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Semantic learning from keyframe
demonstration using object
attribute constraints

Busra Sen*, Jos Elfring, Elena Torta and René van de
Molengraft

Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

Learning from demonstration is an approach that allows users to personalize a
robot’s tasks.While demonstrations often focus on conveying the robot’smotion
or taskplans, theycanalsocommunicateuser intentions throughobjectattributes
inmanipulation tasks. For instance, usersmightwant to teach a robot to sort fruits
and vegetables into separate boxes or to place cups next to plates of matching
colors. This paper introduces a novel method that enables robots to learn the
semanticsof user demonstrations,with aparticular emphasis on the relationships
betweenobjectattributes. Inourapproach,usersdemonstrateessential tasksteps
by manually guiding the robot through the necessary sequence of poses. We
reduce the amount of data by utilizing only robot poses instead of trajectories,
allowing us to focus on the task’s goals, specifically the objects related to these
goals. At each step, known as a keyframe, we record the end-effector pose,
object poses, and object attributes. However, the number of keyframes saved
in each demonstration can vary due to the user’s decisions. This variability in
each demonstration can lead to inconsistencies in the significance of keyframes,
complicating keyframe alignment to generalize the robot’smotion and the user’s
intention. Our method addresses this issue by focusing on teaching the higher-
level goals of the task using only the required keyframes and relevant objects.
It aims to teach the rationale behind object selection for a task and generalize
this reasoning to environments with previously unseen objects. We validate our
proposed method by conducting three manipulation tasks aiming at different
object attribute constraints. In the reproductionphase,wedemonstrate that even
when the robot encounters previously unseenobjects, it cangeneralize theuser’s
intention and execute the task.

KEYWORDS

learning from demonstration, keyframe demonstrations, object attributes, task goal
learning, semantic learning

1 Introduction

As robots become increasingly integrated into diverse environments, from
factories to homes, the need for more intuitive and adaptable programming methods
becomes paramount. Traditional robot programming methods fall into two main
categories: online and offline programming (Pan et al., 2012). Online programming
includes methods like lead-through, where the user records the robot’s path via
a teach-pendant, and walk-through, where the user physically guides the robot
through the desired motions (Pan et al., 2012; Villani et al., 2018). This approach
is user-friendly as it doesn’t require programming skills. However, its lack of
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FIGURE 1
The user changes the objects used in the demonstrations to teach her intention. Our proposed method computes similarities between demonstrations
and within a demonstration from keyframes. The robot learns the purpose of the task from the object attribute relations.

adaptability necessitates the re-recording of the entire sequence even
for minor changes in the environment (Villani et al., 2018). Offline
programming, on the other hand, involves defining each robot’s
movement for a specific task (Pan et al., 2012).This approach is often
limited to highly controlled environments and requires expertise in
robotics.

Inspired by people’s ability to learn by imitating others (Calinon,
2018),LearningfromDemonstration(LfD)offersapromisingsolution
to these limitations. Unlike offline robot programming, LfD does
not require explicit programming of a robot’s task. Instead, it allows
users to teach robots their skills through demonstrations. LfD does
not merely repeat pre-recorded robot motions like online robot
programming (Ravichandar et al., 2020). In each demonstration, LfD
approaches can extract the task constraints implicitly and generalize
these learned skills to different environments (Hussein et al., 2018;
Ravichandar et al., 2020). Moreover, it can handle a wider range
of tasks compared to traditional offline robot programming. This
is evidenced by its successful applications in various fields such
as healthcare tasks (Fong et al., 2019; Pareek and Kesavadas, 2020),
household tasks (Ye and Alterovitz, 2017), and industrial tasks
(Ramirez-Amaro et al., 2019).

The process of LfD begins with a demonstration phase, where
the user imparts relevant information about the robot’s state and
the environment through demonstrations. These demonstrations
can be performed through kinesthetic teaching, teleoperation, or
passive observation (Ravichandar et al., 2020). Following this, the
robot learns to encode the recorded data to identify commonalities
among the demonstrations.The encodingmethod typically depends
on the learning paradigm, which could be at a low level (e.g.,
robot trajectories) or a high level (e.g., action order, semantic rules)
(Billard et al., 2008).

At low-level LfD, the demonstrated trajectories, which are
continuous sequences of waypoints with timestamps, can be
parameterized in either the joint and/or task space (Chernova

and Thomaz, 2014). To generalize these trajectories to different
initial robot states or different object positions, the user needs to
providemultiple demonstrations, which can increase their workload
(Akgun et al., 2012b). Moreover, since trajectories include time
information, the quality of the user’s demonstration is crucial to
avoid jerky movements. Recent studies have proposed learning
from time-independent sparse data, known as keyframes, instead
of recording full trajectories at a high rate (Akgun et al., 2012b).
These keyframe or trajectory demonstrations typically include robot
states (i.e., joint angles, end-effector poses) and information about
the poses of objects involved in the task. However, to semantically
understand the goal behind a demonstration, more than just a robot
pose or object pose is needed.

Understanding the user’s intent about the task goals or which
objects the robot should give attention to are part of issues that
need to be addressed when adopting the high-level LfD approaches
(Fonooni et al., 2015). In this study, the term “user intention”
denotes any task goals related to the objects used throughout the
task, and the attributes of the objects (such as color, shape, size,
etc.) that are relevant for understanding the task goals. To generalize
task goals regarding object attributes, the user is expected to change
the objects in each demonstration to meet her/his intentions. For
example, inFigure 1, theuserwants tocollect thesamefruits inabox.
If theuseronlydemonstrates the taskonce, the robotmightnot learn
if the task is about the specific typeof fruitused in thedemonstration
or about fruit in general. However, demonstrating the taskmultiple
times with different fruits allows for generalization.

In the first demonstration, the robot learns to “pick up the orange
fruits and place it into the box.” In the second demonstration, the
user changes the objects, and then the robot learns to “pick up any
fruit and place it into the box”. In the last demonstration, the robot
learns that “the fruit in the box must be the same as the fruit to be
picked”. After three demonstrations, the robot learns to “pick up the
fruit that is the same as the fruit in the box and place it into the
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box”. During task reproduction, the robot may encounter different
fruits, but it should know the desired constraints (the fruit in the
box and the fruit to be picked must be the same). The robot does
not need to see these objects during teaching. It checks the fruit in
the box and then finds the fruit that satisfies the constraint. Giving
attention to the objects allows the robot to generalize the user’s
intention to unseen environments by uncovering a set of similar
objects’ attributes used in each demonstration. These task goals, or
user intentions, are taught implicitly; the only thing the user needs
to do is to change the objects to convey her intention and bring
the robot to the desired robot poses during demonstrations to fulfil
the intended task. The end-effector pose, object poses, and object
attributes are recorded as a keyframe at each step.

The distribution of these keyframes depends on the task’s
requirementsanduserdecisions,sowecannotassumeuserswillusethe
samenumberofkeyframesfordifferentdemonstrationsmeanttoteach
the same task. Even amongmultiple demonstrations of the same task,
the number of keyframes can differ. For instance, in Figure 1, the user
records three keyframes in the first demonstration, four in the second,
andfourinthelastdemonstration.Foranadequatesummaryofatask,a
minimumnumberofkeyframes is requiredfor therobot tounderstand
the task, as explained later.Non-expertusers can,however,beexpected
to record additional keyframes that contain superfluous information
and complicate learning. An alignment method is required to cluster
the keyframes from different demonstrations to generalize the robot’s
motion. After alignment, clusters can be a mix of required and
unrequired keyframes. Required keyframes, referred to as object-
centric, direct attention to the objects that reflect the user’s intention
and provide accurate relative poses between the end-effector and the
objects. Object-centric keyframes are defined as those that change an
object’s attribute in the environment. Task-unimportant keyframes,
on the other hand, are defined as remaining keyframes that do not
alter any attribute during the demonstrations.We consider that novice
users might record these task-unimportant keyframes. In summary,
our research is motivated by the following challenges:

â The learning becomes more complicated when there is a
varying number of keyframes. How canwe extract conceptually
duplicate keyframes from each demonstration?

â How can we derive the user’s intention regarding object
attributes to generalize the task to previously unseen scenes?

This paper is organized as follows: Section 2 summarizes the
related work on keyframes and task goals concerning the objects’
relationships in learning from demonstration, and it outlines our
contributions to this field. Section 3 explains our proposed solution.
Section 4 presents the experimental setup, and Section 5 validates
our results by demonstrating various tasks that include different
object attributes. Finally, Section 6 discusses the results, highlights
the current limitations, and suggests possible future research
directions.

2 Related work

Trajectory demonstrations are commonly used in literature to
show robot motions. These demonstrations are instrumental in
scenarios where velocity and timing are crucial to the required

skills. However, due to their uninterrupted nature, demonstrations
by novice users operating high-degree-of-freedom robots can be
challenging (Chernova and Thomaz, 2014). Furthermore, multiple
demonstrations are necessary to generalize the demonstrated skills
to task parameters such as different object poses and varying
initial robot positions. As the duration of each demonstration
may differ, a time alignment method is employed to align these
trajectories (Muhlig et al., 2009). It is also important to note
that these trajectories’ smoothness depends on the user’s abilities.
Therefore, optimization techniques are often required to prevent
jerky movements (Ravichandar et al., 2020).

Akgun et al. (2012b) proposed using keyframe demonstrations
to circumvent the issues above. Keyframes are described as sparse
robot poses in joint configuration or task space. These keyframes
are similar to the sub-goals that are highlighted after trajectory
segmentations to learn task plans similar to the approach proposed
by Lioutikov et al. (2015) and Niekum et al. (2015). However,
in keyframe demonstrations, these sparse poses are given by the
user. Experiments conducted by Akgun et al. (2012b) where novice
users demonstrate keyframes, highlight the advantages of keyframes
over trajectories. While these studies by Akgun et al. (2012b)
do not primarily focus on generalization capabilities, multiple
demonstrations would be more straightforward with keyframes as
they do not present time alignment issues.

Despite these advantages, learning robot skills with keyframes is
rare. One disadvantage is the lack of time information. In the field of
robotmotion generation from keyframes, variousmethods have been
proposed to address this problem. Jankowski et al. (2022) developed
a technique that creates smooth and adaptable robot trajectories from
sparsekeypositiondemonstrations.Thismethodsolvesatime-optimal
control problem for each key position and adapts in real time to
the current state of the robot and the environment. On the other
hand, Akgun et al. (2012b) proposed amethod that generates a sparse
trajectoryof joint angles, automatically addskeyframes for start and/or
end positions if they are omitted, and calculates time data for each
keyframe based on distance and a constant average velocity.

An alignment and/or a clustering method are required to extract
similar keyframes/trajectories from multiple demonstrations. The
approachbyAkgunetal. (2012a) involves temporallyaligningmultiple
skill demonstrations using an iterative process. This process employs
DynamicTimeWarping(DTW)andanalignmentpool,andsequences
areselectedbasedonthe lowestpairwiseDTWcost.Keyframesaligned
to the same keyframe from another demonstration are clustered
together. The maximum number of keyframes is chosen as the cluster
number, and the Gaussian Mixture Model (GMM) is applied to
cluster thekeyframes (Akgun et al., 2012b). In the studiesbyKurenkov
et al. (2015); Perez-D’Arpino and Shah (2017) the number of clusters
is determined by the rounded average number of keyframes, and K-
means isusedforclustering.AnotherapproachbyAkgunandThomaz,
(2016) uses Hidden Markov Models, initializing the number of states
as theminimumnumber of keyframes.This learningmodel is applied
separately for goal keyframes and action keyframes. Lastly, the study
by Jankowski et al. (2022) operates under the assumption that the
number of keyframes is identical among demonstrations. In these
previous studies, to generalize the robot motion, either the number
of keyframes is assumed to be constant, or alignment or clustering
methods are used to deal with a varying number of keyframes.
We remove the assumption of an equal number of keyframes in
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each demonstration, but also we do not use alignment or clustering
methods to remove the dependency of generalization capabilities to
these methods.

Although Akgun and Thomaz (2016) record the objects’ states
as a goal keyframe to monitor the execution of action keyframes,
they assume that there exists one object in the task. Differently,
in our study, we do not assume which objects are important for
the task, so we record the end-effector pose, all object attributes
in the environment, and their poses as a keyframe. This definition
provides the extraction of object-centric keyframes, even if the
user records both object-centric keyframes and task-unimportant
keyframes. These object-centric keyframes help us to give attention
to the objects and guarantee that relative poses between the end-
effector and objects would not be affected by incorrect clustering of
keyframes because of task-unimportant keyframes.

We focus on understanding user intent behind demonstrations
by observing objects. Inverse Reinforcement Learning (IRL)
also aims to comprehend user intent by recovering a reward
function that justifies expert demonstrations (Ab Azar et al., 2020;
Arora and Doshi, 2021). This function is often estimated from
expert trajectories in robotics for various applications, such
as navigation for socially compliant robots (Kretzschmar et al.,
2016; Kollmitz et al., 2020; Sun et al., 2020) and path and velocity
preferences for robot arms (Bobu et al., 2018; Avaei et al., 2023).
IRL typically constrains the reward space with predefined features
(Shek et al., 2023), except for some recent work that updates
these features online (Lourenço et al., 2023). These features usually
include relative distances or velocity and acceleration preferences.
Unlike IRL, we don’t learn a reward function but have a
predefined object attribute set. Our study’s contribution is teaching
semantics about these attributes from keyframe demonstrations and
generalizing this to unseen environments.

In robotics, semantics can be viewed as a robot’s ability to
understand the significance of environmental entities. Numerous
applications have been developed incorporating semantics. For
example, mobile robots construct semantic maps (Deng et al.,
2024) enhancing navigation (Qi et al., 2020; Achat et al., 2023) and
facilitating dynamic object searches in domestic settings (Guo et al.,
2022; Zhang et al., 2023). Human-robot interaction (HRI) uses
semantics to generate natural questions about environmental
objects (Moon and Lee, 2020), execute tasks specified in natural
language using Natural Language Processing (NLP) (Bucker et al.,
2022; 2023), and physical human-robot interaction (Lourenço et al.,
2023). In robot manipulation, semantics is used in object grasping
based on attributes like fragility or softness (Kwak et al., 2022).These
are a few examples of semantics applications in robotics. However,
our paper focuses on a subset of applications related to the use of
semantics for LfD in industrial robot manipulation tasks.

Semantics in LfD can be used to simplify user programming.
Eiband et al. (2023) used position and force-torque sensing to identify
semantic skills, which were classified using a support vector machine.
A decision tree classifier was used to understand the correlation
between the robot’s movements, environmental data, and activities
(Ramirez-Amaro et al., 2019). Steinmetz et al. (2019) identified skills
from a predefined set, described them using the Planning Domain
Definition Language (PDDL), and conveyed semantically annotated
skills to theuserviaan interface.Zanchettin (2023)proposedamethod
forsemanticallyrepresentingdemonstratedskills,enablingtherobotto

identify workspace elements and understand the skill’s preconditions
and effects.

One purpose of using object attributes in LfD is to select
the appropriate actions; Chella et al. (2006) use conceptual spaces
introduced by Peter (2000)which aremetric spaces, formed by quality
dimensions such as time, color, shape, and weight. The proposed
approach by Chella et al. (2006) decides which action the robot
should perform, based on the similarities between the scenes in the
reproduction and demonstration actions. Differently, Fonooni et al.
(2012) use semantic networks in LfD to generalize learned skills
to new objects and situations by comparing network nodes before
and after the demonstration. The environment in the demonstration
and the environment in the reproduction can be different. Transfer
learning and object mapping are applied in LfD to generalize the task
to unseen environments (Bullard et al., 2016; Fitzgerald et al., 2018).
Although these studies consider object attributes to generalize the
demonstrations tounseenenvironments, theydonot take intoaccount
the user intention related to object attributes.

Kaelbling et al. (2001) state that “It is hard to imagine a truly
intelligent agent that does not conceive of the world in terms of objects
and their properties and relations to other objects.” This statement is
the main idea of our research, and its importance is also shown
by the research of Cubek et al. (2015) which inspired our research.
For example, spatial relations between objects might be crucial
for the robot to define task goals (French et al., 2023) represent
the task goal as spatial relations between scene objects, using a
scene graph with objects as nodes and inter-object relations as
edges. The aim is to generalize spatial relation goals to different
environments, including those with varied objects. Similarly, spatial
relations (distance and angle for labeled objects) between the served
object and other table objects are learned for a food-serving task,
enabling the robot to identify possible object arrangements in unseen
scenes (Kawasaki and Takahashi, 2021). Hristov and Ramamoorthy
(2021) label demonstrated trajectories using high-level concepts,
including spatial labels like “behind” and “on top of,” and temporal
labels like “quickly.”This approachhelps in generating new trajectories
by combining these labels.

The approach proposed by Chao et al. (2010) involves learning
a set of criteria for an unchanged object’s attributes such as color
to meet some expectations such as location. Fonooni et al. (2015)
expanded their previous work by adding the Ant Colony Algorithm
to determine the relevant nodes in the Semantic Network to focus
on significant aspects of the demonstration, such as the shape of
the object. Then they add priming to their method to reduce the
numberofdemonstrationsrequired insimilarcontexts (Fonooni et al.,
2016). Ramirez-Amaro et al. (2019) proposed an approach using an
ontology-based graph to adjust a demonstrated skill based on object
attributes. For example, if a task is demonstrated using an orange,
and the perceived object is an apple, the task steps are modified as
there is no “squeeze” activity for the apple, without requiring a new
demonstration. A recent study by Du et al. (2024) focused on sorting
tasks based on the object colors, noting key trajectory positions to
execute the task in various environments. However, their study only
recordsandmatches thepickandtargetobjects’ colors,notconsidering
theintentionbetweendemonstrationsorobjectattributerelations.Our
work’s goal is much closer to the research of Cubek et al. (2015). In
their approach, they change the used objects in every demonstration
to understand the user’s goal. They focus on pick-and-place tasks,
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and they extract similar object attributes for active (grasped) and
passive (released) objects between demonstrations. However Chao
et al. (2010) and Cubek et al. (2015), do not consider the possible
similaritieswithindemonstrations, Fonooni et al. (2015; 2016) assume
that a semanticnetwork includesall thenecessaryconcepts andobjects
that the robot can work with, and nodes of the semantic network are
discrete. Moreover, while in previous studies, tasks were handled as
involving twoobjects, in this study,wedefine the relevantobjects in the
environment more comprehensively, and this allows us to teach more
complex tasks. Our contributions can be summarized as follows:

•Weproposeakeyframe-based learningapproach inwhichnon-
required keyframes are automatically identified and removed
such that demonstrations with varying number of keyframes
can be handled.

• The proposed method identifies similarities between discrete
and continuous object attributes of objects within a single
demonstration as well as across demonstrations, thereby
allowing for a better generalization to unseen scenes and the
ability to learn more complicated tasks.
• The proposed method has been validated through a
comprehensivesetofLfDexperiments. Implicitly,user intentions
regarding object attributes are extracted in three different tasks:
stacking, sorting, and serving.
✓ In the stacking task, we demonstrate that discrete attributes

of objects, such as color and shape, play an important role.
✓ The sorting task involves an increased number of objects,

showcasing the proposed solution’s ability to handle
both continuous (size) and discrete (shape) attributes
successfully.
✓ Finally, in the serving task, we reveal that user desires may

include objects observed in the environment throughout
the task, even if they are not actively used by the robot.

These experiments highlight the method’s capacity to generalize
tasks beyond those previously presented in related work.

To the authors’ knowledge, this is the first study that learns user
intentions regarding the relations between the attributes of objects
and generalizes this intention to unseen scenes by taking advantage
of keyframe demonstrations.

3 Methods

This section introduces the proposed method, summarized
graphically in Figure 2.

3.1 Demonstration of the task

The learning process commences once the user collects data
from the robot through kinesthetic teaching, a method where the
user directly manipulates the robot and upon guiding the robot to
a desired pose, keyframes are recorded (Ravichandar et al., 2020).
These keyframes are defined as descriptions of the end-effector pose,
the poses of objects present in the scene, and the attributes of these
objects, such as color, size, shape, etc. A demonstration is a sequence
of keyframes, denoted as:

Ki = {k
i
1,k

i
2,…,k

i
j−1,k

i
j,…,k

i
mi−1
,kimi
}, i ∈ [1,n] (1)

Here, K i represents the set of keyframes for the ith
demonstration. The variable n denotes the number of
demonstrations, and mi is the number of keyframes in the ith
demonstration. This definition allows for a different number of
keyframes for different demonstrations of the same task.

The term kij ∈ K i represents the jth keyframe of the ith
demonstration. K i is an ordered set, which means that kij is always
recorded after kij−1. The jth keyframe of the ith demonstration is
represented by:

kij = {(sr)
i
j,E

i
j} (2)

Here (sr)
i
j contains the end-effector pose and gripper status, and

Eij is an environment set that includes the set of object poses and
object attributes in the jth keyframe of the ith demonstration. This
representation allows for a comprehensive description of both the
robot’s state and the state of the environment at each keyframe. The
sets represented in Eq. 2 are further described as follows:

(sr)
i
j = {x,y,z,qx,qy,qz,qw,ψ}

i
j

(3)

Eij = {O1,O2,…,Oβ,Oβ+1,…,Oτi
}
i

j
(4)

where [x,y,z] ϵℝ3 represents the position of the end-effector, the
orientation of end-effector is represented by unit quaternion’s real
part qw ∈ ℝ and vector part [qx,qy,qz] ∈ ℝ

3, and ψ is a discrete value
describing the gripper status. It can be either zero (open) or one
(closed). In this set, τi represents the number of objects in each
demonstration, a value that can change from one demonstration
to another. For instance, as shown in Figure 2, while the first and
second demonstrations include three objects, the last demonstration
scene includes four objects. (Oβ)

i
j
contains the attributes of the

β-th object in the jth keyframe of the ith demonstration. This
representation allows for a detailed description of each object’s
characteristics within the demonstration.

3.2 Reduction of keyframes

The number of keyframes can change in every demonstration,
as specified in Eq. 1. We categorize these recorded keyframes into
two types: object-centric keyframes and task-unimportant keyframes.
Object-centric keyframes are defined as those that alter an attribute
in the environment set, while task-unimportant keyframes are
considered as the remaining keyframes. Task-unimportant keyframes
provide information on how to reach object-centric keyframes. As
long as we prevent collisions, the method by which the robot reaches
a goal state is not crucial for achieving the desired outcome.

In LfD, it is necessary to generalize the data obtained
from multiple demonstrations to accommodate changes in task
parameters, such as object poses and/or attributes. As discussed in
the related work, traditional methods in keyframe demonstrations
cluster similar robot motions using unsupervised learning or
alignment methods (Akgun et al., 2012b). However, these methods
do not elucidate the semantic similarity of these keyframes. For
instance, the first step of Figure 2 presents several keyframe
demonstrations for a stacking task. The user picks up an object
and places it on top of another object. For example, in the first
step of this figure, the fourth keyframe in the first demonstration
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FIGURE 2
The steps of the proposed method from demonstration stage to reproduction stage.

is close to the releasing keyframe. This could lead to a cluster that
includes both the releasing keyframes from each demonstration and
this task-unimportant keyframe. However, it is necessary to have
the same object-centric keyframes in a cluster. These keyframes
provide the accurate relative poses between the end-effector and the

object. By grouping these object-centric keyframes from different
demonstrations, we can focus directly on the same relevant objects
for each demonstration. Therefore, eliminating task-unimportant
keyframes instead of using all the keyframes recorded by the user
yields this outcome. We have the following assumptions:
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• Each task necessitates a minimum number of keyframes,
referred to as object-centric, to adequately summarize the task
being learned by the robot.

• Users are expected to record at least the object-centric
keyframes, and possibly more, namely, task-unimportant
keyframes.

The recognition and elimination of task-unimportant keyframes
from the data is a contribution of this work. Our aim is to identify
object-centric keyframes from the set recorded by the user. The
presence of any object in the environment set, as defined by Eq. 4,
depends on relevant object poses and attributes, as follows:

(Oβ)
i
j
= {sOβ
,ξOβ
}
i

j
, ∀β ∈ [1,τi] (5)

(sOβ
)
i

j
= {x,y,z,qx,qy,qz,qw}

i
j

(6)

(ξOβ
)
i

j
= {ζOβ
,AOβ
}
i

j
(7)

As indicated in Eq. 5, (sOβ
)
i

j
and (ξOβ

)
i

j
represent the poses

and attributes of object Oβ in the jth keyframe of the ith
demonstration, respectively. ζOβ

in the set of (ξOβ
)
i

j
provides

information about whether an object is held by the robot or is
in the environment. We assume that if the robot manipulates the
object, the value of ζOβ

is “grasping”, oppositely its value is “on
the table”. AOβ

, which is defined in the next section, can be a
combination of discrete (color, shape, etc.) and continuous (size,
mass, etc.) attributes. It is important to note that ζOβ

and AOβ

can change in any keyframe of any demonstration. For instance,
as seen in the first step of Figure 2, the object is held by the
robot in the second keyframe of the first demonstration, while
a similar object is held in the third keyframe of the second
demonstration.

Object-centric keyframes necessitate changes in the object’s
attribute set, denoted as (ξOβ

)
i

j
, which is described in Eq. 7.

Therefore, a reduced keyframe set is given by:

K̂i = {kj|kj ∈ Ki, {ξOβ
}
(j−1)
≠ {ξOβ
}
j
,∀Oβ ∈ E

i
j} (8)

The first keyframe, k1, is recorded before the user initiates
the demonstration. After reducing keyframes, each demonstration
has a similar number of keyframes, including object-centric ones.
For instance, as depicted in the first step of Figure 2, the first
keyframe is always retained. In the second keyframe of the
second demonstration, the robot does not alter anything in the
environment, so we can remove it. In the third keyframe of the
second demonstration, the object is grasped, leading to an update
in the reduced keyframe set K̂i. After applying Eq. 8, as shown
in the second step of Figure 2, we have three keyframes in each
demonstration.

3.3 Reference frame selection

Each demonstration presents a unique scene, featuring a
variety of objects and object poses. For successful reproduction,

it’s crucial to generalize the robot’s motion to accommodate
unseen objects and varying object poses. Relying solely on a
single reference frame, such as the robot base frame, may not
facilitate understanding the desired relative poses between the
end-effector and objects. This is because object poses can vary
from one demonstration to another. To effectively generalize
the robot’s motion to a new environment and comprehend
the relevant attributes of the objects, it’s important to use the
pose of an object as a reference frame for each keyframe. In
our scenario, after the reduction of keyframes, each object-
centric keyframe from different demonstrations corresponds to an
object. These keyframes are defined when there’s a change in an
object’s attribute. Our algorithm takes into account three different
situations:

• The robot may pick up an object.
• An object attribute can change in any keyframe, exemplified by

the glass being full in one keyframe and empty in the previous
one.

• The robot can place an object into target positions.

The selection of the reference frame for these three situations is
detailed in Algorithm 1.

Although the reference frame is chosen as the object pose
whose attributes change in a keyframe in the first two conditions,
it’s crucial to understand the reasoning behind the robot’s action
when it places an object in a target position. To achieve this,
we compute the spatial relations between the picked objects and
other objects in the environment. In this work, we primarily
focus on the “on top/in” and “next to” situations. However,
these semantic labels can be extended using relevant studies
(Ziaeetabar et al., 2017) to other spatial relations for more
precise results.

When a robot releases an object, we are not interested in the
released object itself, but rather the reason behind this action.
We analyse the position of the released object relative to others
using two labels: “on top of ” and “next to”. Let’s assume object
A is placed in a target location with only one other object, i.e.,
object B. If A rests on top of B, object B becomes the reference
object for that keyframe. Similarly, if A is dropped next to B,
object B serves as the reference object. However, situations arise
where the dropped object A might be both on top of object B
and next to object C. In such cases, the algorithm prioritizes
the “on top of ” relationship and object B is still chosen as the
reference object. Because the concept of “next to” is inherently
subjective, depending on user preference or task. For instance, a
1 cm distance might not be considered “next to” when working
with small objects, while a 10 cm distance might be in other tasks.
Therefore, if the result indicates that an object is “next to” another,
our algorithmproceedswith the computation of the reference frame.
The algorithm checks all objects without any specific order; at first
object C can be checked, but there can be a possibility for an “on
top of ” situation. As shown in the second step of Figure 2, the
robot picks up an object in the second keyframe, and the pose
of the grasped object is described as a reference frame. The robot
then places this object on top of another object. Even though the
pose of the released object has changed in the attribute set, the
reference frame for the third keyframemust be relevant to the object
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Input: Ki,mi,τi
Output: Reference frame, Fj, for each reduced

keyframes

Initialize: K̂i→ {sr,E}1i
            Fj → {robot base frame}

for j = 1: mi://For each keyframe in the ith

demonstration

 if Update K̂i→  Ki using Eq. 8

//If the attribute set has changed

  for β = 1: τi:

   if (ζOβ)(j−1) < (ζOβ)j or (AOβ)(j−1) ≠ (AOβ)j,

 //The position of the object that is held or whose

properties change

    Fj→ Oβ

    Break;

   elseif (ζOβ)(j−1) > (ζOβ)j or (soβ)j−1 ≠ (soβ)j:

 //The position of the object that is released or

whose pose change

    Fj→ computeSpatialRelations(Oβ,τi)

    Break;

   else:

    Fj→ robotbase frame

   end

  end

 end

end

def Fj = computeSpatialRelations(Oβ,τi):

 Initialize relation: {}

 count = 1

 flag = 0

 objects = {1,2,…,β−1,β+1,…,τi}//Objects except for

Oβ

 for k = 1: τi −1:

  if Oβ is on Oobjects (k):

   relation(k) → {Oobjects(k),
″on″}

   flag = 1;

   break;//If the released object is on another

object, the function is ended

  elseif Oβ is next to Oobjects (k):

   relation(k) → {Oobjects(k) ,
″nextto″}

 //The released object is next to another object

  else:

   relation(k) → {Oobjects(k),
″base″}

  end

 â If the flag = 1, Fj→ Oobjects(k)

 â Elseif find the index of next to label

  Fj→ find object index in relation array that

  has “next to” label

 â Else Fj→ robotbase frame

Algorithm 1. Selection of Reference frames and Reduction of Keyframes.

in the targe pose. In the last demonstration, the larger rectangle is
chosen as the reference object because it satisfies the more definitive
“on top of ” relation.

3.4 Constraints for object and end-effector
relative poses

After reducing the keyframes, we ended up with a similar
number of keyframes, m, in each demonstration. This allows us
to group these keyframes from different demonstrations based on
the keyframe index, j∈[1,m], as we ensure an equal number of
keyframes. The purpose of collecting these keyframes is two-fold: to
extract similar relative poses between the end-effector and objects,
and to identify the attributes of each object within the group.We use
the reduced keyframe set in Eq. 8 and group them as follows:

cp =
{{
{{
{

{E1
p,E2

p,…,Enp },p = 1

⋃
i=[1,n]
{(sr)

i
p, (Oβ)

i
p
},∀(Oβ)

i
p
→ Fp,p ∈ [2,m]

(9)

Here, cp is one of the groups that includes the keyframes
representing the same relations between the robot and the objects.
Each keyframe in the cp must alter the environment’s attributes in
the same way. For instance, if the object attribute changes from
“on the table” to “grasping” in a keyframe, these keyframes are
collected to the same group, cp. As depicted in the second step of
Figure 2, the second keyframes show the “grasping” and the last
keyframes show the “releasing”. Therefore, they can be combined in
order as illustrated in the third step. In the initial keyframe group,
we retain all object information in the scene. The reason for this
is explained in Section 3.5. However, other keyframe groups only
include the robot’s pose and the poses of objects associated with
reference frames, along with their attributes.

In order to be able to generalize the task to new environments,
the robot needs to understand the desired relative pose between
the end-effector and relevant objects. The poses of the end-effector
and the objects are recorded as specified in Eqs 3, 6, respectively.
In object-centric keyframes, we expect the end-effector poses in
each demonstration to be similar with respect to relevant objects.
Therefore, averaging these relative poses results in the desired
relative pose. Then in a new environment with different object
poses, when we know the desired relative pose we can compute the
desired end-effector poses easily. To compute the average of relative
positions, we simply divide the summation of relative positions
in each keyframe group by the demonstration number. However,
averaging quaternions is non-trivial. In this work, quaternions will
be averaged using the method proposed by Markley et al. (2007).

3.5 Object attribute constraints
between/within demonstrations

Once we determine the desired relative distance between
the end-effector and objects for each keyframe, the robot can
successfully complete the task, even with variations in object poses.
As long as the robot is aware of the relevant objects, learning
the desired relative poses between the robot and these objects is
sufficient for accurately executing the robot’s motion. However, our
aim is to learn a broader range of tasks, including more abstract
goals. These goals might pertain to the objects in the scene; for
example, placing a small object on top of a larger one, or placing a
cube next to a cylinder. Furthermore, usersmaywant to demonstrate
the similarity of objects within demonstrations; the goal could be to
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place cups next to plates of the same color. In this work, we aim for
these goals to be learned by the robot without explicit instruction
from the user. In this section, we describe how the robot can learn
the similarities between and within demonstrations as a constraint
to successfully achieve and semantically understand the task.

Before computing these constraints, we consider three different
object types, similar to the approach proposed byChella et al. (2006).
However, our aim differs from theirs; we seek to understand the
common attribute between used objects to generalize the user’s
intention. The three different object categories are:

Reference Objects: These are objects that are relevant to each
keyframe, and the poses of these objects are chosen as the reference
frame for each keyframe.We assume only one reference object exists
per keyframe within a demonstration.

Situational Objects: These are objects that have a spatial relation
with respect to reference objects in the first keyframes. However, to
define an object under this category, the same spatial relations must
exist for each demonstration.

Other Objects: These are objects that are neither reference nor
situational objects.

For example, consider a task as depicted in Figure 2, where
the robot is required to pick up the rectangle that is next to the
triangle and place it on top of the larger rectangle. In the third step,
the smaller rectangle serves as the reference object for the second
keyframe, and the larger rectangle is the reference object for the
third keyframe. The smaller rectangle is next to the triangle in each
demonstration, hence this triangle is defined as a situational object.
In the last demonstration, the larger rectangle is also next to a circle.
However, the spatial relation between the larger rectangle and this
circle does not exist in each demonstration. As a result, this circle is
categorized as an “other” object.

In Eq. 9, the first keyframe group includes all object attributes
to find the situational objects. To extract situational objects we use
the “on top,” “next to,” and “has” labels. For instance, if a situational
object is on top of a reference object, we interpret this as “the
reference object has a situational object”. Similarly, if a reference
object is “next to or on top of ” a situational object, we interpret these
constraints as “a reference object is next to/on top of a situational
object”. For these situational objects, another keyframe group is
generated and added to the object-centric keyframes. However, this
new keyframe group does not contain any information about the
robot’s pose. While the robot motion is generated using object-
centric keyframes, these new sets can define the task goals, but the
robot’s goal poses are defined using reference objects. For instance,
in the fifth step of Figure 2, the second and third keyframes provide
information about the robot’smotion, but the fourth keyframe group
does not. However, if the user’s intention is to pick up the rectangle
next to the prism, it implies that these situational objects may also
be involved in the task goal’s constraint.

In this study, object attributes can be both discrete and
continuous attributes, and they are represented as follows:

AOβ
= {ϴdk ,ϴck}

i
j

(10)

In Eq. 10, ϴck represents the value for a continuous attribute ck,
such as size or mass and similarlyϴdk represents the discrete value for
a discrete feature dk such as color, shape, or category. We assume that
each attribute is independent of other attributes. Firstly, we determine

from the data, whether constraints must be imposed on a particular
object attribute or not. This allows the robot to better understand the
task and which attribute of reference and situational object is relevant
during the reproduction step. Considering that the number of groups
of situational objects is q, and the number of groups of object-centric
keyframes is m-1, the total number of keyframe groups is calculated
as q + m-1. We compute the distance of each discrete attribute value
between demonstrations; then the summation of absolute values of
these distances is computed as follows:

χ =
n

∑
i=1
|{ϴdk}

i+1
j
− {ϴdk}

i
j
|, j ∈ [2,q+m− 1] (11)

If χ is zero, it implies that the attribute is identical across all
demonstrations, and a constraint must be added for the specific
keyframe group. If this is not the case, the value of this attribute does
not impact the task and can be disregarded by the robot. As illustrated
in the sixth step of Figure 2, the shape of the objects in each group is
the same, so the shape is considered a constraint. However, the color
of the objects varies in every demonstration, therefore it is not defined
as a constraint.

However, there might not always be similarities between a
particular attribute in each demonstrationwhen considering only one
object. For instance, the color of the object that the robot picks may
vary from one demonstration to another. Nonetheless, there might
be a constraint between object pairs within each demonstration, e.g.,
the object must always be placed on an object with the same color.
To handle such constraints, we compute a difference vector for the
discrete attributes of each object in one demonstration as follows:

{ϴdk}
i
j={a,b}
= {ϴdk}

i
a
− {ϴdk}

i
b
,

∀{a,b} ∈ [2,m+ q− 1],a ≠ b
(12)

If there is a constraint between the objects used in one
demonstration, the value of {ϴdk}

i
j

must be equal for each
demonstration, so the result of

{ϴdk}
i+1
j={a,b}
− {ϴdk}

i
j={a,b}
,

∀i ∈ [1,n]
(13)

needs to be zero. Otherwise, it implies that there are no object
attribute constraints within the demonstration. If it is zero Eq. 12
will be another constraint in the reproduction to define each object.
For instance, in the seventh step of Figure 2, the color of the triangle
in the fourth keyframe group and the color of the rectangle in the
third keyframe group varies in each demonstration. However, in
each demonstration, the color of the triangle matches the color of
the rectangle. This means that the color of the triangle and the color
of the rectangle can be any color, but as a constraint, their colors
must be the same. It is important to note that although the shape of
reference objects is also the same, the shape of these objects does not
vary in each demonstration. As this constraint is already computed
between demonstrations using Eq. 11, we do not check the shape of
these objects within the demonstration.

Similar reasoning applies to continuous object attributes. With
continuous attributes, the robot may observe that the object to be
picked always has a different size. However, determining whether
these sizes are similar enough to impose a constraint requires a
measure of similarity and a defined threshold. Therefore, we assume
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that the continuous attribute values are normally distributed, and
we compute the standard deviation, σ, and mean, μ, values of
the attributes for each object given in the same keyframe. For a
continuous variable, the range of {ϴck}τ, which falls within μ± 2σ,
is considered a constraint for the object, as long as σ < wmax. If the
standard deviation of a continuous variable exceeds a threshold,
wmax, then this feature is assumed to be unconstrained. Large
variations in continuous attributes suggest that these attributes are
not crucial for object selection. This threshold must be predefined.
For example, in the seventh step of Figure 2, a size range is computed
as a constraint for the size of each object, and wmax = 2cm.

Similarly, we check the similarities of different object’s
continuous attributes within the demonstration using the
correlation coefficient. A correlation of −1 defines a perfect negative
correlation and a value of 1 defines a perfect positive correlation. In
this work, only inter-object attributes with an absolute correlation
of 0.65 or more are considered to be constrained to one another.
For example, in each demonstration, small objects can be placed
on top of big objects; in this case, if there are two big objects and
one small object in the environment satisfying the constraints, the
robot cannot make a decision about which object will be used. In
this work, the relation between continuous object attributes that are
correlated is modeled using a linear relation, however, any other
model can be used if preferred. Therefore, we represent a linear
equation to define the constraint,

{ϴck}
i
a
= X{ϴck}

i
b
+Y,∀{a,b} ∈ [2,m+ q− 1],a ≠ b (14)

Where the vectors X and Y are learned through linear
regression, and in reproduction, the relevant objects can be chosen
using the constraint for task objects and other objects used within
the demonstration. For example, in the seventh step of Figure 2, the
size difference between the small rectangle and the larger rectangle is
consistently 0.02 m in each demonstration, therefore the coefficients
of X and Y are recorded as 0.02 and 1 respectively. These constraints
are utilized during the reproduction stage.

In this method, it is up to the user whether similar object attributes
areobserved inalldemonstrationsor if the same inter-object constraints
exist in each demonstration. Usersmust utilize the objects according to
their purpose during demonstrations. It is not necessary for discrete or
continuous attributes to alwayshave constraints. For instance, if theuser
does not change objects but uses a different geometric configuration in
each demo, our method only takes into account the observed objects
and their attributes for the task.

3.6 Reproduction

The inputs of the reproduction include constraints for each
keyframe group, between keyframes, the number of reference objects,
and the new environment with object attributes and poses. The first
step classifies objects based on desired attributes for each keyframe
group. For example, in Figure 2, there are two reference objects and
one situational object after demonstrations. Initially, six candidate
objects exist for each keyframe in the reproduction scene. The first
reference object must be a rectangle of size 0.02–0.04 m, with possible
candidates being O2-O6. The second reference object must also be
rectangular but of size 0.04–0.06 m, with candidates being O3-O4-
O5-O6.The situational object is a triangle of size 0.06m; the only valid

object isO1. A candidate objectmatrix is created, including all possible
object index combinations for each keyframe. Columns of this matrix
represent eachkeyframegroup. Some examples ofmatrix rows areO2-
O3-O1,O2-O4-O1, andO6-O5-O1.Constraintsbetweenkeyframesare
then checked.The order of this check doesn’t affect the final outcome,
provided all constraints are considered.

First, constraints between the situational and reference object
are applied. In the example of Figure 2, the first reference object
must be next to the situational object. Relevant columns containing
these objects are taken from the candidate object matrix, such as
O2-O1 and O6-O1. Since O2 is next to O1, rows that include O6
in the first column are removed. Next, discrete object attribute
constraints between keyframes are checked. The second reference
object and situational object must have the same color. The rows
that have the index of objects O4, O6 in the second column are
removed, as they are not red. Lastly, continuous object attribute
constraints are checked between keyframes. The second object’s
size is twice the first reference object size. Since O5 is not valid
for this constraint, the rows that include the index of O5 in the
second column is removed. The result objects for each keyframes
in order are O2-O3-O1. Ultimately, this process results in a single
candidate object for each keyframe. The reference object number
is crucial for computing the desired robot’s pose. In this example,
the first two columns (O2-O3) are taken to compute the desired
end-effector pose. This reproduction procedure is summarized
in Supplementary Algorithm S1.

4 Experiments

4.1 Experimental setup

The Optitrack Motion Capture System, with four OptiTrack
Prime 41/22 cameras, is used to detect object poses in the scene. The
cameras are positioned to overlook the table during experiments.
Their view, as illustrated in Figure 3, is captured using the Motive
software on a Windows PC. The tracking of rigid bodies is done
through the Motive software. A global frame is established during
calibration, with a corner of the table designated as the global frame.

Passive reflective tape markers are used for object detection by
the Optitrack system. Four markers were attached on top of each
object due to their small size.The object pose is defined as the center
of these markers. We consider five object attributes: color, shape,
category, instance, and size. The “category” is a generic label for
objects, such as toys or furniture. An “instance” of a category is a
specific element within that category.

A 7-DOF Franka Emika Panda arm is used for manipulation
tasks. To calibrate the robot’s base frame pose relative to the global
frame, we use the OpenCV eye-to-hand library with the (Park and
Martin, 1994).

During experiments, the user can move the robot freely. In
each keyframe, the pose of the end-effector with respect to the
robot base frame and the gripper positions are recorded through a
Robot Operating System (ROS) node. The recorded data, including
keyframe index, object poses, object attributes, and end-effector
pose, are collected and used as input for the learning algorithm
implemented in MATLAB. In the reproduction stage, the new
environment information, including the pose of the objects in
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FIGURE 3
Experimental setup with a motion capture system. Multiple cameras are positioned around the table to capture the poses of the objects (geometric
shapes) on the table. The inset shows a close-up view of the objects and markers. The view from one of the cameras is illustrated.

the scene and their attributes, and the generated constraints from
the demonstration are input to Supplementary Algorithm S1. This
algorithm identifies the relevant object for each keyframe in the
scene and computes the result end-effector poses to satisfy the
relative pose constraints between the robot and the object. We
assume the existence of a trajectory planner that can generate a
collision-free path between the desired end-effector poses.

4.2 Task descriptions

In our study, we validate our results using three tasks: stacking,
sorting, and serving. Supplementary Videos demonstrating each
experiment can be found in the Supplementary Materials as Video
1 (stacking), Video 2 (sorting), and Video 3 (serving), respectively.
The task descriptions are given in the following lines.

• Stacking Task: This experiment demonstrates the robot’s ability
to learn and generalize constraints about discrete object
attributes. The goal is for the robot to “Pick a cube and place it
on top of a same-colored cylinder”.

• Sorting Task: The second experiment emphasizes the
importance of continuous object attribute constraints. The
task is to “Sort three objects of the same shape, each with a size
difference of 0.01m from the next, from the largest to the smallest
in right-to-left order.”

• Serving Task: The final experiment highlights the relevance of
situational objects and spatial constraints. The robot is taught
to “Choose another fruit from the box containing the same fruit as
the fruit on the plate and place it next to the fruit on the plate.”

5 Results

This section introduces the outcomes of the demonstrations and
the results of reproduction for each individual tasks.

5.1 Stacking task

5.1.1 Demonstration results
During the learning phase of the stacking task, the robot

consistently picks a cube and places it on top of a cylinder.
The user varies the colour of the cube and cylinder in each
demonstration. All objects utilized during the demonstration and
reproduction phases are depicted in Figure 4. It’s important to
note that not all objects are used during the training phase.
Some are introduced in the reproduction phase to validate the
generalization capabilities of our proposed approach. As depicted
in Figure 5, three distinct demonstrations were executed. The
initial demonstration involved a red cube and a red cylinder,
the subsequent demonstration incorporated a blue cube and
a blue cylinder, and the final demonstration utilized a green
cube and a green cylinder. The configurations of these objects
within each demonstration are illustrated in Figure 5A. Figure 5B
provides a graphical representation of the end-effector positions and
orientations, with the number of keyframes in each demonstration
being 6, 4, and 3, respectively. Lastly, Figure 5C presents the
scenes corresponding to the final object-centric keyframes in each
demonstration.

We define the variable ζ based on the gripper status. At the start
of each demonstration for a scene, its value is set to “on the table”.
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FIGURE 4
Variety of Geometric Objects for Stacking Task. Objects O1 (green cube), O2 (red cube), O3 (blue cube), and O5 (green cylinder), O6 (red cylinder), O7
(blue cylinder) are observed during the demonstration phase. Objects O4 (yellow cube), O8 (yellow cylinder), and O9 (red torus) are allocated for the
reproduction phase.

If the gripper status changes from open to closed in a keyframe,
ζ is defined as “grasping.” Conversely, if it changes from closed
to open, ζ is defined as “on the table”. In this example, only the
positions of the cube and ζ change. Therefore, the reference frame
for the second keyframe is the cube object location. Then, ζ changes
from “grasping” to “on the table” for the cube. In this situation, our
proposed method identifies a reference frame using other objects in
the scene. Since the cube is on top of the cylinder, the reference frame
for the third keyframe is defined as the cylinder location, as outlined
in Algorithm 1. The first keyframe group,c1, represents the recorded
scene before the demonstration, it is not important in learning to
generalize the robot’s motion, its reference is taken.

As the robot base frame. After we apply Eq. 8, in this task,
we only have two object-centric keyframes. The attributes for each
keyframes are computed as follows:

c2:{toy,geometric,cube,0.04m,grasping}

c3:{toy,geometric,cylinder,0.03m,onthetable}

Given that there is no constraint on the colour of the two objects,
Eq. 12 has been used to establish a colour constraint between the
objects, denoted as c2–c3: {Colour}. More specifically, the colours
of the object to be picked and the object on which this object must
be placed are always identical. Since the environment only includes
reference objects, there are no spatial constraints.

The size of the objects remains consistent in each demonstration.
For continuous attributes, we always examine the correlation
between two objects. However, there isn’t enough variation in size
to determine whether a correlation exists. Therefore, size is not
considered an inter-object constraint between two objects.

5.1.2 Reproduction results
Following the teaching phase, the reproduction phase for

this task takes the desired object attributes for each keyframe,
discrete inter-object constraint, and the desired relative poses
between the end-effector and reference objects as inputs. In the
reproduction phase, we apply the learned constraints in three
different environments, as depicted in Figure 6. In the first case, a
green cylinder and a blue cube are present on the table. Although
these objects meet the desired object attributes for each keyframe,
the colour of the objects must be identical. Therefore, there are
no suitable candidate objects for the task. In the second case,
there are four objects. While the yellow cube and green cube are
candidate objects for the second keyframe, the yellow cylinder and
blue cylinder are chosen for the third keyframe. Since the colour of
both objects must be the same, after the inter-object constraints in
the reproduction steps, the resulting candidate objects are the yellow
cube and yellow cylinder.

In the third case, a red cube, a red cylinder, and a red torus are
present. Since the torus shape is not suitable for any keyframes, it is
eliminated after applying the desired constraints for each keyframe.

The second and third cases are successful because there are
objects that satisfy the constraints between demonstrations and
discrete inter-object constraints. The outcomes of these two scenes
are illustrated in the last column of Figure 6. The object attributes
and the candidate objects in each environment are provided
in Supplementary Table S1.

This result proves that the robot does not need task-
unimportant keyframes to execute the task. Moreover, using only
three demonstrations, we could extract the user’s intention. In
reproduction, although there are multiple and unseen objects, the
robot could generalize the task. The learning of discrete object
attributes within the demonstrations indeed underscores the
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FIGURE 5
Demonstrations of the Stacking Task: This figure presents three distinct demonstrations, each arranged vertically and utilizing a unique set of objects.
The first demonstration involves objects O2 and O6, the second incorporates objects O3 and O7, and the third employs objects O1 and O5. Each
demonstration: (A) Depicts the initial scene before the demonstrations. (B) Graphically represents the recorded end-effector positions (x, y, z) and
orientations (qx, qy, qz, qw) relative to the robot’s base frame. (C) Showcases the concluding object-centric keyframes.

potential of our contribution. Without this contribution, the robot
would execute the first case in the reproduction phase, even though
it does not meet the user’s expectations.

5.2 Sorting task

5.2.1 Demonstration results
Three demonstrations of the sorting task are sufficient to achieve

this task. The objects used in the training and reproduction are
illustrated in Figure 7.

As depicted in Figure 8, three distinct demonstrations were
executed. Each environment used in the demonstrations contains
three objects with the same shape and a red rectangular area for
arranging these objects. The shapes and sizes of the objects to be

sorted vary between demonstrations. The configurations of these
objects within each demonstration are illustrated in Figure 8A.
Since shape is a discrete attribute, using two different shapes is
enough to teach that shape is not a significant factor between
demonstrations. Figure 8B provides a graphical representation of
the end-effector positions and orientations, with the number of
keyframes in each demonstration being 7, 11, and 9, respectively.

Lastly, Figure 8C presents the scenes corresponding to the final
object-centric keyframes in each demonstration. After calculating
the constraints both between and within demonstrations, it’s found
that the shape of objects within demonstrations is consistent. The
size difference between two objects to be picked in order is 0.01 m in
the same scene. The size of the largest object ranges between 0.08 m
and 0.04 m, the second-largest object’s size ranges between 0.07 m
and 0.03 m, and the smallest object’s size ranges between 0.06 m and
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FIGURE 6
Reproduction Scenarios for the Stacking Task: This figure presents three distinct scenarios. Scene 1: an invalid configuration with a green cylinder and
blue cube. Scene 2: a yellow cylinder and cube, and a blue cylinder and green cube, with the robot successfully stacking the yellow objects. Scene 3: a
red cylinder, cube, and torus, with the robot stacking the red cube on the cylinder. Each column sequence illustrates the robot’s motion.

0.02 m. There are six object-centric keyframes, and the constraints
for each keyframe are as follows:

c2: {toy, geometric, [0.04m, 0.08m], grasping}

c3: {furniture, table,red, rectangle, 0.3m, onthetable}

c4: {toy, geometric, [0.03m, 0.07m], grasping}

c5 :{furniture, table, red, rectangle, 0.3m, onthetable}

c6:{toy, geometric, [0.02m, 0.06m], grasping}

c7: {furniture, table, red, rectangle, 0.3m, onthetable}

Our analysis indeed goes beyond examining similar attributes
of just two objects. For instance, this task involves four objects.
When a discrete constraint exists between multiple keyframes
within a demonstration, we combine these constraints in order.
This approach allows for the faster elimination of possible incorrect
objects during reproduction. A discrete constraint occurs when
there is an equality. The discrete constraints between each keyframe
group are defined as follows:

c2–c4–c6: {Shape}

The shape of the reference objects in the second, fourth, and
sixth keyframes must be the same. When continuous constraints of
more than two keyframes exist, we separate them. This separation is
necessarybecauseweusea linear regressionmodel,whereonevariable

is the independent variable, andwe always take the previous keyframe
as the independent variable. The next keyframe, therefore, must be
the dependent variable. Consequently, for continuous constraints, we
combine each keyframe group as a pair, instead of a combination of
them like discrete constraints. For example, in this task, a correlation
exists between the c2-c4, c4-c6, and c2-c6 keyframe groups. Instead
of recording all three constraints, we only record the c2-c4 and c4-c6
constraints. For example, in this task, shape is a discrete inter-object
constraint between three objects, so we record these constraints as
c2-c4-c6, which also reduced the data size used in reproduction. As a
result, continuous attribute constraints between keyframes are,

c2–c4: {Size → [−0.01,1]}

c4–c6: {Size → [−0.01,1]}.

5.2.2 Reproduction results
In reproduction, the robot executes three different scenarios

as shown in Figure 9. The scenes are entirely new to the robot.
While some objects have been seen in demonstrations, others,
such as the octagon shapes, are new. During the demonstration
and in the reproduction, we record objects using indexes. The
robot does not receive any hints about the order of objects to
be selected as a reference frame. Since only reference objects
were used during demonstrations, the learning outcome does
not include any constraints related to spatial relations. The input
for reproduction consists of desired object attributes for each
keyframe, discrete inter-object constraints, continuous inter-object
constraints, desired relative poses between the end-effector and
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FIGURE 7
Variety of Geometric Objects for Sorting Task. Objects O1 (purple torus), O2 (dark blue torus), O3 (blue torus), O4 (dark green torus), O5 (yellow torus),
O7 (dark blue rectangle prism), O8 (blue rectangle prism), O9 (yellow rectangle prism), O13 (red table) are observed during the demonstration phase.
Objects O6 (red rectangle prism), O10 (orange octagon), O11 (dark green octagon), O12 (yellow octagon) are added for the reproduction phase.

objects, and the new environment’s object attributes and poses. The
candidate objects of each keyframe for each case are summarized
in Supplementary Table S2.

In the first environment, after applying constraints between
demonstrations, the candidate objects for the c2-c4-c6 groups
can be any toy in the environment. However, the objects for
c3-c5- c7 are red rectangle area on the table. These possible
object sets will be decreased by applying discrete constraints
within the task. This step eliminates the rectangle prism
objects since the robot requires three objects with the same
shape. However, for c2-c4-c6, there are still multiple possible
objects. Next, continuous inter-object constraints are applied.
When the robot chooses three objects in the correct order,
it satisfies the task objectives. Therefore, the task is executed
successfully. In fact, the dark green octagon size falls within
the required size range for the largest object. However, if the

robot takes this object as the largest, the robot cannot find any
object for the smallest one. Consequently, it learns to eliminate
these options.

In the second scenario, although the shape of all objects
satisfies inter-object discrete constraints, the size difference
between the second and the third object is 0.02 m instead
of 0.01 m. Therefore, the robot chooses rectangle prisms. In
the last scenario, the sizes of objects are suitable for the task.
However, there are no three rectangle prisms, therefore the robot
chooses octagons.

This result indeed demonstrates that continuous inter-
object constraints can also be crucial for the task. Without this
contribution, the robot would not be able to learn the size difference
between the objects. Moreover, focusing on only object-centric
keyframes assists in dealing with multiple objects, as each object is
relevant to a keyframe.
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FIGURE 8
Demonstrations of the Sorting Task: This figure presents three distinct demonstrations, each arranged vertically and utilizing a unique set of objects.
The first demonstration involves objects O1, O2, O3, and O13, the second incorporates objects O7, O8, O9 and O13, and the third employs objects O3,
O4, O5, and O13. Each demonstration: (A) Depicts the initial scene before the demonstrations. (B) Graphically represents the recorded end-effector
positions (x, y, z) and orientations (qx, qy, qz, qw) relative to the robot’s base frame. (C) Showcases the concluding object-centric keyframes.

5.3 Serving task

5.3.1 Demonstration results
In this task the fruit on the plate and the fruit in the box are the

same. So, multiple objects with the same attributes can be on the
table at the same time, these objects are represented with different
indexes, as depicted in Figure 10.

As depicted in Figure 11, three distinct demonstrations were
executed. As illustrated in Figure 11A, in the first demonstration,
there’s a lemon on the plate and a lemon and a green apple on the
box. The second demonstration has a green apple on the plate, and a
lemon, and another green apple on the box.The third demonstration
has a red apple on the plate, and a red apple and a banana on the
box. Figure 11B graphically represents the end-effector’s positions
and orientations, with each demonstration consisting of 4, 3, and
3 keyframes, respectively. Finally, Figure 11C visually presents the

scenes associated with the last object-centric keyframes for each
demonstration. There are two different reference objects and two
object-centric keyframes for these objects. The constraints between
these keyframes groups are:

c2:{Fruit, [0.03,0.09]m,grasping}

c3:{KitchenTool,Plate,Green,Rectangle,0.26m,onthetable}

In this task, there are situational objects that are automatically
defined from the data. The labels for these spatial constraints are as
follows: c2 is on top of c4, c2 is next to c5, and c3 has c6. As a result, the
number of keyframes’ group has increased. The common attributes
in each new keyframe group are:

c4:{Furniture,Box,LightBrown,Rectangle,0.21m,onthetable }
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FIGURE 9
Reproduction Scenarios for the Sorting Task: This figure presents three distinct scenarios. Each scene is valid for the task’s description. Each column
sequence illustrates the robot’s motion in each scene.

c5 :{Fruit,Sphere, [0.04,0.07]m,onthetable }
c6 :{Fruit,Sphere, [0.04,0.07]m,onthetable }

Thefirst reference object (the fruit to be picked) is on the box and
next to another fruit. Moreover, the second reference object (plate)

has a fruit.The instance of the fruit next to the first reference object is
the same as the instance of the fruit on the second reference object.
This is computed as the discrete constraints between the fifth and
sixth keyframe groups:
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FIGURE 10
Variety of Objects for Serving Task. Objects O1 (red apple), O8 (red apple), O2 (green apple), O9 (green apple), O3 (lemon), O10 (lemon), O5 (banana), O7

(brown box), O6 (green plate) are observed during the demonstration phase. Objects O4, O11, O12 (orange), O13 (banana), O14 (brown box) are added for
the reproduction phase.

c5‐c6:{Colour, InstanceOf}

Moreover, since the size of the two objects in the fifth keyframe
and sixth keyframe is the same, a continuous attribute constraint is
found between them:

c5‐c6:{Size → [0,1.0]}

Indeed, while the proposed method initially seeks
situational objects using spatial constraints for each task,
in previous experiments, all objects in the scene were
reference objects.

However, the user’s intention may also depend on situational
objects in the environment. Consequently, all these objects
are added as additional groups. It’s important to note that
the end-effector goal poses depend solely on reference
objects. Situational objects merely assist in selecting these
reference objects.

5.3.2 Reproduction results
In the reproduction phase, the robot performs the task in

three different environments, as depicted in Figure 12. In the first
scenario, the robot encounters a new fruit, an orange, which is
on the box. A lemon is situated next to the orange, and another
lemon is on the plate. Since the two situational objects must be
the same, the lemons are situational objects. The robot selects
the orange as a reference object, with the plate being the other
reference object.

In the second scenario, the complexity is increased with the
presence of two boxes, each containing two fruits, and an orange
on the plate. The orange on the plate serves as one of the situational
objects.The robot then looks for the same situational object (another
orange) on the box. As a result, the robot selects the box containing
an orange and green apple, successfully picking up the green apple.

In the final scenario, there are two fruits (a banana and an
orange) on the box, two fruits (a banana and an orange) on the
table, and an orange on the plate. The orange on the plate is one of
the situational objects, but there is one orange on the table and one
orange on the box. Even though both fruits are next to a banana, the
banana must be on the box due to the spatial constraints between
c2 and c4. Therefore, the robot picks up the banana on the box.
The resulting candidate objects for each keyframe are provided
in Supplementary Table S3.

However, due to the spherical shape of the fruits in c5 and
c6, if there is a banana on the plate, the reproduction will fail. Of
course, this situation can be solved by an additional demonstration
with the banana placed on the plate. However, as we mentioned
before, obtaining these constraints requires the teacher to make
demonstrations that meet their own intentions.

Indeed, this experiment demonstrates the power of keyframe
representations in handling situations where the user’s intentions
may be associated with situational objects. Without this
contribution, the robot might choose any fruit without considering
its location or the fruit on the plate, thereby not fully meeting
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FIGURE 11
Demonstrations of the Serving Task: This figure presents three distinct demonstrations, each arranged vertically and utilizing a unique set of objects.
The first demonstration involves objects two lemons, a green apple, a box and a plate. The second incorporates objects two green apples, one lemon,
a plate and a box, and the third employs objects two red apples, one banana, a box and a plate. Each demonstration: (A) Depicts the initial scene before
the demonstrations. (B) Graphically represents the recorded end-effector positions (x, y, z) and orientations (qx, qy, qz, qw) relative to the robot’s base
frame. (C) Showcases the concluding object-centric keyframes.

the user’s expectations. This approach ensures that the robot’s
actions align more closely with the user’s intentions, showcasing
the effectiveness of our method.

6 Discussion and conclusion

This study employs keyframe demonstrations to capture user
intentions addressing two distinct challenges. The first challenge
involves extracting object-centric keyframes from a varying number
of keyframes in each demonstration. The second challenge pertains
to inferring the user’s intention based on the attributes of objects and
generalizing this understanding to environments that have not been
previously encountered.

In the existing literature, the number of keyframes is often
treated as equal (Jankowski et al., 2022) or even when the number of

keyframes varies, the task is simple enough to involve only one object
(Akgun et al., 2012b; Akgun and Thomaz, 2016). These keyframes,
obtained from multiple demonstrations, must be clustered to
generalize robot motion to different configurations. This clustering
is dependent on the performance of alignment and clustering
methods. In our study, we diverge from previous research by
expanding the keyframe to include attributes of all objects in
the environment, their poses, and the robot’s configuration. This
additional information identifies which keyframes are necessary
for the task, ensuring an equal number of keyframes are obtained
in each demonstration. As it is easier to group equal numbers of
keyframes, each with the same meaning, it eliminates the need
for the alignment method, unlike other studies. This elimination
guarantees keyframe groups that include accurate relative poses
between the end-effector and objects, without being affected by
task-unimportant keyframes which may cause coarser relative
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FIGURE 12
Reproduction Scenarios for the Serving Task: figure presents three distinct scenarios. Scene 1: a lemon is on the plate, an orange and a lemon are on
the box. Scene 2: There are two boxes. A red apple and a green apple are on one of the box. A green apple and an orange are on the other box. An
orange is on the plate. Scene 3: A banana and an orange are on the table. A banana and an orange on the box, and an orange on the plate. Each
column sequence illustrates the robot’s motion.

poses than the user intended. Our experiments indicate that
when the number of keyframes changes in each demonstration,
only object-centric keyframes are sufficient to reproduce the task.
Moreover, this reduction of keyframes aids in addressing the
second challenge.

The second challenge is to uncover the user intention about
the attributes of objects to generalize the robot’s task to unseen
environments. In the literature, studies such as those conducted by
Cubek et al. (2015), focus solely on pick-and-place tasks involving
two objects. They examine the similarities of object attributes
between demonstrations. Similarly, in the study conducted by Chao
et al. (2010), the similarities of both discrete and continuous
attributes between demonstrations are given. These studies do not
address similarities within a demonstration, such as the color of two
objects having to be the same in a demo. Our solution can handle
these situations. For example, in the first and second examples, the
user desires depend on both similarities between and within the
demonstration.

In the studies carried out by Fonooni et al. (2016), a semantic
network includes all the necessary concepts and objects that the
robot can work with, and nodes of the semantic network are

discrete. However, in our experiments, to show that the shape of
objects is not important, we do not have to include all possible
shapes that the robot can work within our attributes. Moreover,
the approach proposed by Fonooni et al. (2016), does not include
similarity for continuous attributes. In the second experiment,
we show the importance of continuous object attributes both
between and within demonstrations. The size difference between
each object can be important for a sorting task. These previous
studies (Chao et al., 2010; Cubek et al., 2015; Fonooni et al., 2016)
do not focus on the attributes of situational objects in the
environment. For example, in the last experiment, we showed that
for a serving task, the fruit on the box and on the plate must be
the same. This constraint is determined using situational objects’
attributes. In summary, the similarities between object attributes
are revealed in a more comprehensive way with complicated
tasks involving multiple objects than the studies in the literature
by taking advantage of keyframes. The constraints obtained as
a result of this solution determine the purpose of the task,
and the robot successfully performs the task by finding objects
that meet these constraints, even if they are objects it has not
seen before.
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As discussed in the related work, the concept of semantics can
be associated with a variety of applications. Our approach, when
applied to object search applications such as those conducted by
Guo et al. (2022) and Zhang et al. (2023), has certain limitations,
particularly in the representation of object attributes.We demonstrate
that if discrete object attributes match, then this attribute becomes a
constraint. However, in the case of a service robot, the object could be
located anywhere, necessitating a discrete object attribute to define its
location. For instance, if a user demonstrates to the robot how to pick
up a mug from the kitchen, the robot may not be able to find the mug
if it is in another room during reproduction. Typically, navigation or
object search applications use ontology-based graph representation,
which could enhance our approach.

When applied to semantic navigation applications like Qi et al.
(2020) and Achat et al. (2023), another limitation arises. We use
keyframes to represent robot targets, but they may not generate
constraints like “avoid the walls”. Adding trajectories could provide
these constraints. Some studies propose hybrid movements as input
(Akgun et al., 2012a), where both keyframes and trajectories can be
provided. We aim to enhance our approach to accept trajectories as
input in future work.

We believe that our approach has potential for applications in
human-robot interaction. Although natural language is user-friendly,
as shown in studies byKartmann et al. (2021) andBucker et al. (2023),
these applications typically require a mapping from sentences to low-
level robot motion and generally require substantial data. With our
approach, users can implicitly teach their high-level preferences to
the robot through physical interactions. Another potential application
couldbe semantic grasping, as demonstratedbyMoonandLee (2020),
if we add attributes such as “fragile” and “not fragile”, and record
forces by the robot. Physical human-robot interactionswhen the robot
executes the task can be another application that could benefit from
our approach. For example, when there is amisalignment between the
user and robot, the user records multiple trajectory traces around the
object, as shown in the study byLourenço et al. (2023).With the use of
our approach, the user could show the trajectories around “computer,”
“mobile phone” and the robot couldunderstand implicitly that it needs
to avoid “electronic devices”.

While not explored in this study, our method can effectively
communicate the reasons for task failures to the user when the robot
cannot find a solution for a task. For instance, in the first experiment,
when there was a green cylinder and a blue cube, the robot would
not perform the task because the colors did not match, thus not
meeting the user’s intentions. In fact, the robot can understand the
reason for failure, and these reasons can be informative for the
user. The user can rectify these situations by providing an additional
demonstration or changing objects based on the feedback received.

Similarly, in some contexts, there may be more than one
group of candidate objects that meet the constraints derived from
demonstrations. In fact, our proposed method can accurately
identify all possible candidate objects. If combined with behavior
trees (Gustavsson et al., 2022), the robot motions can be repeated
until there are no objects in the environment that satisfy the desired
constraints. However, we do not allow the robot to repeat the
task when there are multiple correct object groups, as this may be
incorrect for some tasks. For example, in the scenario discussed in
the first experiment, when there is a red cylinder, red cube, yellow
cylinder, and yellow cube, our algorithm provides us with the object

pairs and the necessary keyframes and reference poses of the robot.
However, when we apply this situation to a sorting task, the red
area will already be full after the robot executes the task once. By
avoiding the use of an objectmore than once for the same conceptual
keyframe, we can easily handle this problem. But this will not be
able to solve the situation of collecting fruits in a box, where we
can put multiple fruits into a box. Although the message we want to
convey can be understood by the robot, there may be situations that
the robot cannot cope with. Asking the user about these situations
through communication and after getting approval from him/her
may perhaps take our work one step further.We believe that human-
robot interaction is crucial to correcting the robot’s behavior or
updating the task.
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