature. Nevertheless, in this work, we propose a more
general framework that also includes active sensing techniques as
a special case. Table 1 shows how the components of a POMDP
are comparable in RL and active sensing. To generalize further, we
formulate a decentralized POMDP (Dec-POMDP) to includemulti-
agent systems reviewed in Section 2.4 as they become more and
more popular. It is also common to formulate multi-agent systems
as aMarkov game as discussed in Littman (1994).TheDec-POMDP
is a tuple that consists of:

• N is the number of agents (for a single agent system N = 1).
• S is the set of possible states st of the environment.
• A is the set of joint actions such thatAm = {am1 ,…,a

m
t } is the set

of actions of agentm.
• Z is the set of joint observations such that Zm = {zm1 ,…,z

m
t } is

the set of observations of agentm.
• T :S ×A×S → [0,1] is the transition probability function.
• R:S ×A→ℝ is the joint reward function.
• γt ∈ (0,1] is a discount factor at time t.

Since it is assumed that an agent does not have access to ground
truths about its state in a Dec-POMDP problem, a joint belief state
is maintained which is the probability of being in a state given the
history of all joint actions and observations:

Bt (st) = P(st|z1:t,a1:t) , (5)

The joint action space A is described by all the actions an
agent can take, the observation space Z is made up of all the
possible observations an agent canmake, and the transition function
describes the probability of transitioning from the state st to state
st+1 when joint action at is taken. The reward function is a type
of information that measures the ‘goodness’ of performing a joint
action at in a given state st , the discount factor is used to decide how
much to consider future rewards compared to immediate reward
when taking the next action. It is worth noting that in model-based
active sensing and RL, the agent can make a prediction of a future
state based on its current belief and predicted observation ̂zt+1

Bt+1 (st+1) = P(st+1| ̂zt+1,at+1,Bt (st)) . (6)

The goal of solving the Dec-POMDP is to find an optimal joint
policyπ∗ thatmaximizes the total reward.A single jointmulti-agent
policy could be given as:

π∗ = argmax
π
𝔼[

H

∑
t=0

γtR(st,at)] , (7)

whereH is the time horizon and the expectation is takenwith respect
to the probability of making a joint observation given the current
belief state and joint action P(zt+1|(Bt(st),at)).

3 Methodologies in active
environmental monitoring

In EM there are a number of common methodologies used
to achieve specific outcomes or incorporate essential required
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TABLE 1 Table summarizing the how components of the POMDP compare between active sensing formulations and RL formulations.

POMDP Reinforcement learning Active sensing Summary

State
S

Represents the environment’s true
information which cannot be directly
observed by the agent

Represents the underlying
characteristic of the environment or
phenomena that the agent is observing

Both maintain a beleif state Bt(st). RL
focuses on representing unobservable
true state, while active sensing aims to
understand observed characteristics to
reduce uncertainty

Action
A

Actions are taken by the agent to
influence the environment based on the
current belief state Bt(st)

Actions are the agent’s decisions on
where to sample and collect data.
Actions are typically selected to
maximize information gained and/or
reduce uncertainty in the belief state
Bt(st)

RL actions influence environment
directly, while active sensing actions
aim to maximize information gain
through data collection

Observation
Z

Observations in RL provide partial
information about the hidden state

Observations represent the data or
measurements collected by the sensors

Typically directly comparable used to
infer the underlying state S

Transition Function
T :S ×A×S

This is an internal model of the
environment describing the probability
of how the environmental states evolve
from the current state to the next state
under the influence of a specific action
at

A model of the environment describing
how it’s characteristics change when
agents take a specific action at .
Typically models the dynamics of what
is being sensed

In RL, transition function models state
evolution; in active sensing, it models
environmental characteristics change

Reward Function
R:S ×A

A single scalar feedback value that
determines how effective a given action
was at the current time step. It is a
high-level description of the agent’s
desired outcomes

The value of information gain.
Assigned based on how well the latest
sensing action reduces uncertainty in
the belief state

RL reward is more literal, it is intrinsic
to learning and can incorporate the
active sensing reward

Discount Factor
γt

A scalar factor that determines how
much weight the agent is giving to the
future long-term rewards compared to
the immediate reward

A factor that balances between
exploration of new unobserved regions
and exploitation of data in the
previously sensed regions with high
level of information

RL balances future rewards against
immediate, active sensing balances
exploration against exploitation of
existing information

behaviour for an autonomous system which are addressed in
this section. Specifically, we look at coverage, patrolling, path
planning, collision avoidance, exploration, search and rescue, source
seeking, source estimation and boundary tracking. In practice, these
behaviours are often closely linked and may be used together on a
single system. For example, a search and rescue system may need
to use a coverage protocol to ensure no targets are missed within
a search area. Thanks to the flexibility of RL it has been widely
applied to each of these behaviours and the literature in this section
is organized according to which methodology it is applied to.

The application of RL to these systems requires many design
considerations. The learning agent needs to have access to
information that allows it to learn how its actions influence the
environment and how it can take subsequent actions to maximize
reward. This requires careful design of a state-space and training
environment that provides the needed information and is a reliable
model of the true environment representing its features and
constraints alike.The state space is often used as the input for the RL
agent and thus the policy should be designed accordingly.This is also
true of the action space which should reflect the environment and
the demands of the physical system, a ground robot cannot change
its altitude, for example. The state space is often used as the input

for the RL agent and the action space is the output. This means that
a compatible RL algorithm and policy should be chosen. There is a
significant body of research in RL that combines different learning
algorithms with different policies. In a recent example, the authors
replaced the standard Q-table in Q-learning with a neural network
that used a radial basis function to represent the policyWang Y. et al.
(2024). While the state space may contain information not directly
accessible in the real environment, the observation space should
only contain information that is feasible for the agent to access.
For instance, in source estimation, the agent would not be able to
observe the true state of the field, only discrete sensor readings, but
in simulation training this ground truth is known. For some ground
truths, that are only available in the simulation environment, can be
strategically used to reward the agent during training. The reward
function itself is designed in a way that reflects the overall goal of the
system and considers the constraints of the operating environment.
It is common to use different rewards under different conditions like
using one reward to encourage exploration of new areas when the
local proximity of the robot is free of obstacles but in the presence
of obstacles reward the agent for successfully avoiding them. This
strategy can also help elevate the problem of sparse rewards present
in some applications and environments.
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3.1 State representation in active
environmental monitoring

A large portion of the literature in RL is based on model-free
approaches as they do not have the issue of model mismatch and are
generally quicker to train. However, it is often the case in EM that
the goal of the system is to produce amodel of the environment, and
hence, there is a higher proportion of model-based RL approaches
in EM literature. The model state S can include the environmental
phenomena we are observing, the dynamics of the environment, the
dynamic state of the robot and other agents in the team. The way
that the model is represented depends on the specific nature of the
system, the monitoring task and the RL algorithm.

In reality, environmental phenomena are continuous but
attempting to model them exactly can make training difficult and
slow. As a result, it is often the case that the state space is discreteized.
In EM, this is often done via tile coding Padrao et al. (2022) in
which the state space or environment is split into a 2D grid of tiles.
In systems where there is a need to highlight specific information
or features of the environment, one can use a relevance map. A
relevance map is made by encoding these tiles with information that
helps an agent make decisions. Tile encoding and image inputs are
also viable for 3D state representations in active EM. For example,
Liu and Bai (2021) uses DRL for coverage path planning and
represents the 3D path of the agent as a 2D grey-scale image. This
is achieved by what they term ‘the elevation compression method’
where the grey-scale value of each cell represents the altitude. Using
feature extraction the CNN can successfully extract a 3D path from
the grey-scale values. These types of state space representations are
abstractions of the environment and are sometimes represented as
an image, which is a concise way of presenting such information.
Abstracting the environment to these discrete representations is
good for reducing complexity but can limit performance to be
optimal with respect to the abstracted environmental representation
rather than the actual real-world environment.

As mentioned before, some research in RL has been applied to
the patrolling problem. The patrolling problem in EM involves the
agent revisiting the same locations periodically. Furthermore, in the
real world, the application of patrolling is often inhomogeneous,
meaning that some areas with a higher importance must be visited
more frequently than others and the importance of the areas itself
may also be variable over time. The environment in such problems
can be represented as a relevance map. Luis et al. (2020) studied the
case of monitoring the Ypacaraí Lake which is an essential source of
drinking water and a popular tourist destination in Paraguay. The
Ypacaraí Lake is a commonplace case study for the conservation of
water resources. The Ypacaraí Lake is unfortunately suffering from
an abnormal eutrophication process due to increased agriculture
in the surrounding areas. Autonomous surface vehicles (ASVs)
have been deployed and multiple different representations of the
environment were considered. First, a model-free approach is used
where the environment state S is just the position of the agents,
then a binary relevance map that splits the lake into cells and
colours visited cells as black and un-visited as white, which models
a homogeneous patrol. Finally, a relevance map that colours cells a
shade of grey which depends on the time since the last visit and their
level of importance.The latter relevance map-basedmethod leads to

the best results.The state is passed to a convolutional neural network
for DRL.

Relevance maps have also been used for patrolling with UAVs
Piciarelli and Foresti (2019). In this work, the relevance map is
also used to solve an inhomogeneous patrolling problem and the
colouring grid represents the importance of areas. The relevance
map is combined with a binary mask, which tells us which states
have been visited, before being passed to a Convolutional Neural
Network (CNN), which is used to extract features from images.
UAVs that utilize tile-coded maps have also been useful in SAR
applications Lu et al. (2022). The target area is represented as a grid
of sub-areas. Each sub-area or ‘pixel’ can have 1 of 3 values: imaged,
being imaged or un-imaged. The goal is to train a policy to image
all areas. It is also worth noting that in many UAV applications, the
navigation module of an autonomous system will have to consider
no-fly zones. These are areas where it may not be legal or safe to
fly a small UAV. Theile et al. (2020) develop a state representation
as a 3-channel map where the channels describe no-fly zones, target
zones and take-off and landing zones. RL has also been discussed
for use in agricultural applications Binas et al. (2019). A similar
environmental representation is used for agricultural applications in
MARL Faryadi andMohammadpour Velni (2021). Here the world is
split into a ‘grid world’ where each grid point is a possible state. The
goal of the study is to find free states, target states and states blocked
with obstacles.

Not all model-based approaches use relevance maps. For
example, Chen J. et al. (2020); Rückin et al. (2022); Viseras
and Garcia (2019) use Gaussian Processes to represent the
environmental phenomena. A Gaussian process (GP) is a
probabilistic model often used in EM to represent spatial and spatio-
temporal fields. GP regression allows agents to develop continuous
predictions of a field and give variance values at each prediction
point based on a set of discrete observations. Learning a GP as
a model of the environment is different from a GP being used
as a function approximate for the RL policy (in place of a neural
network in DRL, for instance) and the reader should take care not
to confuse the two applications Gadd et al. (2020). GPs have also
been implemented in RL to improve exploration during training
Zhao et al. (2024).

It should be clarified that not all systems in the literature that use
some kind of representation of the environment are model-based.
The classification depends strictly on how the RL algorithm learns.
For example, in Placed and Castellanos (2020) DRL is used to make
decisions in active Simultaneous Localization andMapping (SLAM).
Thedistinction here is that even thoughwehave aDRL agent guiding
the robot’s position for the SLAM process the inputs to the DNN
are limited to the most recent laser scans, not the map produced by
SLAM. Here the RL agent does not have any information retention
about the model and cannot predict future observations based on
previous ones.

3.2 Actions, observations and rewards in
active environmental monitoring

As already discussed, it can be very difficult to hard code
complex behaviour onto robotic systems and RL provides us with
strategies for doing so. In EM and robotics, the nuances of the
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desired behaviour depend on the specifics of each problem but
there are overall mission goals common across the literature. This
section reviews the different methodologies used to achieve those
mission goals. As seen in the previous section, there are multiple
ways to represent the environment/agent state S , nonetheless, how
a system can act to achieve its goals depends on its observations
{Z}, action space {A} and reward function R. The main factor,
driving the resultant behaviour of a system is the reward function.
Ultimately, the principal aimof reward shaping is to guide training to
be efficient and effective in producing the desired performance and
optimal policy. Typically, rewards can be sparse or dense. A sparse
reward functionmeans the agent receives a reward only occasionally
which can lead to long training times because agents need more
experience to understand the implications of specific actions. Sparse
rewards can be the result of an intentional design choice or of a
sparse environment, like in deep-sea applications. Dense rewards are
given more frequently and can produce more informative feedback
on each action. While a well-designed dense reward function can
speed up the training convergence and lead to good performance, it
is worth noting that they can also impose the designer’s preconceived
notions of optimal behaviour on the agent rather than allowing the
agent to learn for itself. It is also important to find a good balance
between an action spacewhich is simple enough to allow the training
to converge in a reasonable time frame and also complex enough to
allow optimal behaviour.

3.2.1 Coverage and patrolling
It is often the case in EM where agents will need to perform

full area coverage. This is where a single agent or a team of m
agents are tasked with covering an area completely under time or
energy constraints. The coverage problem appears in a plethora
of EM applications and is often implemented as a search step
prior to other mission goals like source seeking or SAR which
are described later. For example, in Wu et al. (2024) a coverage
algorithm for multi-agent maritime SAR is proposed in which
DRL is used to train agents to navigate to a grid location that has
the highest probability of containing a target. This probability is
based on novel drift simulations at a given time which predicts
target trajectories and search boundaries that allow an agent to
find targets thus facilitating their rescue. In real-world scenarios,
the desired area to cover may not be defined a priori, like in
the case of monitoring a wildfire, which can spread rapidly over
time. Coverage also encapsulates patrolling which has been partly
discussed in Section 3.1. A summary of RL-based coverage and
the relevant literature is provided in Table 2. A large proportion of
the areas we want to study with EM are boundless or undefined
meaning that complete and exact coverage becomes difficult. Most
readers are probably familiar with the travelling salesman problem
where an agent, the salesman, must find the shortest path that
visits every node once and then returns to the origin. Once the
salesman has visited every node it can be said that the salesman has
achieved coverage. The travelling salesman and coverage problems
are generally NP-hard. That means as the problem scales up,
the time needed to find an exact solution becomes infeasible
Ai et al. (2021). This does not even account for the complex,
dynamic, and partially observable nature of the environmental
phenomenon aimed formonitoring.This is where RL is employed to
learn the optimal coverage behaviour through interaction with the

TABLE 2 Characteristics of reinforcement learning based coverage
and patrol.

Characteristic Description

Objective Maximize area coverage and importance
(patrolling)

State Representation Environment states as grid cells,
importance information

Action Space Movement actions and sensing actions

Reward Function Rewards for total coverage, visiting new
areas, patrolling importance

Observation Environmental sensing target

Challenges Sparse rewards, large spaces and
inhomogeneous patrolling

Citations Pham et al. (2018); Faryadi and
Mohammadpour Velni. (2021);
Theile et al. (2020); Luis et al. (2020);
Lu et al. (2022); Kouzehgar et al. (2020);
Luis et al. (2021); Ai et al. (2021)

environment. Luis et al. (2021) compared the use of DRL techniques
to evolutionary algorithms for the application of patrolling the
Ypacaraí lake. It was found that DRL performs better when there is
a higher number of solutions which is expected in EM applications.
Evolutionary algorithms are also well suited to active EM for similar
reasons to RL and the combination of both is trending research
Zhang et al. (2023).

In Lu et al. (2022), they point out the limitation of the field of
view for visual sensors used in SARUAVs. In the case of a camera, at
lower altitudes less of the target area will be in the frame and there is
a need for an efficient coverage algorithm tomake sure every section
of the target area is scanned. In this work, the scanning mechanism
is included in the discrete action space {A} (scan left or scan right)
along with the movement actions (fly straight, turn left, turn right).
A DRL agent is trained using Deep Q Learning (DQN) to fully
cover the target area while minimizing the number of actions taken.
To this end, movement actions are given a small penalty (negative
reward) R as they only assist in the scanning of the target area but
do not achieve it directly. There is also a penalty for when the UAV
is not inside the target area. A reward is given proportional to the
number of cells in a relevance map that have been scanned or are
currently being scanned.A large reward is given if complete coverage
occurs. Although this method was shown to improve the efficiency
of UAV SAR coverage the system is too simplified to allow for true
optimal behavior.

The coverage problem is also directly suited to multi-agent
systems and it is easy to see how multiple agents with the possibility
to collaborate can cover a given area more efficiently than a single-
acting agent. Pham et al. (2018) proposed using MARL to design
a distributed algorithm for coverage of an unknown field while
minimizing overlapping scanned areaswith other agents.The system
is formulated as a Markov game, which is an extension of an MDP
that includes a joint state space S and action space for multiple
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agents interacting with the same environment to optimize a joint
policy. In this work, individual agents have a discrete action spaceA
that allows them to pick one of 6 actions: north, east, south, west, up
or down.The set of actions agents take is called the joint action {Am}.
Agents must reach a consensus on the next joint action. To ensure
coverage while minimizing overlapping, agents get an individual
rewardRm proportional to the number of cells they covered minus
the number of overlapping cells.There is also a global reward applied
to all agents, equally used to help train the converge problem faster.

Kouzehgar et al. (2020) proposed MARL for a structured
approach to area coverage for a team of ocean buoys. They modify
the Multi-Agent Deep Deterministic policy-gradient (MADDPG)
reward function to intrinsically bring about the collective behaviour
of the swarm. The rewardRm depends on the state S of the swarm
and thus, the reward itself has a collective behaviour. A positive
reward is given based on the overlap between an ‘agent coverage
polygon’ (a circle around the agent) and the ‘region polygon’ (the
target area) and the total overlap which represents the total area
covered. While the agents still receive some independent reward
based on their actions the nature of this design is to reward the
swarm as a whole for desirable collective behaviour rather than to
encourage individual behaviour within the swarm.

3.2.2 Path planning and collision avoidance
Path planning and collision avoidance are often solved under

the same problem framework. This is because, in practical
situations, obstacles are often the reason that advanced path-
planning techniques are required. In EM, especially SAR or indoor
applications, a robust method for detecting obstacles and planning
trajectories that allow the robot to navigate around them safely is
crucial. However, many standard methods of collision avoidance
are designed specifically for static obstacles Choi et al. (2021). RL
provides a good option as it can be trained on many different
environments without having to hard code behaviour for each one
making it easy to generalize to unseen environments. A summary of
RL-based path planning and collision avoidance algorithms and the
relevant literature is provided in Table 3.

On the other hand, for UAVs that operate at a high altitude,
such as for terrain mapping or pollution monitoring, there are not
likely to be many obstacles that an agent will encounter, especially
in single robot systems where there are no inter-agent collisions.
It is, however, especially important for UAVs to have efficient and
reliable path-planning capabilities due to their restricted flight times.
Due to the nature of environmental processes, autonomous UAVs
need to be able to adapt in real time to the information they
collect. This is known as informative path planning (IPP) and is a
crucial step in active EM. Rückin et al. (2022) combined DRL with
a Monte Carlo tree search to reduce the computational burden of
the predictive planning. This is also useful in development during
the simulation stage as comprehensive active sensing simulations
can be expensive. They also address the issue that, in the current
literature, the action space is typically 2DA ⊆ ℝ2.This is because 3D
action spaces A ⊆ ℝ3 are very large, making it difficult for training
to converge. Nevertheless, this simplification does not make use of
an aerial vehicle’s principal virtue which is their ability to move
in three dimensions. To fully unlock the potential of autonomous
aerial systems for EM, more work like this must be done to include
3D action spaces. The action space A ⊆ ℝ3 considered is a discrete

TABLE 3 Characteristics of reinforcement learning based path planning
and collision avoidance.

Characteristic Description

Objective Find safe, efficient paths and avoid
collisions

State Representation Environment states, possibly occupancy
grid

Action Space Movement actions or possible trajectories,
sensing actions

Reward Function Penalty for collisions, rewards for
avoidance and goal reaching

Observation Sensor data for obstacle detection (e.g.,
vision or LiDAR)

Challenges High-dimensional states, real-time
constraints and dynamic obstacles

Citations Larsen et al. (2021); Popovic et al. (2020);
Rückin et al. (2022); Chen et al. (2017);
Yanes Luis et al. (2022); Choi et al. (2021);
Woo and Kim. (2020)

set of possible measurement positions. The reward received by the
RL agent depends on the reduction in predictive uncertainty of the
environmental model and the cost of the action taken. The cost of
the action is the flight time between measurement locations. The
environmental model is a Gaussian Process which is updated using
a Kalman filter Popovic et al. (2020). A Monte Carlo tree search is
used to traverse the policy, which is represented as a convolutional
neural network to decide the most information-rich actions. This is
stoppedwhen a budget ormaximal search depth is reached.This tree
search speeds up training and performance by removing the need
to predict the informativeness of every possible action allowing for
3D action spaces.The authors showed their method performs better
than multiple benchmarks.

Larsen et al. (2021) compared some state-of-the-art RL
algorithms for navigating unknown environments on an ASV.
The desired behaviour was efficient path planning and collision
avoidance to reach a position goal. The algorithms tested were
Proximal Policy Optimization PPO, Deep Deterministic Policy
Gradient (DDPG), Twin Delayed DDPG (TD3) and Soft Actor-
Critic (SAC). The performance for each algorithm was measured
not only by the total reward but also by mission progress,
collisions, time taken and cross-track error. The algorithms were all
implemented using Python and StableBaselines which are discussed
in Supplementary Material. The simulated operation environments
were randomly generated in calm ocean settings with moving
obstacles being introduced later, in more challenging environments.
Agents were tasked with reaching the goal without colliding along
the way. The reward function R punishes agents for colliding or
being too close to obstacles and rewards them for progress towards
the goal. After training, each agent was tested in environments of
growing complexity. It was found that PPO produced agents that
performed consistently across all environments in cases where the
other agents did not. A repeat of these tests was run on agents
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trained with a simplified reward function that was more sparse.
In this case, it was found that a sparse reward function stunted
the performance in every case. While PPO still shows superior
performance its generalisation capability is not nearly as good as
the case under a denser reward. This work sets a good example
for comparing RL algorithms in EM and demonstrates that more
standardization across the literature would afford a more empirical
consensus on the performance of state-of-the-art algorithms in
different applications.

AsmentionedUAVs are an ideal choice for EM since they can fly,
butmuch of the research for autonomousUAVnavigation focuses on
2D space since 3D spaces are more complex. InWang J. et al. (2024)
a 3D path-planning algorithm with collision avoidance is proposed.
Collision avoidance is inspired by the International Regulations
for Preventing Collisions at Sea (COLREGS). It uses four distinct
collision avoidance behaviours, which are part of the discrete action
space, to avoid collisions with an obstacle. The UAV will undergo
collision avoidance behaviour when an obstacle is within a certain
distance of the UAV. Using a spherical Artificial Potential Field
(APF) that has 3 zones: safety zone, collision avoidance zone and
mandatory collision avoidance zone, the UAV can choose what
action to take. The authors, note that RL can be difficult to apply
to collision avoidance due to sparse rewards, and solves this by
using the different zones of the APF to design a dynamic and
conditional reward that rewards an agent for approaching its 3D
goal way-point when no obstacles are present in the collision zone.
When an obstacle is detected the agent is rewarded for avoiding
collisions by using the correct collision avoidance behaviours
derived from COLREGS.

COLREGS is designed for maritime missions and applying
it to robotic applications in bridges the gap to real-world
implementation. COLREGS is also leveraged in Li et al. (2021) with
DRL to perform collision avoidance for an ASV. The APF is also
used to generate a dynamic reward function that eliminates the
problem of sparse rewards. In this solution, DQN is implemented
with a continuous action space that represents the heading for the
agent. This system, which is designed to adhere to the mandatory
COLREGS results, is only tested in numerical simulations and
so does not take into account the complexity of the real world
and the highly dynamic and variable ocean environment. Another
example of using RL to train agents to follow COLREGS is given
in Wen et al. (2023). Here, a multi-agent team of ASVs are trained
to avoid collisions with other agents in the system, environmental
obstacles and other ships. An action evaluation network is pre-
trained using a large data set of real, pre-recorded COLREGS
avoidance trajectories. This is combined with an action selection
network for cooperative path planning.The action selection network
is trained on individual agents using DRL. The reward function
rewards agents for successfully avoiding obstacles in such a way that
aligns with COLREGS.

As mentioned, multi-agent systems hold massive potential and
are the key to the future success of autonomous active sensing in
EM. Cooperation for multiple agents adds complexity to both path
planning and collision avoidance. Onemay choose to use RL in such
systems as it allows agents to learn coordinated policies that may
be complicated and time-consuming to hard code. Yanes Luis et al.
(2022) uses DQN with prioritised experience replay to develop a
multi-agent framework for IPP. The proposed method is tested and

TABLE 4 Characteristics of reinforcement learning based exploration.

Characteristic Description

Objective Discover unknown environment

State Representation Environmental features, grid cells or
frontiers

Action Space Movement actions, sensing actions

Reward Function Rewards for successful exploration,
penalty for revisiting areas

Observation Sensor data for map building or data
collection

Challenges Balancing exploration and exploitation,
stopping conditions

Citations Niroui et al. (2019); Hu et al. (2020); Chen
et al. (Chen et al., 2020a; Chen et al.,
2020b); Maciel-Pearson et al. (2019)

applied to the Peralta et al. (2020). They also use their framework
to address the credit assignment problem Mao et al. (2020). This is
a critical challenge in RL and refers to the difficulty of determining
which actions or decisions taken by an agent in the past, contributes
to a particular reward or outcome.

3.2.3 Autonomous exploration and SAR
Exploration is different to the coverage problem as it is

concerned with autonomously gathering information about its
environment to discover unknown areas often with the aim of
achieving other tasks. Coverage on the other hand aims to visit
every point of a given area. These two are often combined if the
aim is to cover an unknown area Chen et al. (2021) but sometimes
other goals are also combined with exploration. Autonomous
environment exploration is required for applications like SAR
Zuluaga et al. (2018). SAR is one of the most popular applications
of RL in environmental monitoring. Providing effective solutions
has great value in reducing human fatalities following disasters
where traditional resources can become stretched. Research has
been conducted into both indoor GPS-denied SAR and outdoor
SAR with and without GPS localization. Most of these applications
note the need for sophisticated intelligence in these agents as they
often need to navigate previously unknown, dynamic, and cluttered
environments and identify victims within them. A summary of RL-
based exploration and SAR along with the relevant literature is
provided in Tables 4 and 5 respectively.

It can be argued that due to the unpredictability of SAR
environments, such systems should not solely rely on a good GPS
signal and redundancy is required in their localization system.
GPS-denied localization is often achieved through SLAM, especially
in indoor environments. This uses a vision sensor like a camera
or LiDAR to iteratively map the surroundings and localize the
robot within them. Active SLAM refers to systems that use SLAM
data to autonomously navigate their environment to facilitate more
accurate measurements of the environment Placed et al. (2023).
Active SLAM can also fit under the umbrella of active sensing
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TABLE 5 Characteristics of reinforcement learning based search
and rescue.

Characteristic Description

Objective Locate and assist or recover targets

State Representation Environmental features, grid cells, target
locations

Action Space Movement actions, alarm/communicate,
sensing actions

Reward Function Rewards for finding targets, exploration,
safe navigation

Observation Sensor data for navigation or target
detection (e.g., vision or LiDAR)

Challenges Handling dynamic environments, long
horizons, target detection

Citations Zuluaga et al. (2018);
Sampedro Pérez et al. (2019); Peake et al.
(2020); Kulkarni et al. (2020); Ai et al.
(2021)

and the Dec-POMDP discussed in section 2.6. SLAM can be
combined with RL agents to achieve active SLAM in cluttered
environments useful for SAR applications. Placed and Castellanos
(2020) use a trained DDQN and Dueling double deep Q Learning
(D3QN)policy as the decision-makingmodule in active SLAM. SAR
missions would also typically involve some methods for detecting
victims. In Sampedro Pérez et al. (2019) 2D LiDAR SLAM is used
for localization while a DDPG agent is used to perform image-
based visual servoing. This is where image features are used as
control signals to direct the sensing agent towards a target. Both
high-quality simulation and experimental results demonstrate that
RL can be used in this system to produce effective solutions
for image-based visual servoing in cluttered environments. This
paper also demonstrates that RL systems can be robust to model
mismatch between simulation and reality. The agents were trained
largely through simulations but still performed well in real-world
environments.

During SAR exploration it is important to make sure that
all of the region of interest is searched. One popular companion
of SLAM for indoor exploration is called ‘frontier exploration’. A
frontier is defined as the border between mapped and unmapped
areas that are not known to be an obstacle wall or boundary.
The hypothesis is that agents can achieve complete exploration by
visiting frontiers until there are none left. The standard method
of choosing which frontiers to visit is either breadth-first (nearest
frontiers) or depth-first (most distant frontiers). Niroui et al. (2019)
proposes using an Asynchronous Advantageous Actor-Critic (A3C)
DRL agent as an alternative method of frontier selection to improve
the operation time of a frontier exploration-based system. The
agent aims to maximize the information gained along a robot’s
path of exploration. Compared with several traditional exploration
techniques implemented on a physical robot, the authors prove the
superiority of their method in exploring the target area in a smaller
total distance.

Cluttered environments also exist in outdoor applications and
agents must also deal with potentially difficult weather conditions.
An important consideration for the actual deployment of these
algorithms is that different environments may demand different
physical UAVswith varying payload capacities and different sensors.
Robustness to such potential hardware changes is one of the key
requirements in developing these algorithms. Maciel-Pearson et al.
(2019) proposed an algorithm that can be used on any UAV with
any camera for autonomous exploration of outdoor environments.
They tested their algorithm in a simulated forest under different
conditions. The DRL agent is trained directly to explore a region
of interest and is penalized for collisions, revisiting areas, and
leaving the search area. A double state input S is utilized to
learn collision avoidance from raw sensor data Z , and complete
exploration from navigational history and an environmental model.
Outdoor environments are often difficult to deal with due to size.
Peake et al. (2020) developed a SAR UAV to search a large area in a
wilderness by splitting the area into unique regions on a quadrant
tree. Each quadrant is assigned a probability distribution indicating
that it currently contains a victim. A DDQN-trained policy is then
used to select which of these quadrants should be visited next
and generate an optimal flight trajectory across segments A that
maximizes information gain along the way. A second DRL agent
trained using Advantageous Actor-Critic (A2C) is used to allow the
agent to explore the target quadrant more freely to find a potential
victim via a continuous action space Acont. This combination of
discrete and continuous action spaces is a clever way of negating
the drawbacks of each option. The DDQN agent interacts with a
large area. A common and effective strategy for exploring large areas
while saving resources and ensuring convergence of the training is
to discretize the area.This can lead to a loss of optimally for the true
continuous environment. However, within the quadrant, which is a
small cell of the full environment, a continuous action space is used
which allowsmore dynamicmovement and better exploration of the
original continuous environment, thus reducing somedisadvantages
of a discretized environment.

Like all applications in EM, using multiple cooperative agents
can improve exploration performance. The benefits of cooperation
are especially true for SAR as these applications are time-critical.
A common technique for allocating search areas is to split the
target region into Voronoi partitions which can be either dynamic
or static. Hu et al. (2020) combines dynamic Voronoi partitions
for exploration with a DRL collision avoidance algorithm to allow
agents to safely explore their partitions. The assignment of Voronoi
partitions is an effective way to stop agents from colliding with each
other, however, navigating in a cluttered environment with obstacles
demands full online collision avoidance. DRL has proved to be an
effective solution for using raw sensor data for collision avoidance
Long et al. (2018); Chen et al. (2017).

As described in Section 2.6, active sensing tasks mostly follow
a generalized design philosophy of adaptive information gathering.
Sensing decisions are made based on collected data and/or a belief
model of the environment or target phenomenon Chen F. et al.
(2020). Viseras and Garcia (2019) proposed an algorithm based
on multi-agent DRL to make an algorithmic framework that
can be applied to different information-gathering tasks without
changing the underlying algorithm. To incorporate the needs of
different applications both free and model-based approaches are
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TABLE 6 Characteristics of reinforcement learning based source seeking
and estimation.

Characteristic Description

Objective Locate the source of phenomenon

State Representation Environmental features, source model grid
cells

Action Space Movement actions, sensing actions

Reward Function Rewards for locating source

Observation Intensity/Concentration values of
environmental target

Challenges Noisy and sparse information, dynamic
sources, initial search phase

Citations Duisterhof et al. (2021); Li et al. (2023);
Viseras and Garcia. (2019)

proposed. The base algorithm, named Deep-IG, is a multi-agent
extension of the A3C algorithm. The shared reward function is
dual objective, simultaneously minimizing both the total mission
time and the normalized root mean squared error in predicting
the time-invariant physical process. Agents are also penalized for
inter-agent collisions. The action space A, is made up of discrete
high-level robot movement commands. Deep-IG is shown to work
across different physical platforms without changing algorithmic
parameters. Experimental data is collected with 4 quadrotors for
a terrain mapping application and ground robots are used for
magnetic fieldmapping.Generalized reliable algorithms are valuable
for EM applications as every deployment situation is different.
Efforts such as this pave the way for widespread deployment as the
bespoke algorithms and hardware designs for an intractable amount
of potential monitoring applications are unrealistic, especially
nowadays that climate change demands a quick answer.

3.2.4 Source seeking and boundary tracking
Source seeking is useful in many areas of EM, whether it is

finding the location of a gas or radiation source, finding a wildfire
in a forest, or finding a victim in a SAR scenario. In practice, the
source concentrations can be very low and the data collected can be
highly noisy, especially when far away from the source. In such cases,
RL agents can become robust to high-noise environments with a
sufficient number of training episodes. In general, concentration can
be considered to be exponentially decaying as the distance from the
sources increases. This means it is common for reward functionsR
in source-seeking applications to be directly related to the observed
concentration values Z . Some systems are also concerned with
estimating the properties of the target phenomenon whose source is
being located, this is termed source term estimation (STE). Table 6
contains a summary of RL-based source-seeking algorithms and the
relevant literature.

Source seeking via DRL has been demonstrated on a nano
quadrotor with very highly constrained computational resources.
Using a cheap commercially available and common processor,
Duisterhof et al. (2021) demonstrated a source-seeking DRL agent

that is robust to high noise and shows consistent performance
across several real and simulated environments. A neural network
with only two hidden layers was trained to locate a source from
concentration measurements. Systems such as these demonstrate a
true potential for RL in EM. The main contribution of this work is
how affordable and disposable the nano quadrotors are and their
ability to operate in environments that may pose a risk to human
life.This systemuses a discrete action spaceA, made up of high-level
commands and a decoupled flight controller capable of translating
these into actuator commands.

Li et al. (2023) propose an active RL algorithm. Active RL
means there is information from the current state of the sensing
process guiding the decisions and hence training of the agent.
Here, the information metric is based on the maximum entropy
sampling principle. This method combines both model-free and
model-based approaches in RL into one algorithm based on recent
promising results from similar approaches Nagabandi et al. (2018);
Ostrovski et al. (2021). A logarithmic reward function is used to
account for the exponential nature of concentration decay over
physical space. In this system, they used an RL agent to optimize
the dual objectives of the source seeking and source estimation;
the agent must locate the source and maintain knowledge of the
spatial concentration distribution. To achieve this, keeping a balance
between the exploration of new areas and the exploitation of the
previously collected information is necessary.The trade-off between
exploration and exploitation is intrinsic to RL and active sensing
alike. In RL specifically, this is manipulated by changing between
future and immediate rewards using a discount factor γ defined
for each agent. This trade-off is itself also a common optimization
objective in time-constraint systems, where the agent becomesmore
exploitative as the mission progresses.The contribution of this work
is the use of active exploration within RL which is shown to increase
sample efficiency.

Gas source localization applications are often time sensitive
as dangerous gasses have the potential to do harm quickly and
good STE is required to coordinate an appropriate response. RL
approaches for source seeking and estimation tend to direct agents
by means of a discrete grid which can be limiting when applied
to practical scenarios. Park et al. (2022) leverages DRL to find the
optimal search path using a continuous action space. While the
proposed action space does contain a continuous heading allowing
for more diverse movement the limitations of a discrete action
space are not totally elevated since the robot moves a fixed distance
per step. For instance Zhang et al. (2023) combines a continuous
heading with a continuous speed command. To allow for quick
estimation of the gas distribution a particle filter is used and a
Gaussian mixture model is used to extract features that make for
suitable inputs to an instance of DDPG. They implement a gated
recurrent unit (GRU) into their DNN that allows for memory of
previous states and better STE. They verify the effectiveness of this
choice by comparing the learning performance with and without
the GRU.

Another area of research in which active EM can be applied is
concerned with controlling environmental conditions in sensitive
environments like artificial habitats or laboratories. While much
of this research is concerned with novel control algorithms some
have proposed using mobile sensors to complement this process
don (Bing et al., 2019); Jin et al. (2018); Xiang et al. (2013). Another
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example of where environmental conditions must be closely
monitored is in a space habitat like that of the International
Space Station. In Guo et al. (2021) they propose using moving
sensors for temperature monitoring and fire detection in a space
habitat called the Active Environmental Monitoring and Anomaly
Search System. They implement a dynamic value iteration policy
(DVI) to solve the problem which is modelled as a MDP. The
performance of the DVI policy is measured against numerous
other benchmarks. The DVI policy approaches the “jump policy”
in anomaly detection time. This is a promising result since the
implemented jump policy is not physically viable as it does not
consider the continuous space a sensor would have tomove through
and assumes that it can “jump” to the next measurement position.
The system is also extended to a distributed multi-agent system by
implementing multiple signally trained agents. The authors point
out that in confined and sensitive atmospheres it is important
to consider how much benefit can be extracted by adding more
sensors so that the optimal trade-off between anomaly detection
time and number of sensors can be found. However, this has limited
implications as MARL and cooperatively trained agents are not
considered.

An interesting idea for using source seeking in an SAR
application is presented in Kulkarni et al. (2020). A Q-learning RL
agent is trained to locate victims via radio frequency signals of
a device possessed by the victim. This, for example, could be a
smartphone or a smartwatch. Using a discrete action space A, the
objective is to find the source or the victim, in the shortest possible
time.The reward functionR, is based on the received signal strength
(RSS) Z , which has also been demonstrated for localisation in
GPS-denied environments. The system is tested using ray tracing
software to provide a better and more realistic simulation than
simple numerical models. This helps the RL agent to perform upon
deployment as it was trained in an environment more similar to the
true environment.

In wildfire monitoring systems, manned aerial missions are
often used to track the boundary and spread of the fire. This helps
make decisions on where to use fire suppressants and where to
remove fuel for fire containment. It can also be used to motivate
and prepare evacuations if the fire is heading towards settlements.
Viseras et al. (2021) proposed single and multi-agent DRL systems
to locate and track the boundary of a wildfire for both multi-
rotor and fixed-wing type UAVs. Two MARL approaches, i.e.,
multiple single-trained agents (MSTA) and a value decomposition
network VDN, are proposed. In both cases, the agents are trained
by a joint reward function R. They found that both proposed
algorithms outperform the benchmarks. More specifically, VDN
tends to perform better towards the end of an episode when the fire
behaviour is more complex and coordination betweenUAVs ismore
important, whereas MSTA provides a better performance early on
when the main goal is finding the fire. They also found MSTA to
be more stable and scales better when there are more than three
agents. Table 7 contains a summary of how RL boundary tracking
algorithms are posed.

Boundary tracking can also be applied to UAV systems that are
equipped with fire fighting capabilities, with the aim of containing
the spread of a fire by applying suppressants at the boundary of
the fire. This is the goal of the work in Ostrovski et al. (2021).

TABLE 7 Characteristics of reinforcement learning based
boundary tracking.

Characteristic Description

Objective Track boundaries of phenomenon

State Representation Environmental features, object
boundaries

Action Space Movement actions, sensing actions

Reward Function Rewards for accurate boundary tracking,
penalties for errors

Observation Sensor data for measuring phenomenon
(e.g., vision sensor or
intensity/concentration measurements)

Challenges Noisy or ambiguous boundaries, initial
search phase

Citations Julian and Kochenderfer, (2019);
Viseras et al. (2021)

Here, a multi-agent fire-containing system of UAVs is trained
using multi-agent DQN (MADQN) in which each agent acts
independently but can learn from a pool of shared agent experience
which helps to accelerate training. The authors encourage the
cooperation of agents by removing any extra effect if agents apply
fire suppressants to the same location. This research includes both
sensing and communication constraints and a bespoke forest fire
simulation. Since agents are limited to communicating with only
their neighbours the system is decentralized and scalable which is
very valuable for EM applications.

In the mentioned works that discuss boundary tracking,
however, the simulations are entirely numerical and thus make a
large number of assumptions about the operation environment.
While the results in these papers are promising and further
demonstrate the benefit of applying RL to active EM systems
there is a large step between simulations like this and practical
implementation. This is a trend across all the EM applications
discussed but boundary tracking has a significant lack of practical
results in the RL sphere.

3.3 Open challenges

Many of the system behaviours covered in this work are
themselves well explored in the literature and the consensus is that
autonomous systems are a big part of the future of EM. However,
there is a shortage of research applying these behaviours to specific
environmental domains, especially within the field of RL. Most
of the existing efforts are simulation-based. These simulations are
often greatly simplified versions of the true environments or focus
on one specific element like a temperature field or wind model.
There is potential for a large body of interesting research where
robotic and RL-based EM systems are developed by making use
of existing ecological simulations. Simulation is a large part of
ecological research and collaboration between the two disciplines
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can help accelerate the implementation of the important systems
discussed in this paper. Simulations that utilize these advanced
environmental models would be much closer to the true operation
environment reducing model mismatch and accelerating work
towards the practical domain. RL offers an easy first step to this
unification as training is done offline and data can be collected
beforehand. One example of early efforts in this space is given in
Liu and Bai (2021) where a geographic information system (GIS) is
used as the DRL training environment to provide the terrain data
for a simulated UAV.This allows them to consider areas that may be
obstructed from certain perspectives which are not considered in 2D
terrain-based simulations. Besides, in EM there is a lack of practical
testing and much more effort is required in the practical domain to
start to build the road to actual implementations of these systems.
Practical results are crucial for development and at the current stage,
any practical testing offers immense value.

One of the biggest criticisms of RL is its sample inefficiency. As
RL is better understood and solutions improve sample-efficiencywill
get better but effort is needed to address this directly. One promising
area is the combination of model-based and model-free approaches
Pong et al. (2020); Chebotar et al. (2017). This has been applied to
EMapplications in Li et al. (2023) to improve STE.These approaches
aim to extract the benefits of both model-free RL that does not
suffer from model mismatch and the learning efficiency of model-
based approaches. Anotherway to improve sample efficiency is using
long-term prediction Tutsoy (2022); Doerr et al. (2017). Long-term
prediction involves estimating the future states of the environment,
the rewards associated with those states, and how the agent’s actions
will influence the system over multiple time steps. Accurate long-
term prediction allows agents to take more optimal actions earlier
in the training process. It is especially useful when the consequences
of actions are not immediately apparent.

Another open research area is the use of multi-agent
reinforcement learning scenarios. The benefits of multi-agent
systems are clear, especially for tasks like EM which can have
such a large and diverse scope. It is apparent from the literature
covered in this paper that most research in the RL for EM work is
focused on single-agent implementations and the existing MARL
approaches are rudimentary compared to the demands for a full
operational system. There is an extreme lack of practical results for
MARL despite promising simulation results and the clear potential
of these systems. In light of these challenges, we offer a summary of
some of the potential research areas that would help accelerate the
development of systems capable of full-time deployment.

• Simulations that include more complete environmental models
for specific environmental domains.
• MARL-based EM system research.
• Both single and multi-agent practical implementations at real
sites of interest.

4 Real-world deployment challenges

There is a lack of practical application of these methodologies
in the field of active EM. It is crucial that more practical testing is
carried out and documented in the literature for fully autonomous

EM systems to be realized. As stated, the environments are often
difficult to operate in and each specific environment will bring its
own challenges. Furthermore, some of these systems will have to
operate in multiple different environments. Thus the characteristics
of these environments must be closely studied. In the literature,
it is common to refer to environments as being either indoor or
outdoor. Indoor environments are generally smaller, more cluttered
and GPS-denied making navigation and localization challenging.
On the other hand, outdoor environments are often much bigger,
less sparsely populated, GPS enabled and have large variations due
to changing light and weather conditions. That being said this
does not hold for all outdoor environments, for example, active
EM systems designed for operation in a forest will have to deal
with unreliable GPS and a high density of potential obstacles
which is more consistent with indoor environments. A simplified
comparison of some environments of interest is given in Table 8.
One benefit of RL is that it can be trained under these considerations
by utilizing multiple training environments and iterations of similar
environments. It can learn to perform well under large variations
and respond well under unknown conditions.

Another limiting factor for the practical application of active
EM systems is the energy constraints of the platform. For example,
UAVs have a very short flight time. Active EM systemswill inevitably
have to stop and refuel regularly. This requires safe and accessible
locations to install charging points or places for the system to remain
idle and charge passively via a utility such as on-board solar panels.
In some environments, safe charging locations may be hard to find.
For example, it is the case in volcanicmonitoring that these charging
stations will often have to be far away from the survey region as the
areas close to the volcano are usually inaccessible and dangerous.
This again highlights the need for such systems to have an optimal
energyperformancebut also sheds light on the infrastructureneeded
for long-termpractical applicationEgerstedt et al. (2018);Notomista
and Egerstedt (2021). These environments may also pose challenges
formaintenanceandretrieval. In someenvironments, suchasnuclear
decommissioning, where the robot is in an environment that is
potentially lethal to humans, retrieving the robotmay be impossible.
This means that the robots need to be very reliable and robust to
the challenges of their environment. It also demands that they can
communicate their findings without physical collection. For certain
extreme environments like deep-sea or subterranean environments,
wireless communication is a big challenge.

It is often the case that AUVs often periodically resurface to both
recharge, communicate their data and connect with other agents.
In underwater multi-agent systems like this, RL could be used to
predict the position of other agents. This is a valuable corrective
action as When the team is submerged it is unable to communicate
and apply corrections until the communication is available again. Or
RL has been used for processing acoustic signals which are amethod
of underwater communication Rahmati et al. (2019). MARL can
also be used to teach agents how to cooperate without or with
very limited communication Zhang and Lesser (2013). Since in
RL, the training is done before deployment, MARL systems can
take advantage of training agents based on other agents’ training
data that would not be available during run time. Having a good
simulation environment can teach agents to cooperate without any
communication when they are deployed.
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TABLE 8 Comparison of environments where active EMmay be applied.

Rural Urban Lake/River Deep-sea Sub-terranean Nuclear Farming Forest

GPS Good Medium Good None None None Good Bad

Scale Large Large Predefined Large Medium Small Large Large

Pre-defined Area No Maybe Yes No Maybe Yes Yes No

Weather Sensitivity High Medium Medium Medium Low None High Medium

Robot-Type UAV, AGV UAV UAV, ASV, AUV AUV UAV, AGV UAV, AGV UAV, AGV UAV, AGV

Commu-nication Good Good Good Bad Bad Good Good Medium

Obstacles Few Lots Few Few Medium Lots Medium Lots

Light Variable Variable Variable Dark Dark Light Variable Varible (Darker)

Charging Potential Medium Good Good Medium Bad Bad Good Bad

Underwater environments pose lots of unique challenges that
may have simple solutions in other domains Shruthi and Kavitha
(2022). Further to communication restrictions, the environment is
also GPS-denied and non-variant, making localization extremely
challenging. The uniform nature of the underwater environment
also makes rewards very sparse and thus the learning efficiency
and rates are often unfavourable. One option is to use a human
trainer.This can either be using human-based examples to produce a
reward or to have a human providing a reward based on good or bad
behaviour. Zhang et al. (2020) proposed a DQN-based system that
learns a path following control policy from a human-given reward
and a pre-defined environmental reward. The use of human reward
is helpful here as the underwater operation environment means that
the environmental rewards can be highly sparse.This can ultimately
lead to the system not converging to an optimal policy.

Certain survey areas of interest may be predefined before the
mission starts, the size and shape of a lake, for example, while others
may change constantly. For example, if we consider the problem
of monitoring the plume of a volcano, the position of the plume
with respect to the source, will change largely based on the strength
and direction of the wind on a given day. It is a waste of time and
energy resources to survey areas where the plume does not exist.
This changing area of interest is common to many EM problems.
The extreme case of this is when the survey area is completely
unknown like in an urban SAR response to a natural disaster. Some
environments where active EM is required are very isotropic and
lack any clear landmarks, appearing very uniform to the agent. This
is especially true for underwater, deep-sea applications. This is a
big challenge for successful localization and navigation especially
when GPS is also not an option. It is also a challenge for RL agents
as the nature of the environment means that the rewards will be
very sparse.

It is also the case that applying these systems in certain
environments can be potentially dangerous to humans. For example,
using UAVs in urban areas runs the risk of a malfunction causing
injury to pedestrians or property damage. To remove or minimize

this risk in busy cities there should be no-fly zones. It may also
be the case that these will change, based on the time of the
day or current events. Some social challenges come along with
some environments, especially highly populated, urban areas. For
example, if autonomous ground vehicles were deployed for air-
quality monitoring in cities, there is a potential for theft and
vandalism. Thus, not only do they have to be safe for operation
around the general public but they must have strong security
features and be physically robust. Citizens may also dislike the
idea of autonomous systems being used due to a lack of trust
in the technology. Finding ways to introduce these systems in
ways that are least offensive to the public is a real concern
Çetin et al. (2022).

5 Conclusion

In this work, we have reviewed the application of RL and
DRL to robotic active sensing in EM. The escalating climate
crisis has highlighted the need for comprehensive EM solutions.
Challenging, unknown and dynamic environments are ubiquitous
to EM applications and intelligent and adaptive solutions are needed
for autonomous and persistent monitoring that we can rely on. We
have discussed RL as a method of encoding complex behaviours
onto single and multiple agents for active EM. To provide a unifying
framework we have utilized Dec-POMDPs to frame these systems
as an active sensing pursuit and to unify them with traditional
active sensing approaches. We discuss methods of representing
environments as in EM there is more of a demand for model
learning than in other areas of RL. The main body of this review
is separated into common mission goals and agent behaviours
that are useful in EM. We conclude this review by discussing
and comparing the spectrum of the most widely used technical
development platforms available for researchers in the hopes of
streamlining further development and collaborating on a framework
for standardization.
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